1. Response mechanisms of pipe wall biofilms in water supply networks under different disinfection strategy pressures and the effect of mediating halogenated acetonitrile formation.
- Author
-
Zheng S, Lin T, Zhang X, and Jiang F
- Subjects
- Disinfection, Chloramines pharmacology, Chloramines metabolism, Chlorine pharmacology, Chlorine metabolism, Water Supply, Bacteria metabolism, Biofilms, Drinking Water chemistry, Water Purification methods, Disinfectants pharmacology, Disinfectants metabolism
- Abstract
Residual chlorine and biofilm coexistence is inevitable in drinking water transmission and distribution networks. Understanding the microbial response and its mediated effects on disinfection byproducts under different categories of residual chlorine stress is essential to ensure water safety. The aim of our study was to determine the response of pipe wall biofilms to residual chlorine pressure in chlorine and chloramine systems and to understand the microbially mediated effects on the formation and migration of haloacetonitriles (HANs), typical nitrogenous disinfection byproducts. According to the experimental results, the biofilm response changes under pressure, with significant differences noted in morphological characteristics, the extracellular polymeric substances (EPS) spatial structure, bacterial diversity, and functional abundance potential. Upon incubation with residual chlorine (1.0 ± 0.2 mg/L), the biofilm biomass per unit area, EPS, community abundance, and diversity increased in the chloramine group, and the percentage of viable bacteria increased, potentially indicating that the chloramine group provides a richer variety of organic matter precursors. Compared with the chloramine group, the chlorination group exhibited increased haloacetonitrile formation potential (HANFP), with Rhodococcus (43.2%) dominating the system, whereas the prediction abundance of metabolic functions was advantageous, especially with regard to amino acid metabolism, carbohydrate metabolism, and the biodegradation and metabolism of foreign chemicals. Under chlorine stress, pipe wall biofilms play a stronger role in mediating HAN production. It is inferred that chlorine may stimulates microbial interactions, and more metabolites (e.g., EPS) consume chlorine to protect microbial survival. EPS dominates in biofilms, in which proteins exhibit greater HANFP than polysaccharides., Competing Interests: Declaration of competing interest We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Response mechanisms of pipe wall biofilms in water supply networks under different disinfection strategy pressures and the effect of mediating halogenated acetonitrile formation”., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF