1. Integrating an agent-based behavioral model in microtransit forecasting and revenue management
- Author
-
Ren, Xiyuan, Chow, Joseph Y. J., Pandey, Venktesh, and Yuan, Linfei
- Subjects
Economics - Econometrics - Abstract
As an IT-enabled multi-passenger mobility service, microtransit has the potential to improve accessibility, reduce congestion, and enhance flexibility in transportation options. However, due to its heterogeneous impacts on different communities and population segments, there is a need for better tools in microtransit forecast and revenue management, especially when actual usage data are limited. We propose a novel framework based on an agent-based mixed logit model estimated with microtransit usage data and synthetic trip data. The framework involves estimating a lower-branch mode choice model with synthetic trip data, combining lower-branch parameters with microtransit data to estimate an upper-branch ride pass subscription model, and applying the nested model to evaluate microtransit pricing and subsidy policies. The framework enables further decision-support analysis to consider diverse travel patterns and heterogeneous tastes of the total population. We test the framework in a case study with synthetic trip data from Replica Inc. and microtransit data from Arlington Via. The lower-branch model result in a rho-square value of 0.603 on weekdays and 0.576 on weekends. Predictions made by the upper-branch model closely match the marginal subscription data. In a ride pass pricing policy scenario, we show that a discount in weekly pass (from $25 to $18.9) and monthly pass (from $80 to $71.5) would surprisingly increase total revenue by $102/day. In an event- or place-based subsidy policy scenario, we show that a 100% fare discount would reduce 80 car trips during peak hours at AT&T Stadium, requiring a subsidy of $32,068/year.
- Published
- 2024