16 results on '"Chirivi M"'
Search Results
2. Focus on the road to modelling cardiomyopathy in muscular dystrophy
- Author
-
Canonico, Francesco, Chirivi, M., Maiullari, F., Milan, Melissa, Rizzi, Rebecca, Arcudi, Alessandra, Galli, M., Pane, Marika, Gowran, A., Pompilio, G., Mercuri, Eugenio Maria, Crea, Filippo, Bearzi, C., D'Amario, D., Canonico F. (ORCID:0000-0001-6936-4548), Milan M., Rizzi R., Arcudi A., Pane M. (ORCID:0000-0002-4851-6124), Mercuri E. (ORCID:0000-0002-9851-5365), Crea F. (ORCID:0000-0001-9404-8846), Canonico, Francesco, Chirivi, M., Maiullari, F., Milan, Melissa, Rizzi, Rebecca, Arcudi, Alessandra, Galli, M., Pane, Marika, Gowran, A., Pompilio, G., Mercuri, Eugenio Maria, Crea, Filippo, Bearzi, C., D'Amario, D., Canonico F. (ORCID:0000-0001-6936-4548), Milan M., Rizzi R., Arcudi A., Pane M. (ORCID:0000-0002-4851-6124), Mercuri E. (ORCID:0000-0002-9851-5365), and Crea F. (ORCID:0000-0001-9404-8846)
- Abstract
Alterations in the DMD gene, which codes for the protein dystrophin, cause forms of dystrophinopathies such as Duchenne muscular dystrophy, an X-linked disease. Cardiomyopathy linked to DMD mutations is becoming the leading cause of death in patients with dystrophinopathy. Since phenotypic pathophysiological mechanisms are not fully understood, the improvement and development of new disease models, considering their relative advantages and disadvantages, is essential. The application of genetic engineering approaches on induced pluripotent stem cells, such as gene-editing technology, enables the development of physiologically relevant human cell models for in vitro dystrophinopathy studies. The combination of induced pluripotent stem cells-derived cardiovascular cell types and 3D bioprinting technologies hold great promise for the study of dystrophin-linked cardiomyopathy. This combined approach enables the assessment of responses to physical or chemical stimuli, and the influence of pharmaceutical approaches. The critical objective of in vitro microphysiological systems is to more accurately reproduce the microenvironment observed in vivo. Ground-breaking methodology involving the connection of multiple microphysiological systems comprised of different tissues would represent a move toward precision body-on-chip disease modelling could lead to a critical expansion in what is known about inter-organ responses to disease and novel therapies that have the potential to replace animal models. In this review, we will focus on the generation, development, and application of current cellular, animal, and potential for bio-printed models, in the study of the pathophysiological mechanisms underlying dystrophin-linked cardiomyopathy in the direction of personalized medicine.
- Published
- 2022
3. Chromium and Palmitic Acid Supplementation Modulate Adipose Tissue Insulin Sensitivity in Postpartum Dairy Cows.
- Author
-
Chirivi M, Abou-Rjeileh U, Gandy J, Parales-Giron J, Panda V, Terrian L, Bhattacharya S, Lock AL, and Contreras GA
- Abstract
Periparturient dairy cows exhibit intense lipolysis driven by reduced dry matter intake, enhanced energy needs, and the loss of adipose tissue (AT) insulin sensitivity. Extended periods of low insulin sensitivity and negative energy balance induce lipolysis dysregulation, leading to increased disease susceptibility and poor lactation performance. Chromium (Cr) supplementation improves systemic insulin sensitivity, while palmitic acid (PA) increases energy availability for milk production. However, the effect of supplementing Cr and PA alone or in combination on insulin sensitivity in AT is unknown. Thirty-two multiparous cows were used in a randomized complete block design experiment and randomly assigned to one of 4 diets fed from 1 to 24 DIM. Diets included: control, no supplementation (CON, n = 8); Cr (Cr-propionate at 0.45 ppm Cr/kg DM, n = 8); PA (1.5% DM, n = 8); or Cr+PA (n = 8). Plasma samples were collected at -13 ± 5.1 d prepartum (PreP), and 14.4 ± 1.9d (PP1) and 21 ± 1.9d (PP2) after calving for albumin, BHB, BUN, calcium, cholesterol, glucose, nonesterified fatty acids (NEFA), total protein, iron, transferrin, triglycerides, and oxylipids quantification. Subcutaneous AT (SCAT) explants were collected at PreP, PP1 and PP2 and incubated in the presence of the lipolytic agent isoproterenol (ISO = 1 µM, BASAL = 0 µM) for 3 h. The antilipolytic effect of insulin (1µL/L) on SCAT explants was evaluated during ISO stimulation (IN+ISO). Lipolysis was quantified by glycerol release in the media (nmol glycerol/mg AT). Macrophage infiltration and adipocyte size were measured using hematoxylin and eosin-stained AT sections and immunohistochemistry. Cr tended to reduce postpartum NEFA concentrations when compared with CON, PA, and Cr+PA. Likewise, Cr increased the percentage of large adipocytes (>9000 µm
2 ) postpartum compared with other diets. In line with higher lipid content, Cr-fed cows had higher ex-vivo BASAL lipolysis at PP2 when compared with PA and Cr+PA. ISO induced higher lipolysis at PP1 and PP2 but it was not affected by Cr and PA. IN+ISO reduced lipolysis by 29.91 ± 11% in Cr compared with ISO. In contrast, IN+ISO did not affect ISO lipolysis in CON, PA, and Cr+PA. Plasma transferrin was reduced by Cr. At PP2, PA cows had 3.3-fold higher macrophage infiltration in SCAT when compared with CON and Cr. Plasma 9-HODE and 9-oxoODE were increased by Cr+PA. PA increased plasma 13-oxoODE and Cr increased the ratio of 13-HODE:13-oxoODE. PA increased 5-iso Prostaglandin F2α-VI. Our results demonstrate that supplementing Cr during the immediate postpartum enhances SCAT insulin sensitivity and lipid accumulation. Further studies should determine the effects and mechanisms of action of Cr and PA on AT lipogenesis, adipogenesis, and their impact on lactation performance., (© 2025, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)- Published
