1. Fluoxetine restrains allergic inflammation by targeting an FcɛRI-ATP positive feedback loop in mast cells.
- Author
-
Haque TT, Taruselli MT, Kee SA, Dailey JM, Pondicherry N, Gajewski-Kurdziel PA, Zellner MP, Stephenson DJ, MacKnight HP, Straus DB, Kankaria R, Jackson KG, Chumanevich AP, Fukuoka Y, Schwartz LB, Blakely RD, Oskeritzian CA, Chalfant CE, Martin RK, and Ryan JJ
- Subjects
- Humans, Animals, Mice, Feedback, Inflammation drug therapy, Cytokines, Adenosine Triphosphate, Immunoglobulin E, Fluoxetine pharmacology, Mast Cells
- Abstract
There is a clinical need for new treatment options addressing allergic disease. Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants that have anti-inflammatory properties. We tested the effects of the SSRI fluoxetine on IgE-induced function of mast cells, which are critical effectors of allergic inflammation. We showed that fluoxetine treatment of murine or human mast cells reduced IgE-mediated degranulation, cytokine production, and inflammatory lipid secretion, as well as signaling mediated by the mast cell activator ATP. In a mouse model of systemic anaphylaxis, fluoxetine reduced hypothermia and cytokine production. Fluoxetine was also effective in a model of allergic airway inflammation, where it reduced bronchial responsiveness and inflammation. These data show that fluoxetine suppresses mast cell activation by impeding an FcɛRI-ATP positive feedback loop and support the potential repurposing of this SSRI for use in allergic disease.
- Published
- 2023
- Full Text
- View/download PDF