5 results on '"Cholera toxin B subunit (ctxB)"'
Search Results
2. Immunogenicity evaluation of recombinant Lactobacillus casei W56 expressing bovine viral diarrhea virus E2 protein in conjunction with cholera toxin B subunit as an adjuvant.
- Author
-
Jia, Shuo, Huang, Xinning, Li, Hua, Zheng, Dianzhong, Wang, Li, Qiao, Xinyuan, Jiang, Yanping, Cui, Wen, Tang, Lijie, Li, Yijing, and Xu, Yigang
- Subjects
BOVINE viral diarrhea virus ,BOVINE viral diarrhea ,CHOLERA toxin ,CHOLERA ,VIRAL proteins ,LACTOBACILLUS casei ,VACCINE development - Abstract
Background: Bovine viral diarrhea virus (BVDV) is one of the main causes of infectious diseases in cattle and causes large financial losses to the cattle industry worldwide. In this study, Lactobacillus casei strain W56 (Lc W56) was used as antigen deliver carrier to construct a recombinant Lactobacillus vaccine pPG-E2-ctxB/Lc W56 constitutively expressing BVDV E2 protein fused with cholera toxin B subunit (ctxB) as an adjuvant, and its immunogenicity against BVDV infection in mice model by oral route was explored. Results: Our results suggested that pPG-E2-ctxB/Lc W56 can effectively activate dendritic cells (DCs) in the Peyer's patches, up-regulate the expression of Bcl-6, and promote T-follicular helper (Tfh) cells differentiation, as well as enhance B lymphocyte proliferation and promote them differentiate into specific IgA-secreting plasma cells, secreting anti-E2 mucosal sIgA antibody with BVDV-neutralizing activity. Moreover, significant levels (p < 0.01) of BVDV-neutralizing antigen-specific serum antibodies were induced in the pPG-E2-ctxB/LC W56 group post-vaccination. The recombinant Lactobacillus vaccine can induce cellular immune responses, and significant levels (p < 0.01) of Th1-associated cytokines (IL-2, IL-12, and IFN-γ), Th2-associated cytokines (IL-4, IL-10) and Th17-associated cytokine (IL-17) were determined in the serum of vaccinated mice. Significantly, the recombinant Lactobacillus vaccine provides immune protection against BVDV infection, which can be cleared effectively by the vaccine post-challenge in orally vaccinated animals. Conclusions: The genetically engineered Lactobacillus vaccine constructed in this study is immunogenic in mice and can induce mucosal, humoral, and cellular immune responses, providing effective anti-BVDV immune protection. It thus represents a promising strategy for vaccine development against BVDV. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Human Doppel and prion protein share common membrane microdomains and internalization pathways
- Author
-
Massimino, Maria Lina, Ballarin, Cristina, Bertoli, Alessandro, Casonato, Stefano, Genovesi, Sacha, Negro, Alessandro, and Sorgato, M.Catia
- Subjects
- *
PRIONS , *PRION diseases , *PROTEINS , *GENES - Abstract
Doppel is the first identified homologue of the prion protein (PrPc) implicated in prion disease. Doppel is considered an N-truncated form of PrPc, and shares with PrPc several structural and biochemical features. When over expressed in the brain of some PrP knockout animals, it provokes cerebellar ataxia. As this phenotype is rescued by reintroducing the PrP gene, it has been suggested that Doppel and PrPc have antagonistic functions and may compete for a common ligand. However, a direct interaction between the two proteins has recently been observed.To investigate whether the neuronal environment is suitable for such possibility, human Doppel and PrPc were expressed separately, or together, in neuroblastoma cells, and then studied by biochemical and immunomicroscopic tools, as well as in intact cells expressing fluorescent fusion constructs.The results demonstrate that Doppel and PrPc co-patch extensively at the plasma membrane, and get internalized together after ganglioside cross-linking by cholera toxin or addition of an antibody against only one of the proteins. These processes no longer occur if the integrity of rafts is disrupted. We also show that, whereas each protein expressed alone occupies Triton X-100-insoluble membrane microdomains, co-transfected Doppel and PrPc redistribute together into a less ordered lipidic environment. All these features are consistent with interactions occurring between Doppel and PrPc in our neuronal cell model. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
4. Differential localization of glucose transporter isoforms in non-polarized mammalian cells: distribution of GLUT1 but not GLUT3 to detergent-resistant membrane domains
- Author
-
Sakyo, Tomoko and Kitagawa, Takayuki
- Subjects
- *
GLUCOSE , *BIOLOGICAL membranes - Abstract
The hexose transporter family, which mediates a facilitated uptake in mammalian cells, consists of more than 10 members containing 12 membrane-spanning segments with a single N-glycosylation site. However, it remains unknown how these isoforms are functionally organized in the membrane domains. In this report, we describe a differential distribution of the glucose transporter isoforms GLUT1 and GLUT3 to detergent-resistant membrane domains (DRMs) in non-polarized mammalian cells. Whereas more than 80% of cellular proteins containing GLUT3 in HeLa cell lines was solubilized by a non-ionic detergent (either Triton X-100 or Lubrol WX) at 4 °C, GLUT1 remained insoluble together with the DRM-associated proteins, such as caveolin-1 and intestinal alkaline phosphatase (IAP). These DRM-associated proteins and the ganglioside GM1 were shown to float to the upper fractions when Triton X-100-solubilized cell extracts were centrifuged on a density gradient. In contrast, GLUT3 as well as most soluble proteins remained in the lower layers. Furthermore, perturbations of DRMs due to depletion of cholesterol by methyl-β-cyclodextrin (mβCD) rendered GLUT1 soluble in Triton X-100. Immunostaining patterns for these isoforms detected by confocal laser scanning microscopy in a living cell were also distinctive. These results suggest that in non-polarized mammalian cells, GLUT1 can be organized into a raft-like DRM domain but GLUT3 may distribute to fluid membrane domains. This differential distribution may occur irrespective of the N-glycosylation state or cell type. [Copyright &y& Elsevier]
- Published
- 2002
- Full Text
- View/download PDF
5. Investigating Ordered Phase-Like Domains on the Membrane of Intact B Cells Using Super-Resolution Microscopy
- Author
-
Nunez, Marcos
- Subjects
- Super-resolution microscopy, B cell lymphocytes, Lipid rafts, Phase-like domains, Cholera Toxin B subunit (CTxB), Liquid ordered
- Abstract
B cells lymphocytes are responsible for mounting an immune response in a variety of species. B cells are typically activated through the antigen-binding site of its B cell receptors (BCR) which are surface-expressed on the plasma membrane. The lipid composition and organization of the B cell plasma membrane has been implicated in B cell-related immune disease and highlights that plasma membrane organization plays important roles in appropriate BCR signal propagation. B cells respond to a wide variety of antigens with varying valency and mode of presentation, although the contribution of plasma membrane lipids to signaling in these different scenarios is not clearly understood. Past work has shown that BCR clustering through streptavidin, a model soluble antigen, results in the stabilization of an ordered phase-like domain capable of sorting minimal peptides and full length regulatory proteins with respect to BCR clusters. BCR can be stimulated through surface presented antigen in vivo & in vitro, and it is hypothesized that forces mediated via the surface can also impact the sorting of regulatory proteins with respect to antigen engaged BCR. The research presented in this Thesis applies quantitative two-color super-resolution fluorescence localization microscopy to measure the co-distribution of membrane-anchored peptides and proteins on the B cell surface. I engage and cluster proteins on the surface of B cells both with model soluble antigen and with antigen presented on a mobile bilayer surface. I find that BCR clusters formed through engagement with bilayer-presented antigen sort minimal peptides in a similar manner to BCR clusters stabilized with soluble antigen, indicating that these are also ordered phase-like domains. I find Lyn kinase is more strongly enriched and CD45 phosphatase is more strongly depleted from BCR clusters engaged with bilayer presented compared to soluble antigen, and that Tyrosine phosphorylation is enhanced in surface engaged BCR clusters. Additionally, I show that clusters of cholera toxin B subunit (CTxB) also stabilize environments that sort minimal peptides, and I explore how physical parameters such as temperature and domain size impact the sorting strength of these phase-like domains. Based on these results, I conclude that ordered domains contribute to the organization of regulatory proteins with respect to BCR engaged with both soluble and surface presented antigen, and that ordered domain stabilization is a general characteristic of the B cell plasma membrane and not specific to BCR clustering. I link CTxB cluster size and temperature to ordered phase-like domain sorting strength suggesting cells can tune the strength of lipid domains to modulate signaling. Findings from my Thesis could contribute to the advancement of therapies for diseases in which altered plasma membrane lipid composition impacts the functional organization proteins on the cell surface.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.