1. Population Pharmacokinetics of the Anti-Interferon-Gamma Monoclonal Antibody Emapalumab: An Updated Analysis
- Author
-
Patrick Brossard and Christian Laveille
- Subjects
Adult-onset Still’s disease ,Emapalumab ,Hemophagocytic lymphohistiocytosis ,Hyperinflammation ,Interferon-gamma ,Modeling ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Introduction Emapalumab is a fully human monoclonal antibody that targets free and receptor-bound interferon-gamma (IFNγ), neutralizing its biological activity. IFNγ levels differ by orders of magnitude between patients with primary hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS; a form of secondary HLH) in systemic juvenile idiopathic arthritis (sJIA). Therefore, this study aimed to develop a population pharmacokinetic model for emapalumab across a patient population with a wide range of total (free and emapalumab-bound) IFNγ levels using observations from patients with primary HLH or MAS in sJIA in clinical trials. Methods Pharmacokinetic data were pooled (n = 58; 2709 observations) from studies enrolling patients administered emapalumab for primary HLH or MAS in sJIA. Patients with primary HLH were administered emapalumab 1 mg/kg (potentially increasing to 3, 6, and up to 10 mg/kg based on clinical response) every 3 days. Patients with MAS in sJIA were administered emapalumab 6 mg/kg, followed by 3 mg/kg every 3 days until day 15 and twice weekly until day 28. An earlier population PK model was re-parameterized using this data. Results The final model for emapalumab comprised a 2-compartment model with first-order elimination. Emapalumab clearance remains constant when the total IFNγ concentration (free and emapalumab-bound) is
- Published
- 2024
- Full Text
- View/download PDF