- 2024
- Full Text
- View/download PDF
4. Lipolysis pathways modulate lipid mediator release and endocannabinoid system signaling in dairy cows' adipocytes.
- Author
-
Myers MN, Chirivi M, Gandy JC, Tam J, Zachut M, and Contreras GA
- Abstract
Background: As cows transition from pregnancy to lactation, free fatty acids (FFA) are mobilized from adipose tissues (AT) through lipolysis to counter energy deficits. In clinically healthy cows, lipolysis intensity is reduced throughout lactation; however, if FFA release exceeds tissue demands or the liver's metabolic capacity, lipid byproducts accumulate, increasing cows' risk of metabolic and infectious disease. Endocannabinoids (eCBs) and their congeners, N-acylethanolamines (NAEs), are lipid-based compounds that modulate metabolism and inflammation. Their synthesis and release depend upon the availability of FFA precursors and the abundance of synthesizing and degrading enzymes and transporters. Therefore, we hypothesized that eCB production and transcription of endocannabinoid system components are modulated by lipolysis pathways in adipocytes. To test this hypothesis, we stimulated canonical (isoproterenol, 1 µmol/L; ISO) and inflammatory (lipopolysaccharide, 1 µg/mL; LPS) lipolysis pathways in adipocytes isolated from the AT of 5 Holstein dairy cows. Following, we assessed lipolysis intensity, adipocytes' release of eCBs, and transcription of endocannabinoid system components., Results: We found that ISO and LPS stimulated lipolysis at comparable intensities. Exposure to either treatment tended to elevate the release of eCBs and NAEs by cultured adipocytes; however, specific eCBs and NAEs and the transcriptional profiles differed by treatment. On one hand, ISO enhanced adipocytes' release of 2-arachidonoylglycerol (2-AG) but reduced NAE production. Notably, ISO enhanced the cells' expression of enzymes associated with 2-AG biosynthesis (INPP5F, GDPD5, GPAT4), transport (CD36), and adipogenesis (PPARG). Conversely, LPS enhanced adipocytes' synthesis and release of N-arachidonoylethanolamide (AEA). This change coincided with enhanced transcription of the NAE-biosynthesizing enzyme, PTPN22, and adipocytes' transcription of genes related to eCB degradation (PTGS2, MGLL, CYP27B1). Furthermore, LPS enhanced adipocytes' transcription of eCB and NAE transporters (HSPA1A, SCP2) and the expression of the anti-adipogenic ion channel, TRPV3., Conclusions: Our data provide evidence for distinct modulatory roles of canonical and inflammatory lipolysis pathways over eCB release and transcriptional regulation of biosynthesis, degradation, transport, and ECS signaling in cows' adipocytes. Based on our findings, we conclude that, within adipocytes, eCB production and ECS component expression are, at least in part, mediated by lipolysis in a pathway-dependent manner. These findings contribute to a deeper understanding of the molecular mechanisms underlying metabolic regulation in dairy cows' AT, with potential implications for prevention and treatment of inflammatory and metabolic disorders., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. Lipolysis inhibition as a treatment of clinical ketosis in dairy cows: Effects on adipose tissue metabolic and immune responses.
- Author
-
Chirivi M, Cortes D, Rendon CJ, and Contreras GA
- Subjects
- Animals, Cattle, Female, Lactation, Niacin pharmacology, Niacin therapeutic use, Postpartum Period, Lipolysis drug effects, Adipose Tissue metabolism, Ketosis veterinary, Ketosis drug therapy, Cattle Diseases drug therapy, Cattle Diseases metabolism
- Abstract
Dairy cows with clinical ketosis (CK) exhibit excessive adipose tissue (AT) lipolysis and systemic inflammation. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory lipolytic pathways. Currently, the most common treatment for CK is oral propylene glycol (PG); however, PG does not reduce lipolysis or inflammation. Niacin (NIA) can reduce the activation of canonical lipolysis, whereas cyclooxygenase inhibitors such as flunixin meglumine (FM) can limit inflammation and inhibit the inflammatory lipolytic pathway. The objective of this study was to determine the effects of including NIA and FM in the standard PG treatment for postpartum CK on AT function. Multiparous Jersey cows (n = 18; 7.1 ± 3.8 DIM) were selected from a commercial dairy. Inclusion criteria were CK symptoms (lethargy, depressed appetite, and drop in milk yield) and high blood levels of BHB (≥1.2 mmol/L). Cows with CK were randomly assigned to one of 3 treatments: (1) PG: 310 g administered orally once per day for 5 d, (2) PG+NIA: 24 g administered orally once per day for 3 d, and (3) PG+NIA+FM: 1.1 mg/kg administered IV once per day for 3 d. Healthy control cows (HC; n = 6) matched by lactation and DIM (±2 d) were sampled. Subcutaneous AT explants were collected at d 0 and d 7 relative to enrollment. To assess AT insulin sensitivity, explants were treated with insulin (1 µL/L) during lipolysis stimulation with a β-adrenergic receptor agonist (isoproterenol, 1 µM). Lipolysis was quantified by glycerol release in the media. Lipid mobilization and inflammatory gene networks were evaluated using quantitative PCR. Protein biomarkers of lipolysis, insulin signaling, and AT inflammation, including hormone-sensitive lipase, protein kinase B (Akt), and ERK1/2, were quantified by capillary immunoassays. Flow cytometry of AT cellular components was used to characterize macrophage inflammatory phenotypes. Statistical significance was determined by a nonparametric t-test when 2 groups (HC vs. CK) were analyzed and an ANOVA test with Tukey adjustment when 3 treatment groups (PG vs. PG+NIA vs. PG+NIA+FM) were evaluated. At d 0, AT from CK cows showed higher mRNA expression of lipolytic enzymes ABHD5, LIPE, and LPL, as well as increased phosphorylation of hormone-sensitive lipase compared with HC. At d 0, insulin reduced lipolysis by 41% ± 8% in AT from HC, but CK cows were unresponsive (-2.9 ± 4%). Adipose tissue from CK cows exhibited reduced Akt phosphorylation compared with HC. Cows with CK had increased AT expression of inflammatory gene markers, including CCL2, IL8, IL10, TLR4, and TNF, along with ERK1/2 phosphorylation. Adipose tissue from CK cows showed increased macrophage infiltration compared with HC. By d 7, AT from PG+NIA+FM cows had a more robust response to insulin, as evidenced by reduced glycerol release (36.5% ± 8% compared with PG at 26.9% ± 7% and PG+NIA at 7.4% ± 8%) and enhanced phosphorylation of Akt. By d 7, PG+NIA+FM cows presented lower inflammatory markers, including ERK1/2 phosphorylation, and reduced macrophage infiltration, compared with PG and PG+NIA. These data suggest that including NIA and FM in CK treatment improves AT insulin sensitivity and reduces AT inflammation and macrophage infiltration., (The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2024
- Full Text
- View/download PDF
6. Endotoxin-induced alterations of adipose tissue function: a pathway to bovine metabolic stress.
- Author
-
Chirivi M and Contreras GA
- Abstract
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Lipolysis inhibition as a treatment of clinical ketosis in dairy cows: A randomized clinical trial.
- Author
-
Chirivi M, Cortes-Beltran D, Munsterman A, O'Connor A, and Contreras GA
- Subjects
- Pregnancy, Female, Cattle, Animals, Lactation, Lipolysis, Fatty Acids, Nonesterified, Postpartum Period metabolism, Milk metabolism, Insulin, Inflammation metabolism, Inflammation veterinary, Biomarkers metabolism, 3-Hydroxybutyric Acid, Ketone Bodies, Glucose metabolism, Pain veterinary, Endotoxemia veterinary, Ketosis drug therapy, Ketosis veterinary, Ketosis metabolism, Dyslipidemias metabolism, Dyslipidemias veterinary, Cattle Diseases metabolism
- Abstract
Excessive and protracted lipolysis in adipose tissues of dairy cows is a major risk factor for clinical ketosis (CK). This metabolic disease is common in postpartum cows when lipolysis provides fatty acids as an energy substrate to offset negative energy balance. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory pathways. Current treatments for CK focus on improving glucose in blood (i.e., oral propylene glycol [PG], or i.v. dextrose). However, these therapies do not inhibit the canonical and inflammatory lipolytic pathways. Niacin (NIA) can reduce activation of the canonical pathway. Blocking inflammatory responses with cyclooxygenase inhibitors such as flunixin meglumine (FM) can inhibit inflammatory lipolytic activity. The objective of this study was to determine the effects of including NIA and FM in the standard PG treatment for postpartum CK on circulating concentrations of ketone bodies. A 4-group, parallel, individually randomized trial was conducted in multiparous Jersey cows (n = 80) from a commercial dairy in Michigan during a 7-mo period. Eligible cows had CK symptoms (lethargy, depressed appetite, and milk yield) and hyperketonemia (blood β-hydroxybutyrate [BHB] ≥1.2 mmol/L). Cows with CK were randomly assigned to 1 of 3 groups where the first group received 310 g of oral PG once per day for 5 d; the second group received PG for 5 d + 24 g of oral NIA once per day for 3 d (PGNIA); and the third group received PG for 5 d + NIA for 3 d + 1.1 mg/kg i.v. FM once per day for 3 d (PGNIAFM). The control group consisted of cows that were clinically healthy (HC; untreated; BHB <1.2 mmol/L, n = 27) matching for parity and DIM with all 3 groups. Animals were sampled at enrollment (d 0), and d 3, 7, and 14 to evaluate ketone bodies and circulating metabolic and inflammatory biomarkers. Effects of treatment, sampling day, and their interactions were evaluated using mixed effects models. Logistic regression was used to calculate the odds ratio (OR) of returning to normoketonemia (BHB <1.2 mmol/L). Compared with HC, enrolled CK cows exhibited higher blood concentrations of dyslipidemia markers, including nonesterified fatty acids (NEFA) and BHB, and lower glucose and insulin levels. Cows with CK also had increased levels of biomarkers of pain (substance P), inflammation, including lipopolysaccharide-binding protein, haptoglobin, and serum amyloid A, and proinflammatory cytokines IL-4, MCP-1, MIP-1α, and TNFα. Importantly, 72.2% of CK cows presented endotoxemia and had higher circulating bacterial DNA compared with HC. By d 7, the percentage of cows with normoketonemia were higher in PGNIAFM = 87.5%, compared with PG = 58.33%, and PGNIA = 62.5%. At d 7 the OR for normoketonemia in PGNIAFM cows were 1.5 (95% CI, 1.03-2.17) and 1.4 (95% CI, 0.99-1.97) relative to PG and PGNIA, respectively. At d 3, 7, and 14, PGNIAFM cows presented the lowest values of BHB (PG = 1.36; PGNIA = 1.24; PGNIAFM = 0.89 ± 0.13 mmol/L), NEFA (PG = 0.58; PGNIA = 0.59; PGNIAFM = 0.45 ± 0.02 mmol/L), and acute phase proteins. Cows in PGNIAFM also presented the highest blood glucose increment across time points and insulin by d 7. These data provide evidence that bacteremia or endotoxemia, systemic inflammation, and pain may play a crucial role in CK pathogenesis. Additionally, targeting lipolysis and inflammation with NIA and FM during CK effectively reduces dyslipidemia biomarkers, improves glycemia, and improves overall clinical recovery., (© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2023
- Full Text
- View/download PDF
8. Prophylactic feeding of neomycin to Holstein calves alters gut microbiota, bile acid metabolism, and expression of genes involved in immunometabolic regulation.
- Author
-
Cangiano LR, Ipharraguerre IR, Guan LL, Buss LN, Amorin-Hegedus R, Chirivi M, Contreras GA, and Steele MA
- Abstract
The objective of this study was to evaluate the effects of prophylactic neomycin administration on Holstein bull calves' intestinal microbiota, bile acid (BA) metabolism, and transcript abundance of genes related to BA metabolism. A total of 36 calves were blocked by body weight and assigned to either non-medicated milk replacer (CTL), or neomycin for 14 days (ST) or 28 days (LT) in their milk replacer. At the end of the study, calves were euthanized to collect tissue and digesta samples from the gastrointestinal tract, liver, and adipose tissue for analysis of intestinal microbial diversity, bile acid concentration and profile in various body tissues, and gene expression related to bile acid, lipid, carbohydrate metabolism, and inflammation. Calves that received prophylactic administration of neomycin for 28 d (LT) had reduced species richness (chao1 index), and tended to have reduced phylogenetic diversity in the ileum tissue. The relative abundance of Lactobacillus , and Bifidobacterium in ileum and colon digesta were decreased in LT compared with CTL. Concentrations of primary, secondary, and total BA were increased by ST in ileal tissue. In plasma, ST and LT treatments had lower concentrations of secondary BA. Gene expression of the BA receptor FXR was increased in ileum and liver by LT compared to CTL. The expression of FXR and TGR5 in the liver was increased in the ST group compared with CTL, and in adipose tissue, 5 genes related to triglyceride, gluconeogenesis, and immune activation were differentially expressed between CTL and ST. In conclusion, we provide evidence that prophylactic administration of neomycin leads to aberrant changes in BA concentration and profile in different compartments of the enterohepatic system through a process that possibly entails antimicrobial disruption of key bacterial groups, which persists even after cessation of neomycin administration. Additionally, we uncovered an apparent link between dysregulated BA metabolism and changes in lipid metabolism and immune activation in adipose tissue and liver., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Cangiano, Ipharraguerre, Guan, Buss, Amorin-Hegedus, Chirivi, Contreras and Steele.)
- Published
- 2023
- Full Text
- View/download PDF
9. Oleic acid abomasal infusion limits lipolysis and improves insulin sensitivity in adipose tissue from periparturient dairy cows.
- Author
-
Abou-Rjeileh U, Dos Santos Neto J, Chirivi M, O'Boyle N, Salcedo D, Prom C, Laguna J, Parales-Giron J, Lock AL, and Contreras GA
- Subjects
- Female, Cattle, Animals, Lipolysis, Oleic Acid metabolism, PPAR alpha metabolism, Lactation physiology, Diet veterinary, Adipose Tissue metabolism, Glucose metabolism, Insulin, Fatty Acids, Nonesterified, Insulin Resistance physiology, Cattle Diseases metabolism
- Abstract
Excessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT. In the liver and skeletal muscle, OA improves mitochondrial function and promotes lipid droplet formation by activating perilipin 5 (PLIN5) and peroxisome proliferator-activated receptor α (PPARα). However, it is unknown if this mechanism occurs in AT. The objective of this study was to determine the effect of OA on AT lipolysis, systemic and AT insulin sensitivity, and AT mitochondrial function in periparturient dairy cows. Twelve rumen-cannulated Holstein cows were infused abomasally following parturition with ethanol (CON) or OA (60 g/d) for 14 d. Subcutaneous AT samples were collected at 11 ± 3.6 d before calving (-12 d), and 6 ± 1.0 d (7 d) and 13 ± 1.4 d (14 d) after parturition. An intravenous glucose tolerance test was performed on d 14. Adipocyte morphometry was performed on hematoxylin and eosin-stained AT sections. The antilipolytic effect of insulin (1 μg/L) was evaluated using an ex vivo explant culture following lipolysis stimulation. PLIN5 and PPARα transcription and translation were determined by real-time quantitative PCR and capillary electrophoresis, respectively. RNA sequencing was used to evaluate the transcriptomic profile of mitochondrial gene networks. In CON cows, postpartum lipolysis increased the percentage of smaller (<3,000 µm
2 ) adipocytes at 14 d compared with -12 d. However, OA limited adipocyte size reduction at 14 d. Likewise, OA decreased lipolysis plasma markers nonesterified free fatty acids and β-hydroxybutyrate at 5 and 7 d. Over the 14-d period, compared with CON, OA increased the concentration of plasma insulin and decreased plasma glucose. During the glucose tolerance test, OA decreased circulating glucose concentration (at 10, 20, 30, 40 min) and the glucose clearance rate. Moreover, OA increased insulin at 10 and 20 min and tended to increase it at 30 min. Following lipolysis stimulation, OA improved the antilipolytic effect of insulin in the AT at 14 d. PLIN5 and PPARA gene expression decreased postpartum regardless of treatment. However, OA increased PLIN5 protein expression at 14 d and increased PPARA at 7 and 14 d. Immunohistochemical analysis of AT and RNA sequencing data showed that OA increased the number of mitochondria and improved mitochondrial function. However, OA had no effect on production and digestibility. Our results demonstrate that OA limits AT lipolysis, improves systemic and AT insulin sensitivity, and is associated with markers of mitochondrial function supporting a shift to lipogenesis in AT of periparturient dairy cows., (The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)- Published
- 2023
- Full Text
- View/download PDF
10. Cannabinoid-1 receptor activation modulates lipid mobilization and adipogenesis in the adipose tissue of dairy cows.
- Author
-
Myers MN, Abou-Rjeileh U, Chirivi M, Parales-Girón J, Lock AL, Tam J, Zachut M, and Contreras GA
- Subjects
- Female, Cattle, Animals, Adipogenesis, Receptors, Cannabinoid metabolism, Adipose Tissue metabolism, Lipolysis physiology, Lactation physiology, Lipids, Lipid Mobilization, Cannabinoids pharmacology, Cannabinoids metabolism
- Abstract
Amplified adipose tissue (AT) lipolysis and suppressed lipogenesis characterize the periparturient period of dairy cows. The intensity of lipolysis recedes with the progression of lactation; however, when lipolysis is excessive and prolonged, disease risk is exacerbated and productivity compromised. Interventions that minimize lipolysis while maintaining adequate supply of energy and enhancing lipogenesis may improve periparturient cows' health and lactation performance. Cannabinoid-1 receptor (CB1R) activation in rodent AT enhances the lipogenic and adipogenic capacity of adipocytes, yet the effects in dairy cow AT remain unknown. Using a synthetic CB1R agonist and an antagonist, we determined the effects of CB1R stimulation on lipolysis, lipogenesis, and adipogenesis in the AT of dairy cows. Adipose tissue explants were collected from healthy, nonlactating and nongestating (NLNG; n = 6) or periparturient (n = 12) cows at 1 wk before parturition and at 2 and 3 wk postpartum (PP1 and PP2, respectively). Explants were treated with the β-adrenergic agonist isoproterenol (1 μM) in the presence of the CB1R agonist arachidonyl-2'-chloroethylamide (ACEA) ± the CB1R antagonist rimonabant (RIM). Lipolysis was quantified based on glycerol release. We found that ACEA reduced lipolysis in NLNG cows; however, it did not exhibit a direct effect on AT lipolysis in periparturient cows. Inhibition of CB1R with RIM in postpartum cow AT did not alter lipolysis. To evaluate adipogenesis and lipogenesis, preadipocytes isolated from NLNG cows' AT were induced to differentiate in the presence or absence of ACEA ± RIM for 4 and 12 d. Live cell imaging, lipid accumulation, and expressions of key adipogenic and lipogenic markers were assessed. Preadipocytes treated with ACEA had higher adipogenesis, whereas ACEA+RIM reduced it. Adipocytes treated with ACEA and RIM for 12 d exhibited enhanced lipogenesis compared with untreated cells (control). Lipid content was reduced in ACEA+RIM but not with RIM alone. Collectively, our results support that lipolysis may be reduced by CB1R stimulation in NLNG cows but not in periparturient cows. In addition, our findings demonstrate that adipogenesis and lipogenesis are enhanced by activation of CB1R in the AT of NLNG dairy cows. In summary, we provide initial evidence which supports that the sensitivity of the AT endocannabinoid system to endocannabinoids, and its ability to modulate AT lipolysis, adipogenesis, and lipogenesis, vary based on dairy cows' lactation stage., (The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2023
- Full Text
- View/download PDF
11. PIEZO1 mechanoreceptor activation reduces adipogenesis in perivascular adipose tissue preadipocytes.
- Author
-
Rendon CJ, Flood E, Thompson JM, Chirivi M, Watts SW, and Contreras GA
- Subjects
- Adipose Tissue metabolism, Animals, Calcium metabolism, Male, Mechanoreceptors metabolism, RNA, Small Interfering, Rats, Rats, Sprague-Dawley, Adipogenesis, Hypertension
- Abstract
During hypertension, vascular remodeling allows the blood vessel to withstand mechanical forces induced by high blood pressure (BP). This process is well characterized in the media and intima layers of the vessel but not in the perivascular adipose tissue (PVAT). In PVAT, there is evidence for fibrosis development during hypertension; however, PVAT remodeling is poorly understood. In non-PVAT depots, mechanical forces can affect adipogenesis and lipogenic stages in preadipocytes. In tissues exposed to high magnitudes of pressure like bone, the activation of the mechanosensor PIEZO1 induces differentiation of progenitor cells towards osteogenic lineages. PVAT's anatomical location continuously exposes it to forces generated by blood flow that could affect adipogenesis in normotensive and hypertensive states. In this study, we hypothesize that activation of PIEZO1 reduces adipogenesis in PVAT preadipocytes. The hypothesis was tested using pharmacological and mechanical activation of PIEZO1. Thoracic aorta PVAT (APVAT) was collected from 10-wk old male SD rats (n=15) to harvest preadipocytes that were differentiated to adipocytes in the presence of the PIEZO1 agonist Yoda1 (10 µM). Mechanical stretch was applied with the FlexCell System at 12% elongation, half-sine at 1 Hz simultaneously during the 4 d of adipogenesis (MS+, mechanical force applied; MS-, no mechanical force used). Yoda1 reduced adipogenesis by 33% compared with CON and, as expected, increased cytoplasmic Ca2+ flux. MS+ reduced adipogenesis efficiency compared with MS-. When Piezo1 expression was blocked with siRNA [si Piezo1 ; NC=non-coding siRNA], the anti-adipogenic effect of Yoda1 was reversed in si Piezo1 cells but not in NC; in contrast, si Piezo1 did not alter the inhibitory effect of MS+ on adipogenesis. These data demonstrate that PIEZO1 activation in PVAT reduces adipogenesis and lipogenesis and provides initial evidence for an adaptive response to excessive mechanical forces in PVAT during hypertension., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Rendon, Flood, Thompson, Chirivi, Watts and Contreras.)
- Published
- 2022
- Full Text
- View/download PDF
12. Focus on the road to modelling cardiomyopathy in muscular dystrophy.
- Author
-
Canonico F, Chirivi M, Maiullari F, Milan M, Rizzi R, Arcudi A, Galli M, Pane M, Gowran A, Pompilio G, Mercuri E, Crea F, Bearzi C, and D'Amario D
- Subjects
- Animals, Dystrophin genetics, Dystrophin metabolism, Heart, Cardiomyopathies genetics, Cardiomyopathies therapy, Induced Pluripotent Stem Cells metabolism, Muscular Dystrophy, Duchenne genetics
- Abstract
Alterations in the DMD gene, which codes for the protein dystrophin, cause forms of dystrophinopathies such as Duchenne muscular dystrophy, an X-linked disease. Cardiomyopathy linked to DMD mutations is becoming the leading cause of death in patients with dystrophinopathy. Since phenotypic pathophysiological mechanisms are not fully understood, the improvement and development of new disease models, considering their relative advantages and disadvantages, is essential. The application of genetic engineering approaches on induced pluripotent stem cells, such as gene-editing technology, enables the development of physiologically relevant human cell models for in vitro dystrophinopathy studies. The combination of induced pluripotent stem cells-derived cardiovascular cell types and 3D bioprinting technologies hold great promise for the study of dystrophin-linked cardiomyopathy. This combined approach enables the assessment of responses to physical or chemical stimuli, and the influence of pharmaceutical approaches. The critical objective of in vitro microphysiological systems is to more accurately reproduce the microenvironment observed in vivo. Ground-breaking methodology involving the connection of multiple microphysiological systems comprised of different tissues would represent a move toward precision body-on-chip disease modelling could lead to a critical expansion in what is known about inter-organ responses to disease and novel therapies that have the potential to replace animal models. In this review, we will focus on the generation, development, and application of current cellular, animal, and potential for bio-printed models, in the study of the pathophysiological mechanisms underlying dystrophin-linked cardiomyopathy in the direction of personalized medicine., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
13. Transcriptome dataset of omental and subcutaneous adipose tissues from gestational diabetes patients.
- Author
-
Salcedo-Tacuma D, Bonilla L, Montes MCG, Gonzalez JEN, Gutierrez SMS, Chirivi M, and Contreras GA
- Subjects
- Adipose Tissue metabolism, Female, Humans, Pregnancy, Pregnancy Outcome, RNA, Diabetes, Gestational genetics, Diabetes, Gestational metabolism, Transcriptome
- Abstract
Gestational diabetes (GD) is one of the most prevalent metabolic diseases in pregnant women worldwide. GD is a risk factor for adverse pregnancy outcomes, including macrosomia and preeclampsia. Given the multifactorial etiology and the complexity of its pathogenesis, GD requires advanced omics analyses to expand our understanding of the disease. Next generation RNA sequencing (RNA-seq) was used to evaluate the transcriptomic profile of subcutaneous and omental adipose tissues (AT) collected from patients with gestational diabetes and matched controls. Samples were harvested during cesarean delivery. Results show differences based on anatomical location and provide whole-transcriptome data for further exploration of gene expression patterns unique to GD patients., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. Lipopolysaccharide induces lipolysis and insulin resistance in adipose tissue from dairy cows.
- Author
-
Chirivi M, Rendon CJ, Myers MN, Prom CM, Roy S, Sen A, Lock AL, and Contreras GA
- Subjects
- Adipose Tissue metabolism, Animals, Cattle, Female, Lipolysis, Lipopolysaccharides metabolism, Sterol Esterase metabolism, Cattle Diseases metabolism, Insulin Resistance
- Abstract
Intense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia-common during periparturient diseases such as mastitis, metritis, and pneumonia-but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis. Around parturition, the rate of lipolysis surpasses that of lipogenesis, leading to enhanced free fatty acid release into the circulation. We hypothesized that exposure to endotoxin (ET) increases AT lipolysis by activation of classic and inflammatory lipolytic pathways and reduction of insulin sensitivity. In experiment 1, subcutaneous AT (SCAT) explants were collected from periparturient (n = 12) Holstein cows at 11 ± 3.6 d (mean ± SE) before calving, and 6 ± 1 d and 13 ± 1.4 d after parturition. Explants were treated with the endotoxin lipopolysaccharide (LPS; 20 µg/mL; basal = 0 µg/mL) for 3 h. The effect of LPS on lipolysis was assessed in the presence of the β-adrenergic agonist and promoter of lipolysis isoproterenol (ISO; 1 µM; LPS+ISO). In experiment 2, SCAT explants were harvested from 24 nonlactating, nongestating multiparous Holstein dairy cows and exposed to the same treatments as in experiment 1 for 3 and 7 h. The effect of LPS on the antilipolytic responses induced by insulin (INS = 1 µL/L, LPS+INS) was established during ISO stimulation [ISO+INS, LPS+ISO+INS]. The characterization of lipolysis included the quantification of glycerol release and the assessment of markers of lipase activity [adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and phosphorylated HSL Ser563 (pHSL)], and insulin pathway activation (AKT, pAKT) using capillary electrophoresis. Inflammatory gene networks were evaluated by real-time quantitative PCR. In periparturient cows, LPS increased AT lipolysis by 67 ± 12% at 3 h across all time points compared with basal. In nonlactating cows, LPS was an effective lipolytic agent at 3 h and 7 h, increasing glycerol release by 115 ± 18% and 68.7 ± 16%, respectively, relative to basal. In experiment 2, LPS enhanced ATGL activity with minimal HSL activation at 3 h. In contrast, at 7 h, LPS increased HSL phosphorylation (i.e., HSL activity) by 123 ± 11%. The LPS-induced HSL lipolytic activity at 7 h coincided with the activation of the MEK/ERK inflammatory pathway. In experiment 2, INS reduced the lipolytic effect of ISO (ISO+INS: -63 ± 18%) and LPS (LPS+INS: -45.2 ± 18%) at 3 h. However, the antilipolytic effect of INS was lost in the presence of LPS at 7 h (LPS+INS: -16.3 ± 16%) and LPS+ISO+INS at 3 and 7 h (-3.84 ± 23.6% and -21.2 ± 14.6%). Accordingly, LPS reduced pAKT:AKT (0.11 ± 0.07) compared with basal (0.18 ± 0.05) at 7 h. Our results indicated that exposure to LPS activated the classic and inflammatory lipolytic pathways and reduced insulin sensitivity in SCAT. These data provide evidence that during endotoxemia, dairy cows may be more susceptible to lipolysis dysregulation and loss of adipocyte sensitivity to the antilipolytic action of insulin., (© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2022
- Full Text
- View/download PDF
15. A scalable, clinically severe pig model for Duchenne muscular dystrophy.
- Author
-
Stirm M, Fonteyne LM, Shashikadze B, Lindner M, Chirivi M, Lange A, Kaufhold C, Mayer C, Medugorac I, Kessler B, Kurome M, Zakhartchenko V, Hinrichs A, Kemter E, Krause S, Wanke R, Arnold GJ, Wess G, Nagashima H, Hrabĕ de Angelis M, Flenkenthaler F, Kobelke LA, Bearzi C, Rizzi R, Bähr A, Reese S, Matiasek K, Walter MC, Kupatt C, Ziegler S, Bartenstein P, Fröhlich T, Klymiuk N, Blutke A, and Wolf E
- Subjects
- Animals, Female, Humans, Male, Muscle, Skeletal pathology, Stroke Volume, Swine, Ventricular Function, Left, Cardiomyopathies pathology, Muscular Dystrophy, Duchenne pathology
- Abstract
Large-animal models for Duchenne muscular dystrophy (DMD) are crucial for the evaluation of diagnostic procedures and treatment strategies. Pigs cloned from male cells lacking DMD exon 52 (DMDΔ52) exhibit molecular, clinical and pathological hallmarks of DMD, but die before sexual maturity and cannot be propagated by breeding. Therefore, we generated female DMD+/- carriers. A single founder animal had 11 litters with 29 DMDY/-, 34 DMD+/- as well as 36 male and 29 female wild-type offspring. Breeding with F1 and F2 DMD+/- carriers resulted in an additional 114 DMDY/- piglets. With intensive neonatal management, the majority survived for 3-4 months, providing statistically relevant cohorts for experimental studies. Pathological investigations and proteome studies of skeletal muscles and myocardium confirmed the resemblance to human disease mechanisms. Importantly, DMDY/- pigs displayed progressive myocardial fibrosis and increased expression of connexin-43, associated with significantly reduced left ventricular ejection fraction, at 3 months. Furthermore, behavioral tests provided evidence for impaired cognitive ability. Our breeding cohort of DMDΔ52 pigs and standardized tissue repositories provide important resources for studying DMD disease mechanisms and for testing novel treatment strategies., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2021. Published by The Company of Biologists Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
16. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus).
- Author
-
Salcedo-Tacuma D, Parales-Giron J, Prom C, Chirivi M, Laguna J, Lock AL, and Contreras GA
- Subjects
- Adipose Tissue metabolism, Animals, Cattle, Diet, Energy Metabolism genetics, Female, Inflammation genetics, Inflammation metabolism, Lactation, Parturition, Pregnancy, Lipid Metabolism genetics, Transcriptome
- Abstract
Background: Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the negative energy balance induced by physiological changes related to parturition and the onset of lactation. However, lipolysis causes inflammation and structural remodeling in AT that in excess predisposes cows to disease. The objective of this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq., Results: Subcutaneous AT samples were collected from Holstein cows (n = 12) at 11 ± 3.6 d before calving date (PreP) and at 6 ± 1d (PP1) and 13 ± 1.4d (PP2) after parturition. Differential expression analyses showed 1946 and 1524 DEG at PP1 and PP2, respectively, compared to PreP. Functional Enrichment Analysis revealed functions grouped in categories such as lipid metabolism, molecular transport, energy production, inflammation, and free radical scavenging to be affected by parturition and the onset of lactation (FDR < 0.05). Inflammation related genes such as TLR4 and IL6 were categorized as upstream lipolysis triggers. In contrast, FASN, ELOVL6, ACLS1, and THRSP were identified as upstream inhibitors of lipid synthesis. Complement (C3), CXCL2, and HMOX1 were defined as links between inflammatory pathways and those involved in the generation of reactive oxygen species., Conclusions: Results offer a comprehensive characterization of gene expression dynamics in periparturient AT, identify upstream regulators of AT function, and demonstrate complex interactions between lipid mobilization, inflammation, extracellular matrix remodeling, and redox signaling in the adipose organ.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.