1. Transcriptome Analysis of Salmonella Heidelberg after Exposure to Cetylpyridinium Chloride, Acidified Calcium Hypochlorite, and Peroxyacetic Acid.
- Author
-
Cadena M, Froenicke L, Britton M, Settles ML, Durbin-Johnson B, Kumimoto E, Gallardo RA, Ferreiro A, Chylkova T, Zhou H, and Pitesky M
- Subjects
- Animals, Chickens, Disinfectants pharmacology, Disinfection methods, Gene Expression Profiling, Calcium Compounds pharmacology, Cetylpyridinium pharmacology, Peracetic Acid pharmacology, Salmonella drug effects, Salmonella genetics
- Abstract
The application of RNA sequencing in commercial poultry could facilitate a novel approach toward food safety with respect to identifying conditions in food production that mitigate transcription of genes associated with virulence and survivability. In this study, we evaluated the effects of disinfectant exposure on the transcriptomes of two field isolates of Salmonella Heidelberg (SH) isolated from a commercial broiler processing plant in 1992 and 2014. The isolates were each exposed separately to the following disinfectants commonly used in poultry processing: cetylpyridinium chloride (CPC), acidified calcium hypochlorite (aCH), and peroxyacetic acid (PAA). Exposure times were 8 s with CPC to simulate a poultry processing dipping station or 90 min with aCH and PAA to simulate the chiller tank in a poultry processing plant at 4°C. Based on comparison with a publicly available annotated SH reference genome with 5,088 genes, 90 genes were identified as associated with virulence, pathogenicity, and resistance (VPR). Of these 90 VPR genes, 9 (10.0%), 28 (31.1%), and 1 (1.1%) gene were upregulated in SH 2014 and 21 (23.3%), 26 (28.9%), and 2 (2.2%) genes were upregulated in SH 2014 challenged with CPC, aCH, and PAA, respectively. This information and previously reported MICs for the three disinfectants with both SH isolates allow researchers to make more accurate recommendations regarding control methods of SH and public health considerations related to SH in food production facilities where SH has been isolated. For example, the MICs revealed that aCH is ineffective for SH inhibition at regulatory levels allowed for poultry processing and that aCH was ineffective for inhibiting SH growth and caused an upregulation of VPR genes.
- Published
- 2019
- Full Text
- View/download PDF