1. Comparative assessment of established and deep learning-based segmentation methods for hippocampal volume estimation in brain magnetic resonance imaging analysis.
- Author
-
Wang HC, Chen CS, Kuo CC, Huang TY, Kuo KH, Chuang TC, Lin YR, and Chung HW
- Subjects
- Humans, Male, Female, Organ Size, Reproducibility of Results, Aged, Alzheimer Disease diagnostic imaging, Alzheimer Disease pathology, Middle Aged, Image Processing, Computer-Assisted methods, Adult, Hippocampus diagnostic imaging, Deep Learning, Magnetic Resonance Imaging methods
- Abstract
In this study, our objective was to assess the performance of two deep learning-based hippocampal segmentation methods, SynthSeg and TigerBx, which are readily available to the public. We contrasted their performance with that of two established techniques, FreeSurfer-Aseg and FSL-FIRST, using three-dimensional T1-weighted MRI scans (n = 1447) procured from public databases. Our evaluation focused on the accuracy and reproducibility of these tools in estimating hippocampal volume. The findings suggest that both SynthSeg and TigerBx are on a par with Aseg and FIRST in terms of segmentation accuracy and reproducibility, but offer a significant advantage in processing speed, generating results in less than 1 min compared with several minutes to hours for the latter tools. In terms of Alzheimer's disease classification based on the hippocampal atrophy rate, SynthSeg and TigerBx exhibited superior performance. In conclusion, we evaluated the capabilities of two deep learning-based segmentation techniques. The results underscore their potential value in clinical and research environments, particularly when investigating neurological conditions associated with hippocampal structures., (© 2024 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF