100 results on '"Christian Buck"'
Search Results
2. Decoding a Neural Retriever's Latent Space for Query Suggestion.
- Author
-
Leonard Adolphs, Michelle Chen Huebscher, Christian Buck, Sertan Girgin, Olivier Bachem, Massimiliano Ciaramita, and Thomas Hofmann
- Published
- 2022
- Full Text
- View/download PDF
3. Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question Answering Evaluation.
- Author
-
Jannis Bulian, Christian Buck, Wojciech Gajewski, Benjamin Börschinger, and Tal Schuster
- Published
- 2022
- Full Text
- View/download PDF
4. Quick and Reliable Document Alignment via TF/IDF-weighted Cosine Distance.
- Author
-
Christian Buck and Philipp Koehn
- Published
- 2016
- Full Text
- View/download PDF
5. Findings of the WMT 2016 Bilingual Document Alignment Shared Task.
- Author
-
Christian Buck and Philipp Koehn
- Published
- 2016
- Full Text
- View/download PDF
6. Ask the Right Questions: Active Question Reformulation with Reinforcement Learning.
- Author
-
Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski, Andrea Gesmundo, Neil Houlsby, and Wei Wang 0236
- Published
- 2018
7. The Matecat Tool.
- Author
-
Marcello Federico, Nicola Bertoldi, Mauro Cettolo, Matteo Negri, Marco Turchi, Marco Trombetti, Alessandro Cattelan, Antonio Farina, Domenico Lupinetti, Andrea Martines, Alberto Massidda, Holger Schwenk, Loïc Barrault, Frédéric Blain, Philipp Koehn, Christian Buck, and Ulrich Germann
- Published
- 2014
8. N-gram Counts and Language Models from the Common Crawl.
- Author
-
Christian Buck, Kenneth Heafield, and Bas van Ooyen
- Published
- 2014
9. CASMACAT: A Computer-assisted Translation Workbench.
- Author
-
Vicent Alabau, Christian Buck, Michael Carl, Francisco Casacuberta, Mercedes García-Martínez, Ulrich Germann, Jesús González-Rubio, Robin L. Hill, Philipp Koehn, Luis A. Leiva, Bartolomé Mesa-Lao, Daniel Ortiz-Martínez, Herve Saint-Amand, Germán Sanchis-Trilles, and Chara Tsoukala
- Published
- 2014
- Full Text
- View/download PDF
10. Findings of the 2014 Workshop on Statistical Machine Translation.
- Author
-
Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and Ales Tamchyna
- Published
- 2014
- Full Text
- View/download PDF
11. FBK-UPV-UEdin participation in the WMT14 Quality Estimation shared-task.
- Author
-
José Guilherme Camargo de Souza, Jesús González-Rubio, Christian Buck, Marco Turchi, and Matteo Negri
- Published
- 2014
- Full Text
- View/download PDF
12. Findings of the 2013 Workshop on Statistical Machine Translation.
- Author
-
Ondrej Bojar, Christian Buck, Chris Callison-Burch, Christian Federmann, Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia
- Published
- 2013
13. FBK-UEdin Participation to the WMT13 Quality Estimation Shared Task.
- Author
-
José Guilherme Camargo de Souza, Christian Buck, Marco Turchi, and Matteo Negri
- Published
- 2013
14. The Feasibility of HMEANT as a Human MT Evaluation Metric.
- Author
-
Alexandra Birch, Barry Haddow, Ulrich Germann, Maria Nadejde, Christian Buck, and Philipp Koehn
- Published
- 2013
15. Modern MT: a new open-source machine translation platform for the translation industry.
- Author
-
Ulrich Germann, Eduard Barbu, Luisa Bentivogli, Nicola Bertoldi, Nikolay Bogoychev, Christian Buck, Davide Caroselli, Luis Carvalho, Alessandro Cattelan, Mauro Cettolo, Marcello Federico, Barry Haddow, David Madl, Luca Mastrostefano, Prashant Mathur, Achim Ruopp, Anna Samiotou, Vinod Sudharshan, Marco Trombetti, and Jan van der Meer
- Published
- 2016
16. Black Box Features for the WMT 2012 Quality Estimation Shared Task.
- Author
-
Christian Buck
- Published
- 2012
17. Evaluating the Learning Curve of Domain Adaptive Statistical Machine Translation Systems.
- Author
-
Nicola Bertoldi, Mauro Cettolo, Marcello Federico, and Christian Buck
- Published
- 2012
18. Heavy Neutrino, R&D_Optimized scintillator for future neutrino detectors
- Author
-
Christian Buck
- Abstract
Plenary Talk from Neutrino 2022
- Published
- 2022
- Full Text
- View/download PDF
19. Monte Carlo simulation of background components in low level Germanium spectrometry
- Author
-
Nicola Ackermann, Hannes Bonet, Christian Buck, Oleg Chkvorets, Janina Hakenmüller, Gerd Heusser, Matthias Laubenstein, Manfred Lindner, Werner Maneschg, Jochen Schreiner, and Herbert Strecker
- Subjects
Radiation - Published
- 2023
20. Logistic Model Trees with AUC Split Criterion for the KDD Cup 2009 Small Challenge.
- Author
-
Patrick Doetsch, Christian Buck, Pavlo Golik, Niklas Hoppe, Michael Kramp, Johannes Laudenberg, Christian Oberdörfer, Pascal Steingrube, Jens Forster, and Arne Mauser
- Published
- 2009
21. Advanced computer aided translation with a web-based workbench.
- Author
-
Vicent Alabau, Ragnar Bonk, Christian Buck, Michael Carl, Francisco Casacuberta, Mercedes García-Martínez, Jesús González 0009, Philipp Koehn, Luis A. Leiva, Bartolomé Mesa-Lao, Daniel Oriz, Herve Saint-Amand, Germán Sanchis-Trilles, and Chara Tsiukala
- Published
- 2013
22. Reactor rate modulation oscillation analysis with two detectors in Double Chooz
- Author
-
Christopher Wiebusch, A. Oralbaev, M. C. Goodman, J. C. dos Anjos, M. Kuze, Christian Buck, G. Mention, C. Veyssiere, J. Haser, J.V. Dawson, R. Sharankova, D. Navas-Nicolás, A. Onillon, C. Palomares, H. de Kerret, Anatael Cabrera, J. Maricic, S. Appel, A. Givaudan, M. D. Skorokhvatov, A. Stahl, A. Minotti, R. Milincic, B. Reinhold, K. Kale, L. Scola, G. Yang, Bayarto Lubsandorzhiev, V. V. Sinev, E. Blucher, T. Miletic, L. B. Bezrukov, V. Sibille, Thierry Lasserre, P. Novella, T. Sumiyoshi, M. Obolensky, C. Jollet, Lothar Oberauer, J. Reichenbacher, P. Chimenti, A. Meregaglia, H. P. Lima, C. Lastoria, H. Gomez, E. Kemp, Masaki Ishitsuka, J. Martino, Zelimir Djurcic, Marcos Cerrada, M. Vivier, S. V. Sukhotin, S. Schönert, I. Bekman, J. Busenitz, I. Gil-Botella, S. Wagner, T. Abrahão, Tobias Lachenmaier, O. Corpace, J. M. LoSecco, H. Almazan, C. E. Lane, F. Yermia, C. Mariani, Josef Jochum, Takeo Kawasaki, Junpei Maeda, T. J. C. Bezerra, J. C. Barriere, T. Brugière, Stefan Schoppmann, Manfred Lindner, Luis González, A. Hourlier, I. M. Pepe, D. Kryn, M. Kaneda, J. M. López-Castaño, D. Lhuillier, M. Karakac, A.V. Etenko, B. Viaud, E. Chauveau, I. Stancu, H. Furuta, G. Pronost, F. Suekane, L.F.F. Stokes, D. Hellwig, T. Matsubara, Ying Sun, P. Soldin, T. Hara, Ministerio de Economía y Competitividad (España), Abrahao, T, Almazan, H, dos Anjos, J, Appel, S, Barriere, J, Bekman, I, Bezerra, T, Bezrukov, L, Blucher, E, Brugiere, T, Buck, C, Busenitz, J, Cabrera, A, Cerrada, M, Chauveau, E, Chimenti, P, Corpace, O, Dawson, J, Djurcic, Z, Etenko, A, Furuta, H, Gil-Botella, I, Givaudan, A, Gomez, H, Gonzalez, L, Goodman, M, Hara, T, Haser, J, Hellwig, D, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kale, K, Kaneda, M, Karakac, M, Kawasaki, T, Kemp, E, de Kerret, H, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Lastoria, C, Lhuillier, D, Lima, H, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Maeda, J, Mariani, C, Maricic, J, Martino, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Navas-Nicolas, D, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Oralbaev, A, Palomares, C, Pepe, I, Pronost, G, Reichenbacher, J, Reinhold, B, Schonert, S, Schoppmann, S, Scola, L, Sharankova, R, Sibille, V, Sinev, V, Skorokhvatov, M, Soldin, P, Stahl, A, Stancu, I, Stokes, L, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Veyssiere, C, Viaud, B, Vivier, M, Wagner, S, Wiebusch, C, Yang, G, Yermia, F, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Neutrino de Champagne Ardenne (LNCA - UMS 3263), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Double Chooz, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Normalization (statistics) ,model [background] ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,nuclear reactor [antineutrino/e] ,far detector ,background: model ,FOS: Physical sciences ,mixing angle: measured [neutrino] ,antineutrino/e: nuclear reactor ,CHOOZ ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,near detector ,Consistency (statistics) ,0103 physical sciences ,Modulation (music) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,ddc:530 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Neutrino oscillation ,detector [neutrino] ,Physics ,energy: high ,neutrino/e: interaction ,010308 nuclear & particles physics ,Oscillation ,Detector ,oscillation [neutrino] ,Instrumentation and Detectors (physics.ins-det) ,Neutrino Detectors and Telescopes (experiments) ,interaction [neutrino/e] ,Double Chooz ,modulation ,neutrino: detector ,Neutrino detector ,13. Climate action ,S067P13 ,high [energy] ,lcsh:QC770-798 ,neutrino: oscillation ,neutrino: mixing angle: measured ,experimental results - Abstract
A θ oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of θ and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the ν¯ interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and Li decays. The background-model-independent determination of the mixing angle yields sin(2θ) = 0.094 ± 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on θ to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation. [Figure not available: see fulltext.], We acknowledge the support of the CEA, CNRS/IN2P3, the computer centre CC-IN2P3 and LabEx UnivEarthS in France; the Max Planck Gesellschaft, the Deutsche Forschungsgemeinschaft DFG, the Transregional Collaborative Research Center TR27, the excellence cluster “Origin and Structure of the Universe” and the Maier-Leibnitz-Laboratorium Garching in Germany; the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Japan Society for the Promotion of Science (JSPS) in Japan; the Ministerio de Economía, Industria y Competitividad (SEIDI-MINECO) under grants FPA2016-77347-C2-1-P and MdM-2015-0509 in Spain; the Department of Energy and the National Science Foundation and Department of Energy in the United States; the Russian Academy of Science, the Kurchatov Institute and the Russian Foundation for Basic Research (RFBR) in Russia; the Brazilian Ministry of Science, Technology and Innovation (MCTI), the Financiadora de Estudos e Projetos (FINEP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the São Paulo Research Foundation (FAPESP) and the Brazilian Network for High Energy Physics (RENAFAE) in Brazil.
- Published
- 2021
23. Search for signatures of sterile neutrinos with Double Chooz
- Author
-
J. M. López-Casta no, T. Brugière, B. Viaud, F. Yermia, E. Blucher, T. Miletic, P. Novella, T. Sumiyoshi, M. Obolensky, H. de Kerret, A.V. Etenko, A. Hourlier, M. Kuze, Christian Buck, A. Stahl, A. Onillon, A. Givaudan, Anatael Cabrera, M. Karakac, M. D. Skorokhvatov, P. Chimenti, D. Kryn, J. M. LoSecco, G. Mention, J. Maricic, S. Appel, K. Kale, J. Martino, Takeo Kawasaki, Marcos Cerrada, I. Stancu, S. V. Sukhotin, J. V. Dawson, H. Almazan, C. E. Lane, H. Furuta, A. Minotti, Diana Navas-Nicolas, T. Abrahão, Thierry Lasserre, R. Sharankova, O. Corpace, G. Yang, Tobias Lachenmaier, C. Mariani, Zelimir Djurcic, C. Palomares, G. Pronost, Masaki Ishitsuka, H. P. Lima, Josef Jochum, B. Reinhold, M. Vivier, A. Meregaglia, S. Schönert, C. Jollet, F. Suekane, L.F.F. Stokes, C. Lastoria, C. Veyssiere, L. Heuermann, J. Busenitz, J. Haser, L. Scola, R. Milincic, Christopher Wiebusch, V. V. Sinev, E. Kemp, M. C. Goodman, J. C. dos Anjos, S. J. Wagner, Junpei Maeda, I. Bekman, A. Oralbaev, Luis González, L. B. Bezrukov, Manfred Lindner, V. Sibille, J. Reichenbacher, T. J. C. Bezerra, J. C. Barriere, Ying Sun, P. Soldin, T. Hara, D. Hellwig, H. Gómez, Stefan Schoppmann, I. M. Pepe, E. Chauveau, T. Matsubara, M. Kaneda, Lothar Oberauer, BayarJon Paul Lubsandorzhiev, I. Gil-Botella, D. Lhuillier, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Neutrino de Champagne Ardenne (LNCA - UMS 3263), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Double Chooz, Abrahao, T, Almazan, H, dos Anjos, J, Appel, S, Barriere, J, Bekman, I, Bezerra, T, Bezrukov, L, Blucher, E, Brugiere, T, Buck, C, Busenitz, J, Cabrera, A, Cerrada, M, Chauveau, E, Chimenti, P, Corpace, O, Dawson, J, Djurcic, Z, Etenko, A, Furuta, H, Gil-Botella, I, Givaudan, A, Gomez, H, Gonzalez, L, Goodman, M, Hara, T, Haser, J, Hellwig, D, Heuermann, L, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kale, K, Kaneda, M, Karakac, M, Kawasaki, T, Kemp, E, de Kerret, H, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Lastoria, C, Lhuillier, D, Lima Jr, H, Lindner, M, Lopez-Casta no, J, Losecco, J, Lubsandorzhiev, B, Maeda, J, Mariani, C, Maricic, J, Martino, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Navas-Nicolas, D, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Oralbaev, A, Palomares, C, Pepe, I, Pronost, G, Reichenbacher, J, Reinhold, B, Schonert, S, Schoppmann, S, Scola, L, Sharankova, R, Sibille, V, Sinev, V, Skorokhvatov, M, Soldin, P, Stahl, A, Stancu, I, Stokes, L, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Veyssiere, C, Viaud, B, Vivier, M, Wagner, S, Wiebusch, C, Yang, G, Yermia, F, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
neutrino: signature ,Sterile neutrino ,Particle physics ,data analysis method ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Model prediction ,62F03 (Primary), 62P35, 65C60 (Secondary) ,neutrino: mass difference ,FOS: Physical sciences ,Neutrino Oscillation ,QC770-798 ,Electron ,CHOOZ ,Astrophysics ,antineutrino/e ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,statistical analysis ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Neutrino oscillation ,Engineering (miscellaneous) ,Mixing (physics) ,Physics ,010308 nuclear & particles physics ,Reactor ,Instrumentation and Detectors (physics.ins-det) ,Function (mathematics) ,neutrino: sterile ,neutrino: mixing angle ,neutrino: nuclear reactor ,mass dependence ,QB460-466 ,Double Chooz ,neutrino: flavor ,Antineutrino ,neutrino: oscillation ,Neutrino ,neutrino: mixing ,experimental results - Abstract
We present a search for signatures of neutrino mixing of electron anti-neutrinos with additional hypothetical sterile neutrino flavors using the Double Chooz experiment. The search is based on data from 5 years of operation of Double Chooz, including 2 years in the two-detector configuration. The analysis is based on a profile likelihood, i.e.\ comparing the data to the model prediction of disappearance in a data-to-data comparison of the two respective detectors. The analysis is optimized for a model of three active and one sterile neutrino. It is sensitive in the typical mass range $5 \cdot 10^{-3} $ eV$^2 \lesssim \Delta m^2_{41} \lesssim 3\cdot 10^{-1} $ eV$^2$ for mixing angles down to $\sin^2 2\theta_{14} \gtrsim 0.02$. No significant disappearance additionally to the conventional disappearance related to $\theta_{13} $ is observed and correspondingly exclusion bounds on the sterile mixing parameter $\theta_{14} $ as function of $ \Delta m^2_{41} $ are obtained., Comment: accepted for publication by EPJC
- Published
- 2021
24. Accurate Measurement of the Electron Antineutrino Yield of U235 Fissions from the STEREO Experiment with 119 Days of Reactor-On Data
- Author
-
A. Bonhomme, J. S. Real, S. Schoppmann, Manfred Lindner, V. Savu, L. Bernard, A. Letourneau, J. Lamblin, A. Minotti, A. Onillon, V. Sergeyeva, M. Licciardi, P. Del Amo Sanchez, I. El Atmani, H. Pessard, R. Rogly, T. Soldner, T. Materna, D. Lhuillier, C. Roca, M. Vialat, H. Almazan, L. Labit, A. Blanchet, T. Salagnac, J. Haser, Christian Buck, and A. Stutz
- Subjects
Nuclear physics ,Physics ,Fission ,Yield (chemistry) ,0103 physical sciences ,Single measurement ,Detector ,General Physics and Astronomy ,010306 general physics ,01 natural sciences ,Electron neutrino ,Measure (mathematics) ,Standard deviation - Abstract
We report a measurement of the antineutrino rate from the fission of U235 with the STEREO detector using 119 days of reactor turned on. In our analysis, we perform several detailed corrections and achieve the most precise single measurement at reactors with highly enriched U235 fuel. We measure an IBD cross section per fission of σf=(6.34±0.06[stat]±0.15[sys]±0.15[model])×10-43 cm2/fission and observe a rate deficit of (5.2±0.8[stat]±2.3[sys]±2.3[model])% compared to the model, consistent with the deficit of the world average. Testing U235 as the sole source of the deficit, we find a tension between the results of lowly and highly enriched U235 fuel of 2.1 standard deviations.
- Published
- 2020
25. Constraints on Elastic Neutrino Nucleus Scattering in the Fully Coherent Regime from the CONUS Experiment
- Author
-
H. Bonet, J. Hakenmüller, Manfred Lindner, R. Wink, H. Strecker, G. Heusser, K. Fülber, Christian Buck, T. Hugle, A. Bonhomme, T. Rink, and W. Maneschg
- Subjects
General Physics and Astronomy ,chemistry.chemical_element ,FOS: Physical sciences ,Germanium ,Electron ,01 natural sciences ,High Energy Physics - Experiment ,Physics::Geophysics ,law.invention ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,010306 general physics ,Physics ,Elastic scattering ,Quenching ,Scattering ,Nuclear reactor ,chemistry ,Nuclear reactor core ,High Energy Physics::Experiment ,Neutrino - Abstract
We report the best limit on coherent elastic scattering of electron antineutrinos emitted from a nuclear reactor off germanium nuclei. The measurement was performed with the CONUS detectors positioned at 17.1m from the 3.9GWth reactor core of the nuclear power plant in Brokdorf, Germany. The antineutrino energies of less than 10 MeV assure interactions in the fully coherent regime. The analyzed dataset includes 248.7 kgd with the reactor turned on and background data of 58.8 kgd with the reactor off. With a quenching parameter of k = 0.18 for germanium, we determined an upper limit on the number of neutrino events of 85 in the region of interest at 90% confidence level. This new CONUS dataset disfavors quenching parameters above k = 0.27, under the assumption of standard-model-like coherent scattering of the reactor antineutrinos., Comment: 6 pages, 4 figures, 1 table
- Published
- 2020
26. Large-size sub-keV sensitive germanium detectors for the CONUS experiment
- Author
-
Christian Buck, V. Marian, R. Wink, H. Bonet, K. Fülber, H. Strecker, J. Hakenmüller, T. Schröder, A. Bonhomme, T. Rink, Manfred Lindner, W. Maneschg, J. B. Legras, T. Hugle, and G. Heusser
- Subjects
Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,chemistry.chemical_element ,FOS: Physical sciences ,Germanium ,lcsh:Astrophysics ,law.invention ,Optics ,Recoil ,law ,Shield ,Nuclear power plant ,lcsh:QB460-466 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Nuclear Experiment (nucl-ex) ,Engineering (miscellaneous) ,Nuclear Experiment ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Nuclear reactor core ,chemistry ,Atomic nucleus ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Neutrino ,business ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Intense fluxes of reactor antineutrinos offer a unique possibility to probe the fully coherent character of elastic neutrino scattering off atomic nuclei. In this regard, detectors face the challenge to register tiny recoil energies of a few keV at the maximum. The CONUS experiment was installed in 17.1 m distance from the reactor core of the nuclear power plant in Brokdorf, Germany, and was designed to detect this neutrino interaction channel by using four 1 kg-sized point contact germanium detectors with sub-keV energy thresholds. This report describes the unique specifications addressed to the design, the research and development, and the final production of these detectors. It demonstrates their excellent electronic performance obtained during commissioning under laboratory conditions as well as during the first two years of operation at the reactor site which started on April 1, 2018. It highlights the long-term stability of different detector parameters and the achieved background levels of the germanium detectors inside the CONUS shield setup., Comment: (18 pages, 12 figures)
- Published
- 2020
- Full Text
- View/download PDF
27. Investigating the spectral anomaly with different reactor antineutrino experiments
- Author
-
J. Haser, Christian Buck, Manfred Lindner, and Antoine Collin
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Spectral shape analysis ,FOS: Physical sciences ,Nuclear reactor ,CHOOZ ,01 natural sciences ,Spectral line ,High Energy Physics - Experiment ,law.invention ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,Neutrino ,Reactor anomaly ,Nuclear Experiment (nucl-ex) ,Reactor spectrum ,010306 general physics ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Detector ,Nuclear data ,Instrumentation and Detectors (physics.ins-det) ,lcsh:QC1-999 ,Antineutrino ,Anomaly (physics) ,lcsh:Physics - Abstract
The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in U 235 with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted U 235 spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.
- Published
- 2017
28. Novel Opaque Scintillator for Neutrino Detection
- Author
-
B. Gramlich, Christian Buck, and S. Schoppmann
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,Opacity ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Scintillator ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,Viscosity ,0302 clinical medicine ,Paraffin wax ,0103 physical sciences ,Instrumentation ,Mathematical Physics ,Alkyl ,chemistry.chemical_classification ,Wax ,010308 nuclear & particles physics ,business.industry ,Scattering length ,Instrumentation and Detectors (physics.ins-det) ,Neutrino detector ,chemistry ,visual_art ,visual_art.visual_art_medium ,Optoelectronics ,business - Abstract
There is rising interest in organic scintillators with low scattering length for future neutrino detectors. Therefore, a new scintillator system was developed based on admixtures of paraffin wax in linear alkyl benzene. The transparency and viscosity of this gel-like material can be tuned by temperature adjustment. Whereas it is a colorless transparent liquid at temperatures around 40C it has a milky wax structure below 20C. The production and properties of such a scintillator as well as its advantages compared to transparent liquids are described., 11 pages, 6 figures
- Published
- 2019
29. Status of Light Sterile Neutrino Searches
- Author
-
Michael Wurm, Livia Ludhova, Sebastian Böser, A. Schukraft, Julien Lesgourgues, Susanne Mertens, Carlo Giunti, and Christian Buck
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Sterile neutrino ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Bibliography ,ddc:530 ,010306 general physics ,Neutrino oscillation ,Physics ,010308 nuclear & particles physics ,Oscillation ,High Energy Physics::Phenomenology ,Instrumentation and Detectors (physics.ins-det) ,Cosmological model ,High Energy Physics - Phenomenology ,High Energy Physics::Experiment ,Atmospheric neutrino ,Neutrino ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
A number of anomalous results in short-baseline oscillation may hint at the existence of one or more light sterile neutrino states in the eV mass range and have triggered a wave of new experimental efforts to search for a definite signature of oscillations between active and sterile neutrino states. The present paper aims to provide a comprehensive review on the status of light sterile neutrino searches in mid-2019: we discuss not only the basic experimental approaches and sensitivities of reactor, source, atmospheric, and accelerator neutrino oscillation experiments but also the complementary bounds arising from direct neutrino mass experiments and cosmological observations. Moreover, we review current results from global oscillation analyses that include the constraints set by running reactor and atmospheric neutrino experiments. They permit to set tighter bounds on the active-sterile oscillation parameters but as yet are not able to provide a definite conclusion on the existence of eV-scale sterile neutrinos., 80 pages, 35 figures, accepted for publication by PPNP
- Published
- 2019
30. Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN
- Author
-
Manfred Lindner, J. Haser, M. Vialat, D. Lhuillier, C. Roca, H. Almazan, Adrien Blanchet, I. El Atmani, Torsten Soldner, T. Materna, Christian Buck, J. S. Real, F. Kandzia, A. Chebboubi, A. Stutz, P. del Amo Sanchez, L. Thulliez, L. Labit, Stefan Schoppmann, A. Letourneau, S. Kox, V. Savu, Olivier Litaize, A. Bonhomme, J. Lamblin, A. Minotti, T. Salagnac, V. Sergeyeva, H. Pessard, L. Bernard, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Almazan, H, Bernard, L, Blanchet, A, Bonhomme, A, Buck, C, Chebboubi, A, del Amo Sanchez, P, El Atmani, I, Haser, J, Kandzia, F, Kox, S, Labit, L, Lamblin, J, Letourneau, A, Lhuillier, D, Lindner, M, Litaize, O, Materna, T, Minotti, A, Pessard, H, Real, J, Roca, C, Salagnac, T, Savu, V, Schoppmann, S, Sergeyeva, V, Soldner, T, Stutz, A, Thulliez, L, Vialat, M, and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Gadolinium ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,scintillation counter: liquid ,FOS: Physical sciences ,chemistry.chemical_element ,antineutrino/e: energy spectrum ,Scintillator ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,n: thermal ,01 natural sciences ,7. Clean energy ,programming ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Positron ,data compilation ,gadolinium: admixture ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,n: capture ,010306 general physics ,Nuclear Experiment ,numerical calculations ,Physics ,010308 nuclear & particles physics ,Gamma ray ,Instrumentation and Detectors (physics.ins-det) ,simulation ,3. Good health ,Neutron capture ,gamma ray: emission ,chemistry ,sterile neutrino ,Inverse beta decay ,nuclear reactor ,Delayed neutron ,gadolinium: nuclide ,neutron capture - Abstract
The STEREO experiment measures the electron antineutrino spectrum emitted in a research reactor using the inverse beta decay reaction on H nuclei in a gadolinium loaded liquid scintillator. The detection is based on a signal coincidence of a prompt positron and a delayed neutron capture event. The simulated response of the neutron capture on gadolinium is crucial for the comparison with data, in particular in the case of the detection efficiency. Among all stable isotopes, $^{155}$Gd and $^{157}$Gd have the highest cross sections for thermal neutron capture. The excited nuclei after the neutron capture emit gamma rays with a total energy of about 8 MeV. The complex level schemes of $^{156}$Gd and $^{158}$Gd are a challenge for the modeling and prediction of the deexcitation spectrum, especially for compact detectors where gamma rays can escape the active volume. With a new description of the Gd(n,${\gamma}$) cascades obtained using the FIFRELIN code, the agreement between simulation and measurements with a neutron calibration source was significantly improved in the STEREO experiment. A database of ten millions of deexcitation cascades for each isotope has been generated and is now available for the user., Comment: 5 pages, 3 figures
- Published
- 2019
31. Neutron-induced background in the CONUS experiment
- Author
-
G. Heusser, Tobias Schierhuber, R. Wink, J. Hakenmüller, W. Maneschg, Christian Buck, T. Rink, T. Klages, Andreas Zimbal, Miroslav Zbořil, K. Fülber, H. Strecker, Marcel Reginatto, D. Solasse, Manfred Lindner, and A. Lücke
- Subjects
Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,lcsh:Astrophysics ,01 natural sciences ,Nuclear physics ,Recoil ,Ionization ,0103 physical sciences ,lcsh:QB460-466 ,Neutron ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Engineering (miscellaneous) ,Physics ,010308 nuclear & particles physics ,Scattering ,Instrumentation and Detectors (physics.ins-det) ,Semiconductor detector ,Neutron capture ,Nuclear reactor core ,lcsh:QC770-798 ,Neutrino - Abstract
CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino ($\bar\nu$) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 10$^{13}\bar\nu$/(s$\cdot$cm$^2$). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745$\pm$30)cm$^{-2}$d$^{-1}$. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of $\sim$10$^{20}$ on their way to the CONUS shield. With a high-purity Ge detector without shield the $\gamma$-ray background was examined including highly thermal power correlated $^{16}$N decay products as well as $\gamma$-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2., Comment: 28 pages, 28 figures
- Published
- 2019
- Full Text
- View/download PDF
32. A novel experiment for coherent elastic neutrino nucleus scattering: CONUS
- Author
-
Christian Buck, W. Maneschg, K. Fülber, H. Strecker, V. Wagner, R. Wink, T. Rink, Manfred Lindner, T. Schierhuber, G. Heusser, and J. Hakenmüller
- Subjects
Physics ,History ,Muon ,Physics::Instrumentation and Detectors ,Scattering ,Monte Carlo method ,chemistry.chemical_element ,Germanium ,Computer Science Applications ,Education ,Nuclear physics ,Recoil ,Nuclear reactor core ,chemistry ,High Energy Physics::Experiment ,Neutron ,Neutrino ,Nuclear Experiment - Abstract
The CONUS experiment (COherent elastic NeUtrino nucleus Scattering) aims at detecting coherent elastic neutrino nucleus scattering of reactor antineutrinos on Germanium. The experiment will be set up at the commercial nuclear power plant of Brokdorf, Germany, at a distance of ∼17 m to the reactor core. The recoil of the nuclei hit by the antineutrinos is detected with four high-purity point contact Germanium detectors with a very low threshold and an overall mass of about 4 kg. To suppress the background, the setup is equipped with a shell-like passive shield and an active muon veto system. The shield and the muon veto have successfully been tested at the shallow depth laboratory at Max-Planck-Institut für Kernphysik. Monte Carlo simulations have been performed to reproduce the prompt muon-induced background and to examine the induced neutron spectrum. Currently, the low threshold Germanium detectors are characterized and the experiment is prepared for commissioning.
- Published
- 2020
33. Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz
- Author
-
R. Sharankova, H. Furuta, L. Camilleri, C. Palomares, H. Gomez, V. Sibille, P. Novella, T. Sumiyoshi, Christopher Wiebusch, M. Settimo, A. Hourlier, T. Brugière, J. Maeda, R. Santorelli, Anselmo Meregaglia, A. Onillon, J.V. Dawson, D. Hellwig, Luis González, B. Reinhold, L. Oberauer, T. Miletic, D. Kryn, T. Abrahão, G. Yang, F. Yermia, M. Cerrada, Achim Stahl, J. Haser, Anatael Cabrera, Ying Sun, P. Soldin, M. Kaneda, J. M. López-Castaño, A. Oralbaev, Masaki Ishitsuka, D. Navas-Nicolás, C. E. Lane, Stefan Schönert, F. Suekane, J. C. dos Anjos, Muriel Fallot, John M. LoSecco, L.F.F. Stokes, A.V. Etenko, I. M. Pepe, D. Lhuillier, I. Bekman, G. Mention, M. Vivier, S. Appel, I. Stancu, J. Maricic, M. Skorokhvatov, D. Franco, E. Chauveau, H. de Kerret, Stefan Schoppmann, C. Lastoria, Christian Buck, I. Gil-Botella, C. Veyssiere, Tobias Lachenmaier, A. Givaudan, K. Kale, T.J.C. Bezerra, Masahiro Kuze, Z. Djurcic, G. Pronost, V. Sinev, H. Almazan, Bayarto Lubsandorzhiev, P. Kampmann, B. Viaud, P. Chimenti, Thierry Lasserre, T. Matsubara, T. Hara, A. Tonazzo, O. Corpace, J. I. Crespo-Anadón, Takeo Kawasaki, R. Milincic, J. Busenitz, C. Mariani, A. Minotti, Josef Jochum, Ernesto Kemp, Cécile Jollet, H. P. Lima, L. B. Bezrukov, M. Obolensky, Manfred Lindner, E. Blucher, Maury Goodman, S. V. Sukhotin, Stephen Robert Wagner, Laboratoire de physique subatomique et des technologies associées ( SUBATECH ), IMT Atlantique Bretagne-Pays de la Loire ( IMT Atlantique ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Nantes ( UN ), Institut Pluridisciplinaire Hubert Curien ( IPHC ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Double Chooz, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Abrahao, T, Almazan, H, Anjos, J, Appel, S, Bekman, I, Bezerra, T, Bezrukov, L, Blucher, E, Brugiere, T, Buck, C, Busenitz, J, Cabrera, A, Camilleri, L, Cerrada, M, Chauveau, E, Chimenti, P, Corpace, O, Crespo-Anadon, J, Dawson, J, Djurcic, Z, Etenko, A, Fallot, M, Franco, D, Furuta, H, Gil-Botella, I, Givaudan, A, Gomez, H, Gonzalez, L, Goodman, M, Hara, T, Haser, J, Hellwig, D, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kale, K, Kampmann, P, Kaneda, M, Kawasaki, T, Kemp, E, De Kerret, H, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Lastoria, C, Lhuillier, D, Lima, H, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Maeda, J, Mariani, C, Maricic, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Navas-Nicolas, D, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Oralbaev, A, Palomares, C, Pepe, I, Pronost, G, Reinhold, B, Santorelli, R, Schonert, S, Schoppmann, S, Settimo, M, Sharankova, R, Sibille, V, Sinev, V, Skorokhvatov, M, Soldin, P, Stahl, A, Stancu, I, Stokes, L, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Tonazzo, A, Veyssiere, C, Viaud, B, Vivier, M, Wagner, S, Wiebusch, C, Yang, G, Yermia, F, Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
data analysis method ,gas and liquid scintillators) ,Physics - Instrumentation and Detectors ,Computer science ,Physics::Instrumentation and Detectors ,scintillation counter: liquid ,shape analysis ,FOS: Physical sciences ,CHOOZ ,Scintillator ,power spectrum ,01 natural sciences ,NO ,High Energy Physics - Experiment ,Neutrino detector ,Particle identification methods ,Particle identification method ,High Energy Physics - Experiment (hep-ex) ,Fourier transformation ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,0103 physical sciences ,Digital signal processing (DSP) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutrino detectors ,ddc:610 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Mathematical Physics ,Scintillation ,Digital signal processing (DSP), Neutrino detectors, Particle identification methods, Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,010308 nuclear & particles physics ,background ,Detector ,Spectral density ,Ranging ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Instrumentation and Detectors (physics.ins-det) ,sensitivity ,Double Chooz ,scintillation and light emission processes (solid ,Scintillators ,High Energy Physics::Experiment ,Algorithm ,performance ,Shape analysis (digital geometry) - Abstract
Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level., 27 pages, 14 figures
- Published
- 2018
34. Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data
- Author
-
T. Soldner, A. Bonhomme, T. Salagnac, A. Letourneau, S. Kox, S. Schoppmann, T. Materna, Christian Buck, D. Lhuillier, F. Kandzia, A. Minotti, A. Stutz, L. Manzanillas, V. Sergeyeva, J. Haser, L. Bernard, H. Pessard, J. S. Real, J. Favier, S. Zsoldos, P. Del Amo Sanchez, J. Lamblin, C. Roca, H. Almazan, Manfred Lindner, V. Helaine, A. Blanchet, François Montanet, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Laue-Langevin (ILL), ILL, STEREO, Almazan, H, Sanchez, P, Bernard, L, Blanchet, A, Bonhomme, A, Buck, C, Favier, J, Haser, J, Helaine, V, Kandzia, F, Kox, S, Lamblin, J, Letourneau, A, Lhuillier, D, Lindner, M, Manzanillas, L, Materna, T, Minotti, A, Montanet, F, Pessard, H, Real, J, Roca, C, Salagnac, T, Schoppmann, S, Sergeyeva, V, Soldner, T, Stutz, A, Zsoldos, S, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Normalization (statistics) ,Sterile neutrino ,data analysis method ,neutrino: mass difference ,General Physics and Astronomy ,FOS: Physical sciences ,anomaly ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,statistical analysis ,0103 physical sciences ,antineutrino: nuclear reactor ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Research reactor ,010306 general physics ,nuclear reactor: particle source ,Physics ,010308 nuclear & particles physics ,Oscillation ,Anomaly (natural sciences) ,Null (mathematics) ,Detector ,antineutrino: energy spectrum ,neutrino: sterile ,neutrino: mixing angle ,Pulse (physics) ,antineutrino: oscillation ,13. Climate action ,sterile neutrino ,S067NUS ,Elementary Particles and Fields ,experimental results - Abstract
International audience; The reactor antineutrino anomaly might be explained by the oscillation of reactor antineutrinos toward a sterile neutrino of eV mass. In order to explore this hypothesis, the STEREO experiment measures the antineutrino energy spectrum in six different detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this Letter, results from 66 days of reactor turned on and 138 days of reactor turned off are reported. A novel method to extract the antineutrino rates has been developed based on the distribution of the pulse shape discrimination parameter. The test of a new oscillation toward a sterile neutrino is performed by comparing ratios of cells, independent of absolute normalization and of the prediction of the reactor spectrum. The results are found to be compatible with the null oscillation hypothesis and the best fit of the reactor antineutrino anomaly is excluded at 97.5% C.L.
- Published
- 2018
35. Production and Properties of the Liquid Scintillators used in the Stereo Reactor Neutrino Experiment
- Author
-
Manfred Lindner, B. Gramlich, C. Roca, S. Schoppmann, and Christian Buck
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,010308 nuclear & particles physics ,business.industry ,Physics::Instrumentation and Detectors ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Optics ,Inverse beta decay ,0103 physical sciences ,Organic liquids ,Reactor neutrino ,business ,Instrumentation ,Electron neutrino ,Mathematical Physics - Abstract
The electron antineutrino spectrum in the Stereo reactor experiment (ILL Grenoble) is measured via the inverse beta decay signals in an organic liquid scintillator. The six target cells of the Stereo detector are filled with about 1800 litres of Gd-loaded liquid scintillator optimised for the requirements of the experiment. These target cells are surrounded by similar cells containing liquid scintillator without the Gd-loading. The development and characteristics of these scintillators are reported. In particular, the transparency, light production and pulse shape discrimination capabilities of the organic liquids are discussed., Comment: 10 pages, 4 figures
- Published
- 2018
- Full Text
- View/download PDF
36. The Double Chooz experiment
- Author
-
Christian Buck
- Subjects
Physics ,Particle physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Scintillator ,CHOOZ ,01 natural sciences ,7. Clean energy ,Nuclear physics ,Neutron capture ,Positron ,0103 physical sciences ,High Energy Physics::Experiment ,Neutron ,Neutrino ,010306 general physics ,Delayed neutron ,Electron neutrino - Abstract
The Double Chooz reactor neutrino experiment is measuring the neutrino mixing angle θ13. This parameter is determined via the observation of a electron antineutrino flux deficit at a distance of about 1 km from the two Chooz reactors in France. The neutrinos are detected by a coincidence signal of a prompt positron and a delayed neutron, both produced inside the liquid scintillator detector by a neutrino interaction on hydrogen. The combined result of two analyses, one focusing on neutron captures on gadolinium and one studying neutron capture events on hydrogen, is presented. We find sin(2Θ)13 = 0.109±0.035. The result is confirmed by an analysis which compares the observed and expected neutrino rates as a function of reactor power. This rate analysis, which does not require any background model, since it uses a direct background measurement from data with both Chooz reactors off is in agreement with the rate + shape result.
- Published
- 2017
37. Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors
- Author
-
I. Gil-Botella, A.V. Etenko, C. Veyssiere, Tobias Lachenmaier, Daniel M. Kaplan, M. Kaneda, T. Miletic, A. Minotti, Michael Wurm, B. Reinhold, B. Svoboda, M. Obolensky, F. Yermia, K. Kale, I. Stancu, T. Hara, Manfred Lindner, Z. Djurcic, Achim Stahl, A. Oralbaev, E. Blucher, E. Chauveau, Masahiro Kuze, V. Sinev, Luis González, Ernesto Kemp, H. Gomez, V. Sibille, C. Lastoria, G. Mention, M. Skorokhvatov, S. Appel, Lydie Giot, J. Jochum, C. Mariani, Cécile Jollet, M. Gögger-Neff, J. M. López-Castaño, S. V. Sukhotin, Christopher Wiebusch, Maury Goodman, Muriel Fallot, Anatael Cabrera, A. Givaudan, P. Chimenti, Masaki Ishitsuka, J. Dhooghe, J. Maeda, T.J.C. Bezerra, G. Pronost, T. Matsubara, H. de Kerret, J. Maricic, J.V. Dawson, D. Franco, O. Corpace, I. M. Pepe, R. Santorelli, D. Navas-Nicolás, J. I. Crespo-Anadón, A. Hourlier, V. Zimmer, M. Cerrada, R. Carr, Y. Sakamoto, J. Busenitz, Stephen Robert Wagner, Eric Baussan, Christian Buck, B. Rybolt, F. Suekane, J. C. dos Anjos, P. Novella, M. Soiron, L.F.F. Stokes, T. Sumiyoshi, J. Haser, D. Lhuillier, A. Tonazzo, D. Kryn, L. Oberauer, I. Bekman, T. Abrahão, G. Yang, M. Vivier, B. K. Lubsandorzhiev, Stefan Schoppmann, Anselmo Meregaglia, M. Franke, Ying Sun, P. Soldin, C. E. Lane, Stefan Schönert, Yasushi Nagasaka, John M. LoSecco, T. Brugière, H. Almazan, P. Kampmann, D. Hellwig, H. P. Lima, T. Laserre, M. Dracos, Matthew L Strait, L. Camilleri, Takeo Kawasaki, C. Palomares, A. Onillon, R. Sharankova, H. Furuta, L. B. Bezrukov, Abrahao, T, Almazan, H, Dos Anjos, J, Appel, S, Baussan, E, Bekman, I, Bezerra, T, Bezrukov, L, Blucher, E, Brugiere, T, Buck, C, Busenitz, J, Cabrera, A, Camilleri, L, Carr, R, Cerrada, M, Chauveau, E, Chimenti, P, Corpace, O, Crespo-Anadon, J, Dawson, J, Dhooghe, J, Djurcic, Z, Dracos, M, Etenko, A, Fallot, M, Franco, D, Franke, M, Furuta, H, Gil-Botella, I, Giot, L, Givaudan, A, Gogger-Neff, M, Gomez, H, Gonzalez, L, Goodman, M, Hara, T, Haser, J, Hellwig, D, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kale, K, Kampmann, P, Kaneda, M, Kaplan, D, Kawasaki, T, Kemp, E, De Kerret, H, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Laserre, T, Lastoria, C, Lhuillier, D, Lima, H, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Maeda, J, Mariani, C, Maricic, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Minotti, A, Nagasaka, Y, Navas-Nicolas, D, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Oralbaev, A, Palomares, C, Pepe, I, Pronost, G, Reinhold, B, Rybolt, B, Sakamoto, Y, Santorelli, R, Schonert, S, Schoppmann, S, Sharankova, R, Sibille, V, Sinev, V, Skorokhvatov, M, Soiron, M, Soldin, P, Stahl, A, Stancu, I, Stokes, L, Strait, M, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Svoboda, B, Tonazzo, A, Veyssiere, C, Vivier, M, Wagner, S, Wiebusch, C, Wurm, M, Yang, G, Yermia, F, Zimmer, V, Institut Pluridisciplinaire Hubert Curien (IPHC), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire SUBATECH Nantes (SUBATECH), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), APC - Neutrinos, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Double Chooz, Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
- Subjects
Particle physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,cosmic ray experiment ,CHOOZ ,01 natural sciences ,Measure (mathematics) ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Modulation (music) ,ddc:530 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Physics ,COSMIC cancer database ,Muon ,010308 nuclear & particles physics ,Detector ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Effective temperature ,Neutrino detector ,neutrino detector ,High Energy Physics::Experiment - Abstract
A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at $\sim$120 and $\sim$300 m.w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed to measure the muon flux reaching both detectors to be (3.64 $\pm$ 0.04) $\times$ 10$^{-4}$ cm$^{-2}$s$^{-1}$ for the near detector and (7.00 $\pm$ 0.05) $\times$ 10$^{-5}$ cm$^{-2}$s$^{-1}$ for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of $\alpha_{T}$ = 0.212 $\pm$ 0.024 and 0.355 $\pm$ 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations., Comment: 20 pages, 11 figures
- Published
- 2017
38. Background-independent measurement of θ13 in Double Chooz
- Author
-
Z. Djurcic, A. Stahl, M. Kuze, Christian Buck, B. Rybolt, J. Spitz, J. Maricic, Amanda Porta, H. de Kerret, D. Dietrich, R. Santorelli, J. M. López-Castaño, I. M. Pepe, P. Chimenti, Muriel Fallot, P. Novella, C. Grant, Yuri Kamyshkov, T. Matsubara, Y. Sakamoto, L. B. Bezrukov, M. Franke, J. Haser, A.C. Schilithz, V. Zimmer, A. Cucoanes, Florian Kaether, P.-J. Chang, I. Bekman, J. Felde, D. Franco, R. Carr, R. Sharankova, E. Kemp, N. Vassilopoulos, C. Mariani, J. C. dos Anjos, A.V. Etenko, J.V. Dawson, A. Minotti, Yoshio Abe, Josef Jochum, V. Sibille, J. M. LoSecco, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, A. Stüken, F. Sato, F. von Feilitzsch, C. Palomares, I. Gil-Botella, A. Hourlier, Lydie Giot, Audrey Letourneau, E. Damon, M. Röhling, M. Vivier, D. Kryn, Sebastian Wagner, Anselmo Meregaglia, Y. Nikitenko, Daniel M. Kaplan, G. Yang, Marcos Cerrada, M. Elnimr, Manfred Lindner, H. P. Lima, Antoine Collin, J. Reichenbacher, Robert Svoboda, Eric Baussan, S. M. Fernandes, V. V. Sinev, Bayarto Lubsandorzhiev, Marcos Dracos, S. Schönert, T. Sumiyoshi, J. Busenitz, Kazuhiro Terao, Stefan Schoppmann, David Lhuillier, Lothar Oberauer, Thierry Lasserre, G. Mention, J. C. Barriere, L. Camilleri, M. Göger-Neff, M. Obolensky, S. Shimojima, Anatael Cabrera, F. Yermia, Christopher Wiebusch, G. A. Valdiviesso, I. Stancu, Michael Hofmann, Cécile Jollet, B. Reinhold, G. A. Horton-Smith, L. N. Kalousis, T.J.C. Bezerra, Matthew L Strait, H. H. Trinh Thi, M. C. Goodman, S. Roth, Yasushi Nagasaka, H. Furuta, M. H. Shaevitz, E. Conover, G. Pronost, A. Onillon, T. Kawasaki, S. Perasso, S. V. Sukhotin, A. Osborn, E. Smith, J. Maeda, J. Martino, N. Haag, Luis González, L. Goodenough, A. Tonazzo, E. Blucher, T. Miletic, Janet Conrad, R. Milincic, T. Konno, F. Suekane, L.F.F. Stokes, Tobias Lachenmaier, K. Nakajima, R. Roncin, Ying Sun, T. Hara, M. Bergevin, K. Crum, J. I. Crespo-Anadón, V. Fischer, S. Lucht, E. Chauveau, E. Caden, Masaki Ishitsuka, Lindley Winslow, P. Pfahler, C. E. Lane, and C. Veyssiere
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Oscillation ,CHOOZ ,7. Clean energy ,01 natural sciences ,Nuclear physics ,13. Climate action ,0103 physical sciences ,Modulation (music) ,Neutron ,Neutrino ,010306 general physics ,Neutrino oscillation ,Charged current ,Mixing (physics) - Abstract
The oscillation results published by the Double Chooz Collaboration in 2011 and 2012 rely on background models substantiated by reactor-on data. In this analysis, we present a background-model-independent measurement of the mixing angle θ13 by including 7.53 days of reactor-off data. A global fit of the observed antineutrino rates for different reactor power conditions is performed, yielding a measurement of both θ13 and the total background rate. The results on the mixing angle are improved significantly by including the reactor-off data in the fit, as it provides a direct measurement of the total background rate. This reactor rate modulation analysis considers antineutrino candidates with neutron captures on both Gd and H, whose combination yields sin2(2θ13)=0.102±0.028(stat.)±0.033(syst.). The results presented in this study are fully consistent with the ones already published by Double Chooz, achieving a competitive precision. They provide, for the first time, a determination of θ13 that does not depend on a background model.
- Published
- 2014
39. Search for light sterile neutrinos with the STEREO experiment
- Author
-
Anne Stutz, Viktoriya Sergeyeva, A. Bonhomme, Christian Buck, Alain Letourneau, Ilham El Atmani, Manfred Lindner, J. Haser, Alessandro Minotti, Luis Manzanillas, T. Materna, J. Lamblin, F. Kandzia, S. Zsoldos, S. Kox, Victor Hélaine, David Lhuillier, H. Pessard, J. S. Real, C. Roca, Thomas Salagnac, H. Almazan, Jean Favier, Torsten Soldner, François Montanet, Adrien Blanchet, Laura Bernard, S. Schoppmann, Pablo del Amo Sanchez, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Laue-Langevin (ILL), STEREO, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ILL, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Sterile neutrino ,QC1-999 ,anomaly ,Cosmic ray ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,7. Clean energy ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,antineutrino: nuclear reactor ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Neutron ,Physics::Chemical Physics ,010306 general physics ,Physics ,010308 nuclear & particles physics ,Oscillation ,background ,antineutrino: propagation ,n: cosmic radiation ,Nuclear reactor ,talk: Grenoble 2018/05/24 ,neutrino: sterile ,antineutrino: oscillation ,Amplitude ,Anomaly (physics) ,experimental results - Abstract
The stereo experiment is searching for a non-standard oscillation in the propagation of anti-neutrinos produced by a nuclear reactor which could be the sign for the existence of a sterile state of eV mass and the origin of the reactor anti-neutrino anomaly. In this paper, results from 66 days of reactor turned on and 138 days of reactor turned off are reported excluding large amplitude oscillations. A special focus is put on the data analysis and studies of correlated backgrounds. In particular the origin of the correlated background measured in reactor turned off periods is discussed. This background mainly originates from neutrons produced by cosmic radiation.
- Published
- 2019
40. First measurement of θ13 from delayed neutron capture on hydrogen in the Double Chooz experiment
- Author
-
J. Maricic, A. Onillon, S. Roth, S. M. Fernandes, J. M. LoSecco, Anselmo Meregaglia, A. Hatzikoutelis, Masahiro Kuze, Th. A. Mueller, R. Santorelli, H. H. Trinh Thi, L. Camilleri, T. Hayakawa, J. Tm. Goon, V. V. Sinev, W. Potzel, M. Franke, I. M. Pepe, P. Chimenti, Matthew L Strait, T. Konno, I. Gil-Botella, Z. Djurcic, T. Matsubara, M. Fechner, Robert Svoboda, R. Roncin, Ying Sun, F. Suekane, L.F.F. Stokes, J. M. López-Castaño, Michael Hofmann, M. Toups, G. Keefer, Muriel Fallot, T. Classen, Steven Dazeley, H. P. Lima, A.V. Etenko, D. Kryn, J.V. Dawson, Amanda Porta, M. Röhling, T. Hara, M. Elnimr, J. Busenitz, R. Carr, Florian Kaether, M. Worcester, J. Felde, D. Franco, I. Stancu, D. Greiner, H. Furuta, B. White, H. de Kerret, Stefan Schoppmann, A. Remoto, C. Aberle, A. Cucoanes, M. Göger-Neff, G. Mention, E. Damon, S. Perasso, J. Ebert, Sebastian Wagner, Manfred Lindner, F. Hartmann, C. Mariani, Antoine Collin, E. Blucher, Josef Jochum, Yasushi Nagasaka, V. Durand, Daniel M. Kaplan, I. Ostrovskiy, P. Novella, L. Bezrukhov, F. von Feilitzsch, G. Pronost, K. Nakajima, Cécile Jollet, B. Reinhold, C. Langbrandtner, Tobias Lachenmaier, Adam Bernstein, P. Perrin, J. Maeda, L. Goodenough, Lothar Oberauer, A. Letourneau, A. Tonazzo, P. Pfahler, C. E. Lane, V. Zimmer, T. Kawasaki, S. Lucht, V. Fischer, R. Milincic, T. Sumiyoshi, E. Caden, A. J. Franke, J. Martino, M. Bergevin, Masaki Ishitsuka, Lindley Winslow, K. Crum, A. Osborn, A. Stahl, J. L. Sida, J. I. Crespo-Anadón, J. Reichenbacher, J. C. dos Anjos, A. Stüken, F. Sato, Yoshio Abe, C. Veyssiere, D. Shrestha, Yuri Kamyshkov, D. McKee, J. Spitz, P.-J. Chang, Marcos Cerrada, Yu. Efremenko, Caren Hagner, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, M. Obolensky, L. N. Kalousis, T.J.C. Bezerra, R. Gama, Bayarto Lubsandorzhiev, Thierry Lasserre, J. C. Barriere, Manuel Meyer, Marcos Dracos, S. V. Sukhotin, E. Smith, N. Haag, Anna Erickson, J. Haser, T. Miletic, S. Habib, D. Lhuillier, Y. Sakamoto, F. Yermia, Anatael Cabrera, E. Conover, C. L. Jones, M. H. Shaevitz, A. Hourlier, Lydie Giot, E. Kemp, S. Schönert, S. Shimojima, G. A. Horton-Smith, Luis González, Nathaniel Bowden, Thomas Schwetz, Janet Conrad, C. Palomares, Kazuhiro Terao, Christopher Wiebusch, G. A. Valdiviesso, M. C. Goodman, H. Miyata, Christian Buck, B. Rybolt, C. N. Maesano, and D. Dietrich
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Flux ,Photon energy ,CHOOZ ,01 natural sciences ,Nuclear physics ,Neutron capture ,Inverse beta decay ,0103 physical sciences ,010306 general physics ,Neutrino oscillation ,Delayed neutron ,Charged current - Abstract
The Double Chooz experiment has determined the value of the neutrino oscillation parameter $\theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds $\sin^2 2\theta_{13}=0.097\pm 0.034(stat.) \pm 0.034 (syst.)$, excluding the no-oscillation hypothesis at 2.0 \sigma. This result is consistent with previous measurements of $\sin^2 2\theta_{13}$.
- Published
- 2013
41. Metal-loaded organic scintillators for neutrino physics
- Author
-
Christian Buck and Minfang Yeh
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Nuclear engineering ,Energy information ,FOS: Physical sciences ,Limiting ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,01 natural sciences ,Metal ,Low energy ,Neutrino detector ,visual_art ,0103 physical sciences ,visual_art.visual_art_medium ,Neutrino ,010306 general physics - Abstract
Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared., 46 pages, 5 figures
- Published
- 2016
42. Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector
- Author
-
V. Fischer, T-A. Nghiem, J. Pelzer, T. Vilajosana, C. Varignon, G. Guilloux, Y. Kato, N. Peuvrel, Muriel Fallot, N. Gerard Castaing, P. Starzinski, G. Coulloux, M. Cribier, H. Deschamp, L. M. Rigalleau, D. Roy, V. Communeau, M. Pequignot, G. Mention, J. Gaffiot, V. Durand, C. Renard, R. Granelli, Lydie Giot, G. Prono, Y. Piret, Audrey Letourneau, David Lhuillier, Th. A. Mueller, S. Bouvier, N. Le Quere, Thierry Lasserre, M. Lenoir, L. Bouvet, F. Yermia, Christian Buck, G. Mercier, J. Martino, van Minh Bui, G. Boireau, L. Latron, Amanda Porta, Eric Dumonteil, N. Pedrol, L. Scola, J. Bazoma, M. Vivier, T. Milleto, Maxime Gautier, A. S. Cucoanes, Manfred Lindner, Antoine Collin, P. Legou, Michael Fechner, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), NUCIFER, Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Nucifer Collaboration
- Subjects
Physics - Instrumentation and Detectors ,FOS: Physical sciences ,chemistry.chemical_element ,7. Clean energy ,01 natural sciences ,Particle detector ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Research reactor ,010306 general physics ,Physics ,Fissile material ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Nuclear reactor ,Plutonium ,Nuclear reactor core ,Neutrino detector ,chemistry ,13. Climate action ,Neutrino - Abstract
Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement., 22 pages, 16 figures - Version 4
- Published
- 2016
43. Muon capture on light isotopes measured with the Double Chooz detector
- Author
-
A. Hourlier, L. B. Bezrukov, Eric Baussan, T. Brugière, S. M. Fernandes, J. Reichenbacher, A.V. Etenko, D. Hellwig, I. Stancu, L. Camilleri, T. Hara, C. Veyssiere, R. Carr, H. Furuta, G. Mention, Anatael Cabrera, J. C. dos Anjos, D. Shrestha, A. Onillon, M. H. Shaevitz, M. Vivier, J. M. LoSecco, C. Alt, Yoshio Abe, Anselmo Meregaglia, J. Spitz, H. Gomez, E. Conover, V. Zimmer, Amanda Porta, Marcos Cerrada, G. A. Horton-Smith, C. Mariani, H. P. Lima, H. de Kerret, G. Yang, J. Maeda, Josef Jochum, BayarJon Paul Lubsandorzhiev, A.C. Schilithz, I. Bekman, V. Sibille, S. Appel, I. Gil-Botella, N. Vassilopoulos, R. Roncin, J.V. Dawson, S. Perasso, L. Goodenough, Luis González, F. von Feilitzsch, J. Busenitz, R. Santorelli, J. M. López-Castaño, M. Kaneda, Muriel Fallot, B. Reinhold, A. Tonazzo, F. Yermia, Audrey Letourneau, Janet Conrad, E. Damon, E. Blucher, Y. Sakamoto, T. Miletic, Zelimir Djurcic, Matthew L Strait, T. Abrahão, Y. Kamyshkov, M. Franke, R. Svoboda, Masahiro Kuze, Florian Kaether, J. Felde, J. Dhooghe, G. Pronost, F. Suekane, M. Obolensky, L.F.F. Stokes, P. Novella, T. Sumiyoshi, D. Franco, J. Martino, David Lhuillier, V. V. Sinev, N. Walsh, E. Kemp, M. Röhling, Takeo Kawasaki, A. Minotti, I. M. Pepe, P. Chimenti, Lydie Giot, A. Stahl, Lothar Oberauer, T. Matsubara, M. Göger-Neff, R. Milincic, E. Chauveau, Cécile Jollet, S. Schönert, A. Osborn, Yasushi Nagasaka, Daniel M. Kaplan, Stefan Schoppmann, H. Almazan, C. E. Lane, Masaki Ishitsuka, J. Maricic, Tobias Lachenmaier, V. Fischer, Y. Sun, Stephen Robert Wagner, Marcos Dracos, M. Bergevin, S. V. Sukhotin, E. Smith, N. Haag, K. Crum, J. I. Crespo-Anadón, S. Lucht, R. Sharankova, Diana Navas-Nicolas, C. Palomares, Michael Hofmann, Christian Buck, L. N. Kalousis, T.J.C. Bezerra, D. Dietrich, Kazuhiro Terao, A. S. Cucoanes, Christopher Wiebusch, G. A. Valdiviesso, M. C. Goodman, J. Haser, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, Thierry Lasserre, J. C. Barriere, D. Kryn, M. Soiron, H. H. Trinh Thi, Manfred Lindner, Antoine Collin, B. Rybolt, Abe, Y, Abrahao, T, Almazan, H, Alt, C, Appel, S, Barriere, J, Baussan, E, Bekman, I, Bergevin, M, Bezerra, T, Bezrukov, L, Blucher, E, Brugiere, T, Buck, C, Busenitz, J, Cabrera, A, Camilleri, L, Carr, R, Cerrada, M, Chauveau, E, Chimenti, P, Collin, A, Conover, E, Conrad, J, Crespo-Anadon, J, Crum, K, Cucoanes, A, Damon, E, Dawson, J, De Kerret, H, Dhooghe, J, Dietrich, D, Djurcic, Z, Dos Anjos, J, Dracos, M, Etenko, A, Fallot, M, Felde, J, Fernandes, S, Fischer, V, Franco, D, Franke, M, Furuta, H, Gil-Botella, I, Giot, L, Goger-Neff, M, Gomez, H, Gonzalez, L, Goodenough, L, Goodman, M, Haag, N, Hara, T, Haser, J, Hellwig, D, Hofmann, M, Horton-Smith, G, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kaether, F, Kalousis, L, Kamyshkov, Y, Kaneda, M, Kaplan, D, Kawasaki, T, Kemp, E, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Letourneau, A, Lhuillier, D, Lima, H, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Lucht, S, Maeda, J, Mariani, C, Maricic, J, Martino, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Nagasaka, Y, Navas-Nicolas, D, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Osborn, A, Palomares, C, Pepe, I, Perasso, S, Porta, A, Pronost, G, Reichenbacher, J, Reinhold, B, Rohling, M, Roncin, R, Rybolt, B, Sakamoto, Y, Santorelli, R, Schilithz, A, Schonert, S, Schoppmann, S, Shaevitz, M, Sharankova, R, Shrestha, D, Sibille, V, Sinev, V, Skorokhvatov, M, Smith, E, Soiron, M, Spitz, J, Stahl, A, Stancu, I, Stokes, L, Strait, M, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Svoboda, R, Terao, K, Tonazzo, A, Trinh Thi, H, Valdiviesso, G, Vassilopoulos, N, Veyssiere, C, Vivier, M, Von Feilitzsch, F, Wagner, S, Walsh, N, Watanabe, H, Wiebusch, C, Wurm, M, Yang, G, Yermia, F, and Zimmer, V
- Subjects
Physics ,Semileptonic decay ,Particle physics ,education.field_of_study ,Muon ,010308 nuclear & particles physics ,Population ,neutrino physic ,01 natural sciences ,Muon capture ,Nuclear physics ,13. Climate action ,0103 physical sciences ,High Energy Physics::Experiment ,Neutron ,Production (computer science) ,Neutrino ,010306 general physics ,Ground state ,education - Abstract
Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3\times10^6$ stopping cosmic $\mu^-$ have been collected, of which $1.8\times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $\beta$-delayed neutrons. The most precise measurement of the rate of $^{12}\mathrm C(\mu^-,\nu)^{12}\mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}\times10^{3}\,\mathrm s^{-1}$, or $(17.35^{+0.35}_{-0.59})\%$ of nuclear captures. By tagging excited states emitting gammas, the ground state transition rate to $^{12}$B has been determined to be $5.68^{+0.14}_{-0.23}\times10^3\,\mathrm s^{-1}$. The heretofore unobserved reactions $^{12}\mathrm C(\mu^-,\nu\alpha)^{8}\mathrm{Li}$, $^{13}\mathrm C(\mu^-,\nu\mathrm n\alpha)^{8}\mathrm{Li}$, and $^{13}\mathrm C(\mu^-,\nu\mathrm n)^{12}\mathrm B$ are measured. Further, a population of $\beta$n decays following stopping muons is identified with $5.5\sigma$ significance. Statistics limit our ability to identify these decays definitively. Assuming negligible production of $^{8}$He, the reaction $^{13}\mathrm C(\mu^-,\nu\alpha)^{9}\mathrm{Li}$ is found to be present at the $2.7\sigma$ level. Limits are set on a variety of other processes.
- Published
- 2016
44. Double Chooz
- Author
-
Christian Buck
- Published
- 2016
45. Measuring the 14C isotope concentration in a liquid organic scintillator at a small-volume setup
- Author
-
Luciano Pandola, C. Cattadori, U. Schwan, F. Hartmann, I. R. Barabanov, Th. Lasserre, E. A. Yanovich, D. Motta, A. di Vacri, Christian Buck, L. B. Bezrukov, O. Besida, N. A. Danilov, and S. Schoenert
- Subjects
Scintillation ,Materials science ,Isotope ,Volume (thermodynamics) ,Small volume ,Analytical chemistry ,Scintillator ,National laboratory ,Instrumentation - Abstract
A low-background scintillation setup situated in the Gran Sasso National Laboratory is described. The facility is composed of nine identical cells, each 2 L in volume. The 14C content of a PXE-based scintillator has been measured using this setup; the value obtained is R(14C/12C) = (12.6 ± 0.4) × 10−18. This result can be used for comprehensive investigation of possible 14C production channels in organic scintillators.
- Published
- 2012
46. Light yield and energy transfer in a new Gd-loaded liquid scintillator
- Author
-
F. Hartmann, S. Schönert, C. Aberle, and Christian Buck
- Subjects
Physics ,Quenching ,Scintillation ,Physics::Instrumentation and Detectors ,Liquid scintillation counting ,General Physics and Astronomy ,Electron ,CHOOZ ,Scintillator ,Nuclear physics ,Yield (chemistry) ,Physical and Theoretical Chemistry ,Atomic physics ,Luminescence - Abstract
We investigate a new gadolinium-loaded organic liquid scintillator which is designed to detect electron antineutrinos. A model has been developed to account for the various energy transfer paths possible in a liquid scintillator with multiple solvents, one fluor and a quenching component. Experimental light yield measurements were carried out to determine the relative rates for the energy transfers included in the model. Model predictions were used to tune the luminescent properties of the Gd-loaded target scintillator and the unloaded Gamma Catcher scintillator for the reactor neutrino experiment Double Chooz.
- Published
- 2011
47. Data-Mining-Cup 2007
- Author
-
Christian Buck, Jan Henrik Ziegeldorf, Pascal Steingrube, Jan Hosang, Jan-Thorsten Peter, Andreas Hannig, Tobias Gass, and Stephan M. Jonas
- Subjects
Political science ,Humanities ,Computer Science Applications ,Information Systems - Abstract
Die Aufgabe des Data-Mining-Cups 2007 war die Entwicklung einer vollautomatischen Methode zur effektiven Steuerung des Einsatzes von Rabattcoupons. Vorverarbeitung und Parameter wurden durch eine Kreuzvalidierung optimiert. Experimente zeigen, dass ein einzelner Klassifikator in der Regel nicht genugt, die Aufgabenstellung mit ausreichender Gute zu losen. Vielmehr mussen mehrere, moglichst verschiedene, Klassifikatoren dazu herangezogen werden. Die eingereichten Losungen entstanden durch Kombination von bis zu 2.000 Klassifikatoren und haben im Wettbewerb sehr gut abgeschnitten: Sechs von neun Abgaben lagen unter den ersten zehn Platzen, die ubrigen drei Losungen sind immer noch unter den ersten 20 von insgesamt 230 Platzen.
- Published
- 2008
48. Energy transfer and light yield properties of a new highly loaded indium(III) β-diketonate organic scintillator system
- Author
-
Christian Buck, S. Schoenert, F. Hartmann, and D. Motta
- Subjects
Materials science ,Physics::Instrumentation and Detectors ,business.industry ,Energy transfer ,General Physics and Astronomy ,chemistry.chemical_element ,Scintillator ,Metal ,chemistry ,visual_art ,Yield (chemistry) ,visual_art.visual_art_medium ,Optoelectronics ,Physical and Theoretical Chemistry ,Neutrino ,Luminescence ,business ,Electron neutrino ,Indium - Abstract
We present combined experimental and model studies of the light yield and energy transfer properties of a newly developed high light yield scintillator based on indium(III)-tris(2,4-pentanedionate) in a 2-(4-biphenyl)-5-phenyloxazole (BPO), methoxybenzene organic liquid; of interest to the detection of solar electron neutrino oscillations. Optical measurements are made to understand the energy transfer properties and a model is advanced to treat the unusual conditions of high metal and fluor loadings. Such scintillator types are of interest to the exploration of novel luminescent materials and the development of large-scale detectors for studying fundamental properties of naturally occurring neutrinos.
- Published
- 2007
49. Light propagation and fluorescence quantum yields in liquid scintillators
- Author
-
Christian Buck, B. Gramlich, and Stefan Wagner
- Subjects
Scintillation ,Materials science ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,Wavelength shifter ,Molecular physics ,Fluorescence ,Emission spectrum ,Absorption (electromagnetic radiation) ,Instrumentation ,Quantum ,Mathematical Physics ,Cherenkov radiation - Abstract
For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown., Comment: 11 pages, 3 figures, 1 table
- Published
- 2015
- Full Text
- View/download PDF
50. Sickle Cell Trait and Kidney Disease in People of African Ancestry With HIV
- Author
-
Rachel K.Y. Hung, Elizabeth Binns-Roemer, John W. Booth, Rachel Hilton, Julie Fox, Fiona Burns, Mark Harber, Andrew Ustianowski, Lisa Hamzah, James E. Burns, Amanda Clarke, David A. Price, Stephen Kegg, Denis Onyango, Beatriz Santana-Suarez, Lucy Campbell, Kate Bramham, Claire C. Sharpe, Caroline A. Sabin, Cheryl A. Winkler, Frank A. Post, John Booth, Anele Waters, James Hand, Chris Clarke, Sarah Murphy, Maurice Murphy, Marion Campbell, Celia Richardson, Alyson Knott, Gemma Weir, Rebecca Cleig, Helena Soviarova, Lisa Barbour, Tanya Adams, Vicky Kennard, Vittorio Trevitt, Rachael Jones, Jeremy Levy, Alexandra Schoolmeester, Serah Duro, May Rabuya, Deborah Jordan, Teresa Solano, Hiromi Uzu, Karen Williams, Julianne Lwanga, Linda Ekaette Reid-Amoruso, Hannah Gamlen, Robert J. Stocker, Fiona Ryan, Karina Mahiouz, Tess Cheetham, Claire Williams, Achyuta Nori, Caroline Thomas, Sivaraj Venkateshwaran, Jessica Doctor, Andrea Berlanga, Frank Post, Leigh McQueen, Priya Bhagwandin, Bee Barbini, Emily Wandolo, Tim Appleby, Lois Driver, Sophy Parr, Hongbo Deng, Julie Barber, Andrew Crowe, Chris Taylor, Mary Poulton, Vida Boateng, Marie-Pierre Klein, Caitlin O’Brien, Samuel Ohene-Adomako, Christian Buckingham, Daniel Trotman, Killian Quinn, Kate Flanagan, Verity Sullivan, Holly Middleditch, Itty Samuel, Elizabeth Hamlyn, Candice McDonald, Ana Canoso, Emeka Agbasi, Maria Liskova, Sarah Barber, Amanda Samarawickrama, Zoe Ottaway, Claire Norcross, Amelia Oliveira, Jane Minton, Gary Lamont, Ruby Cross, Gaushiya Saiyad, Shadia Ahmed, Rebecca Ashworth, Nicola Window, J. Murira, Khine Phyu, Gabriella Lindergard, Jonathan Shaw, Sarah Holland, Claire Fox, Jan Flaherty, Margaret-Anne Bevan, Valerie George, David Chadwick, Marie Branch, Pauline Lambert, Adele Craggs, Sarah Pett, Hinal Lukha, Nina Vora, Marzia Fiorino, Maria Muller Nunez, Deirdre Sally, Erica Pool, Rebecca Matthews, David Ashley Price, Tara Stothard, Bijal Patel, Ian McVittie, Ciara Kennedy, Uli Shwab, Brendan Payne, Sarah Duncan, Jill Dixon, Mathias Schmid, Adam Evans, Christopher Duncan, Ewan Hunter, Yusri Taha, Natasha Astill, Cheryl Winkler, Victor David, Jonathan Ainsworth, Rachel Vincent, Chloe Saad, Sarah Skinner, Hocine Azzoug, Judith Russell, Tarik Moussaoui, Emily Mabonga, Donna Ward, J. Francoise, W. Larbi, Sue Mitchell, A. Manning, V. Russell, Nnenna Ngwu, Jonathan Edwards, Nargis Hemat, Tom Fernandez, Filippo Ferro, Jorge Ferreira, Alice Nightingale, Tasha Oakes-Monger, Darwin Matila, Pedro Nogueira, Victoria Mutagwanya, Catherine Cosgrove, Catherine Emily Isitt, Helen Webb, Joyce Popoola, Kate Korley, Mark Mencias, Patricia Ribeiro, Rajeshwar Ramkhelawn, Sandra Oliva Lara, Sara Sajijad, Alan Winston, Amber Shaw, Claire Petersen, Kyle Ring, Melanie Rosenvinge, Thembi Moyo, Faith Odong, Katherine Gantert, Tina Ibe, Caroline Sabin, and Teresa Hill
- Subjects
Africa ,APOL1 ,HIV ,kidney ,SCT ,sickle cell trait ,Diseases of the genitourinary system. Urology ,RC870-923 - Abstract
Introduction: Sickle cell trait (SCT) has been associated with chronic kidney disease (CKD) in African Americans, although evidence for its impact in Africans and people with HIV is currently lacking. We conducted a cross-sectional study investigating the association between SCT and kidney disease in people of African ancestry with HIV in the UK. Methods: The primary outcome was estimated glomerular filtration rate (eGFR) 50 mg/mmol), and albuminuria (albumin-to-creatinine ratio >3 mg/mmol). Multivariable logistic regression was used to estimate the associations between SCT and kidney disease outcomes. Results: A total of 2895 participants (mean age 48.1 [SD 10.3], 57.2% female) were included, of whom 335 (11.6%) had SCT and 352 (12.2%) had eGFR
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.