1. Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity
- Author
-
Xinwen Pan, Chuyu Fang, Chuan Shen, Xixia Li, Lele Xie, Luan Li, Shan Huang, Xiumin Yan, and Xueliang Zhu
- Subjects
Science - Abstract
Abstract Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed. Here, we show that the BF-AO coupling occurs during rotational polarizations of BBs and requires Ccdc57. Ccdc57 localizes on BBs as a rotationally-asymmetric punctum, which polarizes away from the BF in BBs having achieved the rotational polarity to probably fix the BF-AO relationship. Consistently, Ccdc57-deficient ependymal multicilia lack the BF-AO coupling and display directional beats at only single cell level. Ccdc57 −/− tracheal multicilia also fail to fully align their BFs. Furthermore, Ccdc57 −/− mice manifest severe hydrocephalus, due to impaired cerebrospinal fluid flow, and high mortality. These findings unravel mechanisms governing the planar polarity of epithelial motile cilia.
- Published
- 2024
- Full Text
- View/download PDF