33 results on '"Chloé Grazon"'
Search Results
2. Luminescence-Sensitive Surfaces Bearing Ratiometric Nanoparticles for Bacteria Growth Detection
- Author
-
Miaobo Pan, Gabriela Morán Cruz, Chloé Grazon, Djamila Kechkeche, Ludivine Houel Renault, Gilles Clavier, and Rachel Méallet-Renault
- Subjects
Polymers and Plastics ,Process Chemistry and Technology ,Organic Chemistry - Published
- 2022
3. The quantum dot vs. organic dye conundrum for ratiometric FRET-based biosensors: which one would you chose?
- Author
-
Chloé Grazon, Margaret Chern, Patrick Lally, R. C. Baer, Andy Fan, Sébastien Lecommandoux, Catherine Klapperich, Allison M. Dennis, James E. Galagan, and Mark W. Grinstaff
- Subjects
General Chemistry - Abstract
We report a combined experimental and computational study to systematically compare the nature of the dye, i.e., organic fluorophore vs. inorganic nanoparticle, and the position of the FRET donor or acceptor on the biosensor performances.
- Published
- 2022
4. Organic Conjugated Trimers with Donor–Acceptor–Donor Structures for Photocatalytic Hydrogen Generation Application
- Author
-
Xiaojiao Yuan, Cong Wang, Lorenzo Vallan, Anh Thy Bui, Gediminas Jonusauskas, Nathan D. McClenaghan, Chloé Grazon, Sabrina Lacomme, Cyril Brochon, Hynd Remita, Georges Hadziioannou, Eric Cloutet, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Physique (ICP), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Bordeaux Imaging Center (BIC), Université de Bordeaux (UB)-Institut François Magendie-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and European Project: 800926,HyPhOE
- Subjects
Biomaterials ,hydrogen generation ,Conjugated trimers ,organic semiconductor ,Electrochemistry ,Conjugated trimers D-A-D organic semiconductor photocatalysis hydrogen generation ,D-A-D ,[CHIM]Chemical Sciences ,Condensed Matter Physics ,photocatalysis ,Electronic, Optical and Magnetic Materials - Abstract
International audience; Organic donor-acceptor-donor (D-AD) polymers or small molecules are widely investigated in organic solar cells (OSC) due to their broad light absorption, narrow band gap, excellent charge mobility and exciton seperation at the interface. However, studies of conjugated small molecules with D-AD molecule structures as photocatalytically active materials are still rare. In this work, we give an unprecedented demonstration that photocatalytic activity can in fact be affected by tuning the D and A. Especially, the EBE trimer, comprising 3,4-ethylenedioxythiophene (E) and benzothiadiazole (B) units, exhibits the best photophysical, chemical and photocatalytic properties compared to other D-AD combinations of D and A. Detailed kinetic studies show that all these trimers in organic solution present relatively long-lived and highly emissive photogenerated singlet excitons (τ = 4-13 ns; φem = 0.5-0.9) as judged by photoluminescence and transient absorption measurements, while in specific cases formation of long-lived triplet states can be identified. Organic microparticles of the trimers are efficiently formed in aqueous solution by nanoprecipitation, and rapid photoinduced electron release/injection to the solvent is evidenced spectroscopically. The results indicate that organic small molecule structures with D-AD structures pave a new pathway for photocatalytic solar-to-chemical energy conversion of novel small organic molecules.
- Published
- 2023
5. An Allosteric Transcription Factor-DNA Binding Electrochemical Biosensor for Progesterone
- Author
-
Karthika Sankar, R. Baer, Chloé Grazon, Robert C. Sabatelle, Sébastien Lecommandoux, Catherine M. Klapperich, James E. Galagan, and Mark W. Grinstaff
- Subjects
Fluid Flow and Transfer Processes ,Base Sequence ,Process Chemistry and Technology ,Bioengineering ,Biosensing Techniques ,DNA ,Instrumentation ,Article ,Progesterone ,Transcription Factors - Abstract
We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry (SWV) to monitor changes in current output as a progesterone (PRG) specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for detection of small molecule biomarkers and analytes.
- Published
- 2022
6. Hydrogel-Embedded Quantum Dot–Transcription Factor Sensors for Quantitative Progesterone Detection
- Author
-
Thuy T. Nguyen, Chloé Grazon, James E. Galagan, Nitinun Varongchayakul, Catherine M. Klapperich, Allison M. Dennis, Sébastien Lecommandoux, Prerana Sensharma, Katherine Cook, R C. Baer, Mark W. Grinstaff, Mingfu Chen, Yunpeng Feng, Margaret Chern, Boston University [Boston] (BU), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), NIH (U54EB015403, CTSI 1KL2TR001411 and R01GM129437), DARPA (W911NF-16-C-0044), European Project: MSCA-IF-2016 749973,SENSHOR, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Analyte ,Materials science ,Surface Properties ,Nanotechnology ,02 engineering and technology ,03 medical and health sciences ,chemistry.chemical_compound ,Quantum Dots ,General Materials Science ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Particle Size ,Transcription factor ,Quantum ,transcription factor ,Progesterone ,030304 developmental biology ,Detection limit ,0303 health sciences ,Molecular Structure ,technology, industry, and agriculture ,Hydrogels ,DNA ,[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,021001 nanoscience & nanotechnology ,[CHIM.POLY]Chemical Sciences/Polymers ,Förster resonance energy transfer ,chemistry ,Quantum dot ,biosensing ,hydrogel ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Biosensor ,Transcription Factors - Abstract
International audience; Immobilization of biosensors in or on a functional material is critical for subsequent device development and translation to wearable technology. Here we present the development and assessment of an immobilized quantum dot - transcription factor - nucleic acid complex for progesterone detection as a first step toward such device integration. The sensor is composed of a polyhistidine-tagged transcription factor linked to a quantum dot and a fluorophore-modified cognate DNA, and embedded within a hydrogel as an immobilization matrix. The hydrogel is optically transparent, soft, and flexible as well as traps the quantum dot - transcription factor DNA assembly but allows free passage of the analyte, progesterone. Upon progesterone exposure, DNA dissociates from the quantum dot - transcription factor DNA assembly resulting in an attenuated ratiometric fluorescent output via Förster resonance energy transfer. The sensor performs in a dose-dependent manner with a limit of detection of 55 nM. Repeat analyte measurements are also similarly successful. Our approach combines a systematically characterized hydrogel as an immobilization matrix and a transcription factor - DNA binding as a recognition/ transduction element, offering a promising framework for future biosensor devices based upon allosteric transcription factor.
