Thuan Sarzynski, Benoît Bertrand, Clément Rigal, Pierre Marraccini, Philippe Vaast, Frédéric Georget, Claudine Campa, Cécile Abdallah, Chang Thi Quynh Nguyen, Hung Phi Nguyen, Hai Thi Thanh Nguyen, Quyen Luu Ngoc, Giang Khong Ngan, Thang Vu Viet, Luciano Navarini, Valentina Lonzarich, Laurent Bossolasco, Hervé Etienne, Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Northern Mountainous Agriculture and Forestry Science Institute (NOMAFSI), Agrosystèmes Biodiversifiés (UMR ABSys), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), World Agroforestry Center [CGIAR, Vietnam], World Agroforestry Center [CGIAR, Kenya] (ICRAF), Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR), Agricultural Genetics Institute (AGI), Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Direction du département Performances des systèmes de production et de transformation tropicaux (Direction Persyst), Institut de Recherche pour le Développement (IRD), Phuc Sinh Son Corporation, illycaffé S.p.A, ECOM Agroindustrial [Ho Chi Minh City], We thank all employees (master and PhD students, researchers) of Agricultural Genetics Institute (AGI-Hanoi) and the Northern Mountainous Agriculture and Forestry Science Institute (NOMAFSI) for their technical support. We thank Phuc Sinh staff for their help in processing the coffee beans. We thank the laboratories which analyzed the coffee beans, Eurofins, Nantes – France, the Centre of Functional Genomics, Bordeaux – France, Illy-cafè, Milan – Italy. Lipidomics analyses were performed on the Bordeaux Metabolome Facility (Supported by MetaboHub ANR-11-INBS-0010). This research was funded by the European Commission in the framework of BREEDCAFS Project (http://www.breedcafs.eu) Horizon 2020 – Research and Innovation Programme H2020-SFS-2016-2 (grant agreement number 727934)., ANR-11-INBS-0010,METABOHUB,Développement d'une infrastructure française distribuée pour la métabolomique dédiée à l'innovation(2011), and European Project: 727934,H2020,H2020-EU.3.2,BREEDCAFS (2017)
BACKGROUND: The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600–1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS: We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype-environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3-butanediol, 2-methyl-2-buten-1-ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION: This first study of the effect of the genotype–environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.