1. Matroid Polytopes and their Volumes
- Author
-
Federico Ardila, Jeffrey Doker, Carolina Benedetti, San Francisco State University (SFSU), Universidad de Los Andes [Venezuela] (ULA), Department of Mathematics [Berkeley], University of California [Berkeley], University of California-University of California, Krattenthaler, Christian and Strehl, Volker and Kauers, and Manuel
- Subjects
General Computer Science ,Weighted matroid ,Polytope ,0102 computer and information sciences ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,generalized permutohedron ,01 natural sciences ,Matroid ,Theoretical Computer Science ,Combinatorics ,Mathematics - Algebraic Geometry ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Mathematics::Metric Geometry ,Discrete Mathematics and Combinatorics ,0101 mathematics ,Algebraic Geometry (math.AG) ,Mathematics ,Discrete mathematics ,Mathematics::Combinatorics ,Matroid polytope ,010102 general mathematics ,matroid polytope ,flag matroid ,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] ,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,Oriented matroid ,Graphic matroid ,Computational Theory and Mathematics ,010201 computation theory & mathematics ,Matroid partitioning ,Combinatorics (math.CO) ,Geometry and Topology ,Minkowski sum ,mixed volume ,Flag (geometry) - Abstract
We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian $Gr_{k,n}$. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of $M$. Our proofs are based on a natural extension of Postnikov's theory of generalized permutohedra., On exprime le polytope matroïde $P_M$ d'un matroïde $M$ comme somme signée de Minkowski de simplices, et on obtient une formule pour le volume de $P_M$. Ceci donne une expression combinatoire pour le degré d'une clôture d'orbite de tore dans la Grassmannienne $Gr_{k,n}$. Ensuite, on déduit des résultats analogues pour le polytope ensemble indépendant et pour le polytope matroïde drapeau associé à $M$. Nos preuves sont fondées sur une extension naturelle de la théorie de Postnikov de permutoèdres généralisés.
- Published
- 2009
- Full Text
- View/download PDF