- Published
- 2020
7. A progesterone biosensor derived from microbial screening
- Author
-
James E. Galagan, Mingfu Chen, Patricia Aquino, Thuy T. Nguyen, Xiaoman Zhang, Margaret Chern, Catherine M. Klapperich, Mario Cabodi, R C. Baer, Sébastien Lecommandoux, Marjon Zamani, Andy Fan, Mark W. Grinstaff, Uros Kuzmanovic, Allison M. Dennis, Chloé Grazon, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Boston University [Boston] (BU), National Emerging Infectious Diseases Laboratories, Department of Biomedical Engineering [Boston], Division of Materials Science and Engineering, DARPA (W911NF-16-C-0044), NIH U54EB015403, NIH CTSI 1KL2TR001411, NIH S10 OD016326, European Project: MSCA-IF-2016 749973,SENSHOR, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
0301 basic medicine ,Analyte ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Science ,General Physics and Astronomy ,02 engineering and technology ,Computational biology ,Biosensing Techniques ,General Biochemistry, Genetics and Molecular Biology ,Article ,Bioassays ,03 medical and health sciences ,Synthetic biology ,Fluorescence Resonance Energy Transfer ,Base sequence ,[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials ,lcsh:Science ,Progesterone ,Multidisciplinary ,Base Sequence ,Chemistry ,Extramural ,Reproducibility of Results ,General Chemistry ,Genomics ,[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,021001 nanoscience & nanotechnology ,Actinobacteria ,030104 developmental biology ,Förster resonance energy transfer ,Biosensors ,[CHIM.POLY]Chemical Sciences/Polymers ,Artificial urine ,Point-of-Care Testing ,Progesterone metabolism ,lcsh:Q ,0210 nano-technology ,Biosensor ,Biomedical engineering ,Transcription Factors - Abstract
Bacteria are an enormous and largely untapped reservoir of biosensing proteins. We describe an approach to identify and isolate bacterial allosteric transcription factors (aTFs) that recognize a target analyte and to develop these TFs into biosensor devices. Our approach utilizes a combination of genomic screens and functional assays to identify and isolate biosensing TFs, and a quantum-dot Förster Resonance Energy Transfer (FRET) strategy for transducing analyte recognition into real-time quantitative measurements. We use this approach to identify a progesterone-sensing bacterial aTF and to develop this TF into an optical sensor for progesterone. The sensor detects progesterone in artificial urine with sufficient sensitivity and specificity for clinical use, while being compatible with an inexpensive and portable electronic reader for point-of-care applications. Our results provide proof-of-concept for a paradigm of microbially-derived biosensors adaptable to inexpensive, real-time sensor devices., Bacteria represent an unexploited reservoir of biosensing proteins. Here the authors use genomic screens and functional assays to isolate a progesterone sensing allosteric transcription factor and use a FRET-based method to develop an optical progesterone sensor.
- Published
- 2020
8. The quantum dot
- Author
-
Chloé, Grazon, Margaret, Chern, Patrick, Lally, R C, Baer, Andy, Fan, Sébastien, Lecommandoux, Catherine, Klapperich, Allison M, Dennis, James E, Galagan, and Mark W, Grinstaff
- Abstract
Förster resonance energy transfer (FRET) is a widely used and ideal transduction modality for fluorescent based biosensors as it offers high signal to noise with a visibly detectable signal. While intense efforts are ongoing to improve the limit of detection and dynamic range of biosensors based on biomolecule optimization, the selection of and relative location of the dye remains understudied. Herein, we describe a combined experimental and computational study to systematically compare the nature of the dye
- Published
- 2021
9. FRET-mediated quenching of BODIPY fluorescent nanoparticles by methylene blue and its application to bacterial imaging
- Author
-
Yang Si, Chloé Grazon, Gilles Clavier, Jean-Frédéric Audibert, Bianca Sclavi, and Rachel Méallet-Renault
- Subjects
Boron Compounds ,Methylene Blue ,Bacteria ,Fluorescence Resonance Energy Transfer ,Nanoparticles ,Physical and Theoretical Chemistry ,Fluorescent Dyes - Abstract
High resolution and a good signal to noise ratio are a requirement in cell imaging. However, after labelling with fluorescent entities, and after several washing steps, there is often an unwanted fluorescent background that reduces the images resolution. For this purpose, we developed an approach to remove the signal from extra-cellular fluorescent nanoparticles (FNPs) during bacteria imaging, without the need for any washing steps. Our idea is to use methylene blue to quench 90% of the emission of BODIPY-based fluorescent polymer nanoparticle by a FRET process. This "Hide-and-Seek Game" approach offers a novel strategy to apply fluorescence quenching in bioimaging to improve image accuracy.
- Published
- 2021
10. Aqueous ROPISA of α-amino acid N -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy
- Author
-
Andrew J. Clulow, Pedro Salas-Ambrosio, Mark W. Grinstaff, Chloé Grazon, Olivier Sandre, Ségolène Antoine, Ben J. Boyd, Colin Bonduelle, Sébastien Lecommandoux, Emmanuel Ibarboure, Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), ISM team LAGON, Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Australian Synchrotron [Clayton], Monash Institute of Pharmaceutical Sciences [Parkville] (MIPS), Faculty of Pharmacy and Pharmaceutical Sciences - Monash University [Parkville], Monash university-Monash university, Boston University [Boston] (BU), CONACYT grant No. 548662, European Project: MSCA-IF-2016 749973,SENSHOR, European Project: 654000,H2020,H2020-INFRADEV-1-2014-1,SINE2020(2015), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and ANR-20-CE06-0020,ROPISA,Polymérisation par Ouverture de Cycle des N-carboxyanhydrides induit par auto-assemblage en milieux aqueux(2020)
- Subjects
Molar mass ,Aqueous solution ,Polymers and Plastics ,Chemistry ,Organic Chemistry ,Nanoparticle ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,chemistry.chemical_compound ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Polymer chemistry ,Amphiphile ,Copolymer ,0210 nano-technology ,Protein secondary structure - Abstract
International audience; Polymerization-induced self-assembly (PISA) is an efficient one-step process to obtain nanomaterials. In this work, aqueous ring-opening polymerization induced self-assembly (ROPISA) of α-amino acid N-carboxyanhydride (NCA) affords controllable well-defined nanoassemblies. ROPISA with the PEG5 kDa-NH2 macroinitiator and either the benzyl-L-glutamate NCA (BLGNCA) or L-leucine NCA (LeuNCA) monomer yields amphiphilic block copolymers, with different polypeptide molar masses, which spontaneously form nanostructures. In contrast to the previous PISA process where the hydrophobic to hydrophilic ratio was the main parameter defining nanomaterial morphology, the secondary structure of the polypeptides is the main driving force to stabilize the anisotropic rod-like nanostructures with this ROPISA process.
- Published
- 2021
11. Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing
- Author
-
Allison M. Dennis, James E. Galagan, Chloé Grazon, Catherine M. Klapperich, Thuy T. Nguyen, Sébastien Lecommandoux, Margaret Chern, Mingfu Chen, R C. Baer, Mark W. Grinstaff, Nitinun Varongchayakul, Boston University [Boston] (BU), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), NIH. Grant Numbers: U54EB015403, CTSI 1KL2TR001411, DARPA. Grant Number: W911NF‐16‐C‐0044, BU Kilachand, BU Percision Diagnostics Center, BUnano Terrier Tank award, Clare Booth Luce Graduate Fellowship, Biomedical Engineering Department, University of Michigan, European Project: MSCA-IF-2016 749973,SENSHOR, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Department of Biomedical Engineering [Boston], Department of Chemistry and Chemical Biology [Boston], Northeastern University [Boston], Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and National Emerging Infectious Diseases Laboratories (NEIDL)
- Subjects
Analyte ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Aptamer ,[SDV]Life Sciences [q-bio] ,Biomedical Engineering ,Pharmaceutical Science ,Nanotechnology ,quantum dots ,02 engineering and technology ,Biosensing Techniques ,010402 general chemistry ,01 natural sciences ,Biomaterials ,chemistry.chemical_compound ,Molecular recognition ,Nucleic Acids ,transcription factors ,Fluorescence Resonance Energy Transfer ,TetR ,Transcription factor ,transcription factor ,technology, industry, and agriculture ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Förster resonance energy transfer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Quantum dot ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,biosensing ,0210 nano-technology ,Biosensor ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; Immobilization of biosensors on surfaces is a key step toward development of devices for real‐world applications. Here the preparation, characterization, and evaluation of a surface‐bound transcription factor–nucleic acid complex for analyte detection as an alternative to conventional systems employing aptamers or antibodies are described. The sensor consists of a gold surface modified with thiolated Cy5 fluorophore‐labeled DNA and an allosteric transcription factor (TetR) linked to a quantum dot (QD). Upon addition of anhydrotetracycline (aTc)—the analyte—the TetR‐QDs release from the surface‐bound DNA, resulting in loss of the Förster resonance energy transfer signal. The sensor responds in a dose‐dependent manner over the relevant range of 0–200 µm aTc with a limit of detection of 80 nm . The fabrication of the sensor and the subsequent real‐time quantitative measurements establish a framework for the design of future surface‐bound, affinity‐based biosensors using allosteric transcription factors for molecular recognition.
- Published
- 2020
12. Fluorescent Copolymers for Bacterial Bioimaging and Viability Detection
- Author
-
Jutta Rieger, Gilles Clavier, Yayang Tian, Yang Si, Jean-Frédéric Audibert, Rachel Méallet-Renault, Chloé Grazon, Bianca Sclavi, Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire de biologie et pharmacologie appliquée (LBPA), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Chimie des polymères (LCP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), and Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Biocompatibility ,Polymers ,polymer ,Bioengineering ,02 engineering and technology ,Bacterial growth ,01 natural sciences ,Flow cytometry ,chemistry.chemical_compound ,medicine ,Propidium iodide ,bioimaging ,Instrumentation ,Fluorescent Dyes ,Fluid Flow and Transfer Processes ,Microbial Viability ,biology ,medicine.diagnostic_test ,Bacteria ,Process Chemistry and Technology ,flow cytometry ,010401 analytical chemistry ,Raft ,021001 nanoscience & nanotechnology ,biology.organism_classification ,Fluorescence ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Biophysics ,fluorescence ,0210 nano-technology ,RAFT ,viability detection ,Propidium - Abstract
International audience; Novel fluorescent labels with high photostability and high biocompatibility are required for microbiological imaging and detection. Here, we present a green fluorescent polymer chain (GFPC), designed to be nontoxic and water-soluble, for multicolor bioimaging and real-time bacterial viability determination. The copolymer is synthesized using a straightforward one-pot reversible addition–fragmentation chain-transfer (RAFT) polymerization technique. We show that GFPC does not influence bacterial growth and is stable for several hours in a complex growth medium and in the presence of bacteria. GFPC allows the labeling of the bacterial cytoplasm for multicolor bacterial bioimaging applications. It can be used in combination with propidium iodide (PI) to develop a rapid and reliable protocol to distinguish and quantify, in real time, by flow cytometry, live and dead bacteria.
- Published
- 2020
13. Phase Transfer and DNA Functionalization of Quantum Dots Using an Easy-to-Prepare, Low-Cost Zwitterionic Polymer
- Author
-
Chloé Grazon, Allison M. Dennis, Margaret Chern, Fontes A., Santos B., Division of Materials Science and Engineering, Boston University [Boston] (BU), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Department of Chemistry, Department of Biomedical Engineering [Boston], Adriana Fontes, Beate S. Santos, European Project: MSCA-IF-2016 749973,SENSHOR, and Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers ,Poly(isobutylene-alt-maleic anhydride)—PIMA ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,Biofunctionalization ,010402 general chemistry ,Ligands ,01 natural sciences ,Cyclooctanes ,Quantum Dots ,DNA labeling ,Copper-free click chemistry ,Maleic Anhydrides ,chemistry.chemical_classification ,Ligand ,Carboxybetaine ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,DNA ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Quantum dot ,Click chemistry ,Surface modification ,Click Chemistry ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Biosensor ,Hydrophobic and Hydrophilic Interactions - Abstract
International audience; Small, stable, and bright quantum dots (QDs) are of interest in many biosensing and biomedical imaging applications, but current methodologies for obtaining these characteristics can be highly specialized or expensive. We describe a straightforward, low-cost protocol for functionalizing poly(isobutylene-alt-maleic anhydride) (PIMA) with moieties that anchor to the QD surface (histamine), impart hydrophilicity [(2-aminoethyl)trimethylammonium chloride (Me3N+-NH2)], and provide a platform for biofunctionalization via click chemistry (dibenzocyclooctyne (DBCO)). Guidelines to successfully use this polymer for QD ligand exchange are presented, and an example of biofunctionalization with DNA is shown. Stable QD–DNA conjugates are obtained with high yield and without requiring additional purification steps.
- Published
- 2020
14. QD-FRET-based biosensing of small molecule analytes using transcription factor-DNA binding
- Author
-
Chloé Grazon, Andy Fan, Thuy T. Nguyen, Margaret Chern, R C. Baer, Allison M. Dennis, James E. Galagan, Boston University [Boston] (BU), Department of Biomedical Engineering [Boston], National Emerging Infectious Diseases Laboratories (NEIDL), Department of Chemistry, Boston University, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), European Project: MSCA-IF-2016 749973,SENSHOR, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Analyte ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fluorescence ,Small molecule ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Molecular recognition ,Förster resonance energy transfer ,chemistry ,Biophysics ,TetR ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Biosensor ,DNA - Abstract
International audience; An alternative molecular recognition approach was developed for sensing small molecule analytes using the differential binding of an allosteric transcription factor (TF, specifically TetR) to its cognate DNA as the molecular recognition element coupled with fluorescent resonance energy transfer (FRET) to yield an internally calibrated optical signal transduction mechanism. Sensors were evaluated comprising Cy5-modified DNA (FRET acceptor) with either a tdTomato-TetR fusion protein (FP-TF) or quantum dot-TetR conjugate (QD-TF) as the FRET donor by measuring the ratio of acceptor and donor fluorescence intensities (FA/FD) with titrations of a derivative of the antibiotic tetracycline, anhydrous tetracycline (aTc). A proof-of-concept FRET-based biosensor was successfully demonstrated through the modulation of FA/FD signal intensities based on varying analyte concentrations. Sensor design parameters affecting overall signal-to-noise ratio and sensitivity of the sensors are also identified.
- Published
- 2019
15. Core-shell polymeric nanoparticles comprising BODIPY and fluorescein as ultra-bright ratiometric fluorescent pH sensors
- Author
-
Chloé Grazon, Gilles Clavier, Jutta Rieger, Jean-Pierre Placial, Yang Si, Rachel Méallet-Renault, Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), École normale supérieure - Cachan (ENS Cachan)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nanoparticle ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,Fluorescence ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Nanosensor ,Ionic strength ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Molecule ,Polystyrene ,Physical and Theoretical Chemistry ,BODIPY ,Fluorescein ,0210 nano-technology - Abstract
International audience; A new ratiometric fluorescent pH nanosensor is presented. It is based on ultrabright nanoparticles containing two spatially separated fluorophores: BODIPY covalently linked to the polystyrene core and fluorescein grafted to the nanoparticle shell. The nanoparticles comprise a large number (≥2500) of both fluorescent moieties. Their spectroscopic characteristics were studied at different pH and ionic strength. They could successfully be used to determine the solution pH between 5.5 and 7.5 by measuring the fluorescence intensity ratio of the sensor molecule (fluorescein) relative to the reference dye (BODIPY).
- Published
- 2019
16. A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency
- Author
-
Allison M. Dennis, Mark W. Grinstaff, Margaret Chern, Chloé Grazon, Katherine Ward, Sébastien Lecommandoux, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Boston University [Boston] (BU), Department of Chemistry, Boston University, Department of Biomedical Engineering [Boston], European Project: MSCA-IF-2016 749973,SENSHOR, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
DNA, Complementary ,Materials science ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Polymers ,DNA, Single-Stranded ,Nanotechnology ,engineering.material ,010402 general chemistry ,01 natural sciences ,Catalysis ,Bioassays ,Cyclooctanes ,chemistry.chemical_compound ,Coating ,DNA conjugation ,Quantum Dots ,Materials Chemistry ,Polymer coatings ,Maleic Anhydrides ,Cycloaddition Reaction ,Aqueous medium ,010405 organic chemistry ,Metals and Alloys ,Nucleic Acid Hybridization ,General Chemistry ,Quantum dots QDs ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Grafting ,0104 chemical sciences ,3. Good health ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Quantum dot ,Reagent ,Ceramics and Composites ,engineering ,Polymer coating ,Surface modification ,Click Chemistry ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,DNA ,Histamine - Abstract
International audience; Efficient and versatile functionalization of poly(anhydride maleic-alt-isobutylene) (PIMA), with economical commercial reagents, results in the one-step/one-day production of a copper-free click chemistry-ready carboxybetaine-like coating for quantum dots (QDs). The QDs are bright and stable in aqueous media and easily grafted with DNA with >95% efficiency.
- Published
- 2019
- Full Text
- View/download PDF
17. An Allosteric Transcription Factor-Based Electrochemical Progesterone Sensor
- Author
-
Catherine M. Klapperich, Karthika Sankar, Chloé Grazon, James E. Galagan, R C. Baer, and Mark W. Grinstaff
- Subjects
Chemistry ,Allosteric regulation ,Biophysics ,Electrochemistry ,Transcription factor - Abstract
There is an immense potential for using biosensors in medical diagnostics as well as industries like pharmaceutical, food, beverages, environmental, and agricultural. Today, there remains a significant challenge to meet low levels of detection without compromising simplicity and affordability. Hormone measurements play a central role in family planning programs benefiting millions of women, and in monitoring endocrine disorders. Progesterone is a steroid hormone secreted by the corpus luteum and tracking progesterone levels during an ovulation cycle is beneficial for increasing fertility odds. Furthermore, during pregnancy, progesterone balance helps nurture and develop the fetus. Currently, there are no convenient and cost effective point-of-care (POC) devices to detect progesterone: antibody based approaches are used for progesterone sensing but their use is limited by high cost, production duration, and unreliability. This work has led to the development of in vitro biosensors based on bacterial allosteric transcription factors (aTFs). Like antibodies, aTFs recognize analytes with high sensitivity and specificity. In contrast to antibodies, aTFs respond to analyte binding by changing their affinity for a cognate DNA sequence. Using a novel progesterone-specific aTF, and its binding affinity to a specific DNA sequence provides an intrinsic electrochemical transduction mechanism for the development of novel progesterone biosensor. An electrochemical transduction method offers higher sensitivity and specificity at low cost. The biosensor surface includes a gold electrode with a surface immobilized DNA-aTF complex. During electrochemical measurements using a negative redox mediator (ferrocyanide/ferricyanide complex), in the absence of progesterone the overall negative charge of DNA-aTF complex blocks the negative mediator, prevents exchange of electrons with gold electrode, and generates lower current output. Addition of analyte or progesterone alters the affinity binding of DNA-aTF, releases the aTF from the surface, and enables the mediator to reach the surface, thereby resulting in an amplified current output. Preliminary results using our biosensor yielded a limit of detection of 33 nM over a physiologically relevant range of 0-10 µM progesterone in buffer, and 44 nM in presence of interferents in artificial urine.
- Published
- 2020
18. Cover Picture: Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides (Angew. Chem. Int. Ed. 2/2020)
- Author
-
Emmanuel Ibarboure, Colin Bonduelle, Elisabeth Garanger, Alix Buol, Sébastien Lecommandoux, Pedro Salas-Ambrosio, Mark W. Grinstaff, and Chloé Grazon
- Subjects
Aqueous solution ,Polymerization ,Chemistry ,INT ,Polymer chemistry ,Amphiphile ,Cover (algebra) ,General Chemistry ,Self-assembly ,Ring-opening polymerization ,Catalysis - Published
- 2020
19. Titelbild: Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides (Angew. Chem. 2/2020)
- Author
-
Elisabeth Garanger, Chloé Grazon, Emmanuel Ibarboure, Pedro Salas-Ambrosio, Mark W. Grinstaff, Colin Bonduelle, Alix Buol, and Sébastien Lecommandoux
- Subjects
Aqueous solution ,Chemistry ,Polymer chemistry ,General Medicine ,Self-assembly ,Ring-opening polymerization - Published
- 2019
20. Semiconductor Nanoplatelets: A New Class of Ultrabright Fluorescent Probes for Cytometric and Imaging Applications
- Author
-
Chloé Grazon, Djamila Kechkeche, Filippo Caschera, Benoit Dubertret, Vincent Noireaux, Edgar Cao, Marie Laurence Baron Niel, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nexdot, School of Physics and Astronomy [Minneapolis], University of Minnesota [Twin Cities] (UMN), and University of Minnesota System-University of Minnesota System
- Subjects
Materials science ,business.industry ,Nanotechnology ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Biocompatible material ,01 natural sciences ,Fluorescence ,0104 chemical sciences ,Semiconductor ,[CHIM.POLY]Chemical Sciences/Polymers ,Surface modification ,General Materials Science ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Fluorescent semiconductor nanoplatelets (NPLs) are a new generation of fluorescent probes. NPLs are colloidal two-dimensional materials that exhibit several unique optical properties, including high brightness, photostability, and extinction coefficients, as well as broad excitation and narrow emission spectra from the visible to the near-infrared spectrum. All of these exceptional fluorescence properties make NPLs interesting nanomaterials for biological applications. However, NPLs are synthesized in organic solvents and coated with hydrophobic ligands that render them insoluble in water. A current challenge is to stabilize NPLs in aqueous media compatible with biological environments. In this work, we describe a novel method to disperse fluorescent NPLs in water and functionalize them with different biomolecules for biodetection. We demonstrate that ligand exchange enables the dispersion of NPLs in water while maintaining optical properties and long-term colloidal stability in biological environments. Four different colors of NPLs were functionalized with biomolecules by random or oriented conformations. For the first time, we report that our NPLs have a higher brightness than that of standard fluorophores, like phycoerythrin or Brilliant Violet 650 (BV 650), for staining cells in flow cytometry. These results suggest that NPLs are an interesting alternative to common fluorophores for flow cytometry and imaging applications in multiplexed cellular targeting.
- Published
- 2018
21. A novel type of quantum dot–transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin
- Author
-
Cesar Augusto Valades-Cruz, Dhiraj Bhatia, Chloé Grazon, Yamuna Krishnan, Benoit Dubertret, Anusuya Banerjee, Ludger Johannes, Thomas Pons, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chimie biologique des membranes et ciblage thérapeutique (CBMCT - UMR 3666 / U1143), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Compartimentation et dynamique cellulaires (CDC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS), Grossman Institute of Neuroscience, Quantitative Biology and Human Behaviour, Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (LPEM), Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Curie-Université Paris Descartes - Paris 5 (UPD5), Centre National de la Recherche Scientifique (CNRS)-Institut Curie-Université Pierre et Marie Curie - Paris 6 (UPMC), and Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
0301 basic medicine ,Endosome ,media_common.quotation_subject ,02 engineering and technology ,CHO Cells ,Nanoconjugates ,03 medical and health sciences ,chemistry.chemical_compound ,Nucleic acid thermodynamics ,Cricetulus ,Quantum Dots ,Animals ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Internalization ,ComputingMilieux_MISCELLANEOUS ,media_common ,Fluorescent Dyes ,chemistry.chemical_classification ,Chemistry ,DNA–DNA hybridization ,Vesicle ,technology, industry, and agriculture ,Transferrin ,Nucleic Acid Hybridization ,DNA ,021001 nanoscience & nanotechnology ,030104 developmental biology ,Biochemistry ,0210 nano-technology ,Conjugate - Abstract
Colloidal nanoparticles such as Quantum Dots (QDs) are promising alternatives to organic fluorophores, especially for long duration bioimaging. For specific targeting applications, QDs frequently require functionalization with selected proteins. In this regard, conjugation of proteins to QDs such that the nanobioconjugates retain the endogenous behavior of the coupled protein remains challenging. We have developed a novel method to conjugate a protein, transferrin (Tf), to QDs using DNA hybridization. These conjugates are characterized biochemically, and the trafficking properties in live cells are investigated. Although the internalization kinetics into the cells is much reduced compared to Tf labelled with organic dye, we could show that DNA hybridization-based QD-Tf conjugates are the first for which recycling from endosomes to the plasma membrane can be observed. This recycling occurs with kinetics that is similar to dye labelled Tf. We could image and follow the trajectories of recycling of individual vesicles for several tens of minutes. The conjugation of QDs to proteins mediated by DNA hybridization yields a new generation of ultra-bright and photostable probes that preserves the intracellular properties of the dye labelled protein better than previously reported QD conjugates using other surface chemistries for direct coupling.
- Published
- 2017
22. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways
- Author
-
Ved Prakash, Chloé Grazon, Ludger Johannes, Prabal K. Maiti, Himanshu Joshi, Dhiraj Bhatia, Christian Wunder, Senthil Arumugam, Brice Nadal, Yamuna Krishnan, Benoit Dubertret, Valérie Chambon, Michel Nasilowski, Chimie biologique des membranes et ciblage thérapeutique (CBMCT - UMR 3666 / U1143), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC), Université Paris sciences et lettres (PSL), Tata Institute of Fundamental Research, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Indian Institute of Science, University of Chicago, NEXDOT, Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Tata Institute of Fundamental Research [Bangalore], Nexdot, and Grazon, Chloé
- Subjects
Galectin 3 ,Endocytic cycle ,02 engineering and technology ,Shiga Toxins ,01 natural sciences ,chemistry.chemical_compound ,Mice ,[CHIM] Chemical Sciences ,General Materials Science ,Physics ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Endocytosis ,Molecular Imaging ,0210 nano-technology ,Molecular probe ,[CHIM.INOR] Chemical Sciences/Inorganic chemistry ,[CHIM.POLY] Chemical Sciences/Polymers ,Biomedical Engineering ,Bioengineering ,Nanotechnology ,Endosomes ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,Article ,Cricetulus ,Folic Acid ,Dynamic light scattering ,Microscopy, Electron, Transmission ,Quantum Dots ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Animals ,[CHIM]Chemical Sciences ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Electrical and Electronic Engineering ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Ligand ,technology, industry, and agriculture ,DNA ,Fibroblasts ,equipment and supplies ,Dynamic Light Scattering ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Quantum dot ,Surface modification ,Biosensor - Abstract
International audience; Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.
- Published
- 2016
23. Fluorescent core-shell nanoparticles and nanocapsules using comb-like macromolecular RAFT agents: synthesis and functionalization thereof
- Author
-
Jutta Rieger, Rachel Méallet-Renault, Chloé Grazon, Gilles Clavier, Patricia Beaunier, Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Réactivité de Surface (LRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fluorophore ,Polymers and Plastics ,Chemistry ,Organic Chemistry ,Nanoparticle ,Bioengineering ,02 engineering and technology ,Raft ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Nanocapsules ,0104 chemical sciences ,Miniemulsion ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Polymer chemistry ,Copolymer ,BODIPY ,0210 nano-technology - Abstract
International audience; Fluorescent nanoparticles and nanocapsules (FNPs) were synthesized via a one-pot RAFT miniemulsion process copolymerizing BODIPY-methacrylate and styrene in water. Ultra-bright sub-100 nm core–shell nanoparticles could be obtained with BODIPY covalently linked in the core, and possessing various shells. The nature and architecture of the particle shells could be tuned by using different macromolecular RAFT (macro-RAFT) agents in the miniemulsion polymerization process. The macro-RAFT agents were composed of poly(ethylene oxide) acrylate (PEOA) and/or acrylic acid (AA), owing to their biocompatibility and functionality respectively, in different proportions. Interestingly, with comb-like macro-RAFT agents comprising a high number of PEOA, nanocapsules were formed, while with linear macro-RAFT agents or with those exhibiting a high number of AA, full core–shell nanoparticles were obtained. For all the structures the control over the polymerization, the size, morphology, and zeta-potential as well as the photophysical properties were measured and compared with FNPs exhibiting a linear PEO-b-PAA block copolymer shell structure (C. Grazon, J. Rieger, R. Méallet-Renault, G. Clavier and B. Charleux, Macromol. Rapid Commun., 2011, 32, 699). Regardless of the shell structures, the brightness of the formed nanoparticles was estimated to be 100–1000 times higher than that of quantum dots. Ultimately, the shell of the different FNPs was functionalized with a second fluorophore via the AA's carboxyl groups. Thus, water-soluble ultra-bright FNPs with two fluorophores in distinct environments (water and in polystyrene) were obtained. They should have great potential for bioimaging applications.
- Published
- 2016
24. Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications
- Author
-
Chloé Grazon, Yang Si, Jean-Frédéric Audibert, Bianca Sclavi, Rachel Méallet-Renault, Gilles Clavier, Jutta Rieger, Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), École normale supérieure - Cachan (ENS Cachan)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), and École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High-throughput screening ,Biomedical Engineering ,Biophysics ,Nanoparticle ,Nanotechnology ,Biosensing Techniques ,02 engineering and technology ,Bacterial growth ,Biology ,medicine.disease_cause ,01 natural sciences ,Rapid detection ,Fluorescence ,high-throughput screening (HTS) ,High-Throughput Screening Assays ,Escherichia coli ,Electrochemistry ,medicine ,fluoresceinamine ,bacteria ,Chromatography ,010401 analytical chemistry ,General Medicine ,Hydrogen-Ion Concentration ,021001 nanoscience & nanotechnology ,biology.organism_classification ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,0104 chemical sciences ,rapid detection ,[CHIM.POLY]Chemical Sciences/Polymers ,pH detection ,organic nanoparticles ,Nanoparticles ,0210 nano-technology ,Bacteria ,Biotechnology - Abstract
International audience; Rapid detection of bacterial growth is an important issue in the food industry and for medical research. Here we present a novel kind of pH-sensitive fluorescent nanoparticles (FANPs) that can be used for the rapid and accurate real-time detection of Escherichia coli growth. These organic particles are designed to be non-toxic and highly water-soluble. Here we show that the coupling of pH sensitive fluoresceinamine to the nanoparticles results in an increased sensitivity to changes in pH within a physiologically relevant range that can be used to monitor the presence of live bacteria. In addition, these FANPs do not influence bacterial growth and are stable over several hours in a complex medium and in the presence of bacteria. The use of these FANPs allows for continuous monitoring of bacterial growth via real-time detection over long time scales in small volumes and can thus be used for the screening of a large number of samples for high-throughput applications such as screening for the presence of antibiotic resistant strains.
- Published
- 2016
25. One-Pot Synthesis of Pegylated Fluorescent Nanoparticles by RAFT Miniemulsion Polymerization Using a Phase Inversion Process
- Author
-
Gilles Clavier, Jutta Rieger, Rachel Méallet-Renault, Chloé Grazon, and Bernadette Charleux
- Subjects
Polymers and Plastics ,Organic Chemistry ,Nanoparticle ,02 engineering and technology ,Raft ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,Micelle ,0104 chemical sciences ,Miniemulsion ,chemistry.chemical_compound ,Monomer ,chemistry ,Polymerization ,Materials Chemistry ,Copolymer ,BODIPY ,0210 nano-technology - Abstract
Water-soluble and fluorescent core-shell nanoparticles (FNP) are synthesized in a miniemulsion reversible addition-fragmentation transfer (RAFT) polymerization and are shown to respond to pH. The particles are obtained from a hydrophilic PEO-b-PAA macromolecular RAFT agent which is block-extended with styrene and a fluorescent BODIPY monomer. A miniemulsion is then formed with the residual hydrophobic monomers. After completion of the polymerization, FNP of ≈ 60 nm in diameter are obtained. The fluorescence of the BODIPY dye in the particles is found to remain (0.2 quantum yield). The particles can be precipitated in acidic pH and redispersed upon addition of base without loss of their integrity or noticeable rearrangement.
- Published
- 2011
26. Fast, Efficient, and Stable Conjugation of Multiple DNA Strands on Colloidal Quantum Dots
- Author
-
Chloé Grazon, Brice Nadal, Anusuya Banerjee, Thomas Pons, Yamuna Krishnan, Benoit Dubertret, Nexdot, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), National Centre for Biological Sciences [TIFR] (NCBS), and Tata Institute for Fundamental Research (TIFR)
- Subjects
Biomedical Engineering ,Metal Nanoparticles ,Pharmaceutical Science ,Nanoparticle ,Quantum yield ,Bioengineering ,Nanotechnology ,02 engineering and technology ,Conjugated system ,010402 general chemistry ,Photochemistry ,01 natural sciences ,chemistry.chemical_compound ,Quantum Dots ,Colloids ,ComputingMilieux_MISCELLANEOUS ,Pharmacology ,chemistry.chemical_classification ,Organic Chemistry ,technology, industry, and agriculture ,DNA ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,equipment and supplies ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Quantum dot ,Covalent bond ,Colloidal gold ,Gold ,0210 nano-technology ,Biotechnology - Abstract
A novel method for covalent conjugation of DNA to polymer coated quantum dots (QDs) is investigated in detail. This method is fast and efficient: up to 12 DNA strands can be covalently conjugated per QD in optimized reaction conditions. The QD-DNA conjugates can be purified using size exclusion chromatography and the QDs retain high quantum yield and excellent stability after DNA coupling. We explored single-stranded and double-stranded DNA coupling, as well as various lengths. We show that the DNA coupling is most efficient for short (15 mer) single-stranded DNA. The DNA coupling has been performed on QDs emitting at four different wavelengths, as well as on gold nanoparticles, suggesting that this technique can be generalized to a wide range of nanoparticles.
- Published
- 2015
27. Ultrabright BODIPY-Tagged Polystyrene Nanoparticles: Study of Concentration Effect on Photophysical Properties
- Author
-
Chloé Grazon, Rachel Méallet-Renault, Bernadette Charleux, Jutta Rieger, Gilles Clavier, Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), École normale supérieure - Cachan (ENS Cachan)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Fluorophore ,Nanoparticle ,Quantum yield ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,Fluorescence ,3. Good health ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Nanomaterials ,chemistry.chemical_compound ,General Energy ,chemistry ,Copolymer ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,BODIPY ,0210 nano-technology ,Ethylene glycol ,ComputingMilieux_MISCELLANEOUS - Abstract
Fluorescent nanomaterials are invaluable tools for bioimaging. Polymeric nanoparticles labeled with organic dyes are very promising for this purpose. It is thus very important to fully understand their photophysical properties. New fluorescent core–shell nanoparticles have been prepared. The outer part is a poly(ethylene glycol)-block-poly(acrylic acid) copolymer, and the core is a copolymer of styrene and methacrylic BODIPY fluorophore. The hydrophilic and hydrophobic parts are covalently linked, ensuring both stability and biocompatibility. We prepared nanoparticles with increasing amounts of BODIPY, from 500 to 5000 fluorophores per particles. Increasing the concentration of BODIPY lowers both the fluorescence quantum yield and the lifetime. However, the brightness of the individual particles increases up to 8 × 107. To understand the loss of fluorescence efficiency, fluorescence decays have been recorded and fitted with a mathematical model using a stretched exponential function. This result gives an ...
- Published
- 2014
28. Ultrabright Fluorescent Polymeric Nanoparticles Made from a New Family of BODIPY Monomers
- Author
-
Jutta Rieger, Gilles Clavier, Chloé Grazon, Rachel Méallet-Renault, Bernadette Charleux, Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), École normale supérieure - Cachan (ENS Cachan)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)
- Subjects
spectroscopy ,Polymers and Plastics ,miniemulsion ,microstructure ,02 engineering and technology ,010402 general chemistry ,Methacrylate ,Photochemistry ,01 natural sciences ,time-resolved spectroscopy ,Inorganic Chemistry ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Acrylate ,Organic Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Miniemulsion ,copolymerization ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,controlled radical polymerization ,Ethyl acrylate ,fluorescence ,BODIPY ,0210 nano-technology ,RAFT - Abstract
International audience; Four novel BODIPY derivatives (π-) functionalized by different polymerizable groups, styrene (S), phenyl acrylate (PhA), ethyl methacrylate (EtMA) and ethyl acrylate (EtA) have been synthesized. Following a formerly established one-pot RAFT miniemulsion polymerization process (Grazon et al. Macromol. Rapid Commun. 2011, 32, 699-705), the fluorophores were copolymerized in a controlled way at 2.6 mol% with styrene in water. Based on the polymerization-induced self-assembly (PISA) principle, the copolymers assembled during their formation into fluorescent nanoparticles. The distribution of the fluorescent monomers 2 along the polymer backbone was monitored by kinetic studies of the copolymerization reaction. Fluorescent stationary and time-resolved spectroscopy was then performed on both the monomers and the nanoparticles (NPs) and the observed differences are discussed in view of the distribution of the fluorescent monomers in the polymer chain. With two of the novel fluorescent monomers (πS and πPhA), the brightness of the NPs could be significantly improved (by a factor 2) compared to particles comprising the other BODIPY monomers. The obtained particles were 200 to 2000 times brighter than usual quantum dots and 40 to 300 times brighter than most of the fluorescent polymeric nanoparticles reported in the literature.
- Published
- 2013
29. Correction: Fluorescent core–shell nanoparticles and nanocapsules using comb-like macromolecular RAFT agents: synthesis and functionalization thereof
- Author
-
Chloé Grazon, Jutta Rieger, Patricia Beaunier, Rachel Méallet-Renault, and Gilles Clavier
- Subjects
Polymers and Plastics ,Organic Chemistry ,Bioengineering ,Biochemistry - Abstract
Correction for ‘Fluorescent core–shell nanoparticles and nanocapsules using comb-like macromolecular RAFT agents: synthesis and functionalization thereof’ by Chloé Grazon, et al., Polym. Chem., 2016, DOI: 10.1039/c6py00646a.
- Published
- 2016
30. One-Pot Synthesis of Pegylated Fluorescent Nanoparticles by RAFT Miniemulsion Polymerization Using a Phase Inversion Process
- Author
-
Chloé, Grazon, Jutta, Rieger, Rachel, Méallet-Renault, Gilles, Clavier, Bernadette, Charleux, Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), École normale supérieure - Cachan (ENS Cachan)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Ethylene Oxide ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymers ,Acrylic Resins ,Nanoparticles ,Polystyrenes ,Fluorescence ,Polymerization - Abstract
International audience; Water-soluble and fluorescent core-shell nanoparticles (FNP) are synthesized in a miniemulsion reversible addition-fragmentation transfer (RAFT) polymerization and are shown to respond to pH. The particles are obtained from a hydrophilic PEO-b-PAA macromolecular RAFT agent which is block-extended with styrene and a fluorescent BODIPY monomer. A miniemulsion is then formed with the residual hydrophobic monomers. After completion of the polymerization, FNP of ≈ 60 nm in diameter are obtained. The fluorescence of the BODIPY dye in the particles is found to remain (0.2 quantum yield). The particles can be precipitated in acidic pH and redispersed upon addition of base without loss of their integrity or noticeable rearrangement.
- Published
- 2011
31. Study of poly(N,N-diethylacrylamide) nanogel formation by aqueous dispersion polymerization of N,N-diethylacrylamide in the presence of poly(ethylene oxide)-b-poly(N,N-dimethylacrylamide) amphiphilic macromolecular RAFT agents
- Author
-
Bernadette Charleux, Jutta Rieger, Nicolas Sanson, Chloé Grazon, Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Aggregation number ,Chemistry ,Chain transfer ,02 engineering and technology ,General Chemistry ,Raft ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Micelle ,0104 chemical sciences ,chemistry.chemical_compound ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Polymer chemistry ,Static light scattering ,0210 nano-technology ,Nanogel - Abstract
International audience; The formation of thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm) nanogels via an aqueous dispersion polymerization process in the presence of poly(ethylene oxide)-b-poly(N,Ndimethylacrylamide) macromolecular reversible addition-fragmentation chain transfer agents (macroRAFT agents) was studied. The latter exhibit a hydrophobic trithiocarbonate reactive group with a dodecyl substituent, and had previously proved to act simultaneously as control agents and stabilizers in such a synthesis process (Rieger et al., J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 2373). The nanogel size and stability were found to depend strongly on the chain length of the macroRAFT agents, but also on the crosslinker (N,N 0-methylene bisacrylamide) and monomer concentrations. The aim of the present work was to better understand the mechanisms that govern the nanogel formation in such heterogeneous polymerization conditions performed under RAFT control, with special emphasis on the role of the macroRAFT agents. In the first part, the aqueous solution properties of the macroRAFT agents in the conditions of the dispersion polymerizations were studied by light scattering and fluorescence spectroscopy and it was found that they self-assemble to form star micelles. In the second part, the nanogel formation at different DEAAm and crosslinker concentrations was monitored by dynamic and static light scattering, and by size exclusion chromatography. It appeared that at low monomer conversion the calculated number of chains per nanogel particle was close to the aggregation number, N agg , of the macroRAFT agent micelles. With increasing conversions, however, the number of chains clearly increased and exceeded the initial N agg. Higher monomer concentrations hardly influenced the formation process and thus the gel particle size, whereas enhanced crosslinker concentration had a strong impact on the latter. These results strongly suggest that precursor particles are formed very rapidly at the polymerization onset and then aggregate with each other to form complex inter-crosslinked particles.
- Published
- 2011
32. Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization
- Author
-
Chloé Grazon, David Alaimo, Jutta Rieger, Christine Jérôme, Bernadette Charleux, Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC), Center for Education and Research on Macromolecules - CERM [Liège, Belgium], CESAM RU [Liège, Belgium]-Université de Liège, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Liège-CESAM RU [Liège, Belgium]
- Subjects
Polymers and Plastics ,Radical polymerization ,core-crosslinked micelle ,N-diethylacrylamide ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Micelle ,Lower critical solution temperature ,controlled/living free-radical polymerization ,LCST ,Polymer chemistry ,Materials Chemistry ,Copolymer ,poly(ethylene oxide) ,diblock copolymers ,N-dimethylacrylamide ,Dispersion polymerization ,Chemistry ,amphiphilic block copolymer ,Organic Chemistry ,technology, industry, and agriculture ,Chain transfer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,reversible addition-fragmentation transfer (RAFT) ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,nanogel ,dispersion polymerization ,hydrogel ,0210 nano-technology ,Temperature-responsive polymer - Abstract
A very straightforward approach was developed to synthesize pegylated thermoresponsive core-shell nanoparticles in a minimum of steps, directly in water. It is based on RAFT-controlled radical crosslinking copolymerization of N,N-diethylacrylamide (DEAAm) and N,N′-methylene bisacrylamide (MBA) in aqueous dispersion polymerization. Because DEAAm is water-soluble and poly(N,N-diethylacrylamide) (PDEAAm) exhibits a lower critical solution temperature at 32 °C, the initial medium was homogeneous, whereas the polymer formed a separate phase at the reaction temperature. The first macroRAFT agent was a surface-active trithiocarbonate based on a hydrophilic poly(ethylene oxide) block and a hydrophobic dodecyl chain. It was further extented with N,N-dimethylacrylamide (DMAAm) to target macroRAFT agents with increasing chain length. All macroRAFT agents provided excellent control over the aqueous dispersion homopolymerization of DEAAm. When they were used in the radical crosslinking copolymerization of DEAAm and MBA, the stability and size of the resulting gel particles were found to depend strongly on the chain length of the macroRAFT agent, on the concentrations of both the monomer and the crosslinker, and on the process (one step or two steps). The best-suited experimental conditions to reach thermosensitive hydrogels with nanometric size and well-defined surface properties were determined. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2373–2390, 2009
- Published
- 2009
33. Aqueous Ring‐Opening Polymerization‐Induced Self‐Assembly (ROPISA) of N‐Carboxyanhydrides
- Author
-
Chloé Grazon, Alix Buol, Pedro Salas-Ambrosio, Colin Bonduelle, Elisabeth Garanger, Mark W. Grinstaff, Sébastien Lecommandoux, Emmanuel Ibarboure, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Boston University [Boston] (BU)
- Subjects
010402 general chemistry ,Ring-opening polymerization ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,in situ self‐assembly (ISA) ,Amphiphile ,Polymer chemistry ,Copolymer ,N‐carboxyanhydrides (NCA) ,Aqueous solution ,Ethylene oxide ,010405 organic chemistry ,General Chemistry ,α‐amino‐poly(ethylene oxide) macroinitiator ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Medicine ,respiratory system ,0104 chemical sciences ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Self-assembly ,ring-opening polymerization (ROP) ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; We report the first aqueous ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCA) using α‐amino‐poly(ethylene oxide) macroinitiator to protect NCA monomers from hydrolysis through spontaneous in situ self‐assembly (ISA). This ROPISA process affords well‐defined amphiphilic diblock copolymers that simultaneously form original needle‐like nano‐objects.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.