1. Endothelial pyroptosis-driven microglial activation in choroid plexus mediates neuronal apoptosis in hemorrhagic stroke rats.
- Author
-
Gu L, Chen H, Geng R, Liang T, Chen Y, Wang Z, Ye L, Sun M, Shi Q, Wan G, Chang J, Wei J, Ma W, Xiao J, Bao X, and Wang R
- Subjects
- Animals, Rats, Male, Neurons metabolism, Neurons pathology, Cytokines metabolism, Endothelial Cells metabolism, Cerebral Hemorrhage metabolism, Cerebral Hemorrhage pathology, Pyroptosis physiology, Choroid Plexus metabolism, Choroid Plexus pathology, Microglia metabolism, Apoptosis physiology, Rats, Sprague-Dawley, Hemorrhagic Stroke metabolism, Hemorrhagic Stroke pathology
- Abstract
Background: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed "cytokine storm," which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation., Methods: To address this knowledge gap, our study conducted a comprehensive cytokine profiling using Luminex® assays, assessing 23 key cytokines. We then employed single-cell RNA sequencing and spatial transcriptomics at three critical time points post-ICH: the hyperacute, acute, and subacute phases. Integrating these multimodal analyses allowed us to identify the cellular origins of cytokines and elucidate their mechanisms of action., Results: Luminex® cytokine assays revealed a significant upregulation of IL-6 and IL-1β levels at the 24-h post-ICH time point. Through the integration of scRNA-seq and spatial transcriptomics in the hemorrhagic hemisphere of rats, we observed a pronounced activation of cytokine-related signaling pathways within the choroid plexus. Initially, immune cell presence was sparse, but it surged 24 h post-ICH, particularly in the choroid plexus, indicating a substantial shift in the immune microenvironment. We traced the source of IL-1β and IL-6 to endothelial cells, establishing a link to pyroptosis. Endothelial pyroptosis post-ICH induced the production of IL-1β and IL-6, which activated microglial polarization characterized by elevated expression of Msr1, Lcn2, and Spp1 via the NF-κB pathway in the choroid plexus. Furthermore, we identified neuronal populations undergoing apoptosis, mediated by the Lcn2-SLC22A17 pathway in response to IL-1β and IL-6 signaling. Notably, the inhibition of pyroptosis using VX-765 significantly mitigated neurological impairments., Conclusions: Our study provides evidence that endothelial pyroptosis, characterized by the release of IL-1β and IL-6, triggers microglial polarization through NF-κB pathway activation, ultimately leading to microglia-mediated neuronal apoptosis in the choroid plexus post-ICH. These findings suggest that targeted therapeutic strategies aimed at mitigating endothelial cell pyroptosis and neutralizing inflammatory cytokines may offer neuroprotection for both microglia and neurons, presenting a promising avenue for ICH treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF