1. Significance of hepatitis B virus capsid dephosphorylation via polymerase
- Author
-
Chih-Hsu Chang and Chiaho Shih
- Subjects
Hepatitis B virus (HBV) ,HBV core protein (HBc) ,Capsids dephosphorylation (de-P) ,Phosphatase ,Polymerase (pol) ,RNase H domain ,Medicine - Abstract
Abstract Background It is generally believed that hepatitis B virus (HBV) core protein (HBc) dephosphorylation (de-P) is important for viral DNA synthesis and virion secretion. HBV polymerase contains four domains for terminal protein, spacer, reverse transcriptase, and RNase H activities. Methods HBV Polymerase mutants were transfected into HuH-7 cells and assayed for replication and HBc de-P by the Phos-tag gel analysis. Infection assay was performed by using a HepG2-NTCP-AS2 cell line. Results Here, we show that a novel phosphatase activity responsible for HBc de-P can be mapped to the C-terminal domain of the polymerase overlapping with the RNase H domain. Surprisingly, while HBc de-P is crucial for viral infectivity, it is essential for neither viral DNA synthesis nor virion secretion. The potential origin, significance, and mechanism of this polymerase-associated phosphatase activity are discussed in the context of an electrostatic homeostasis model. The Phos-tag gel analysis revealed an intriguing pattern of “bipolar distribution” of phosphorylated HBc and a de-P HBc doublet. Conclusions It remains unknown if such a polymerase-associated phosphatase activity can be found in other related biosystems. This polymerase-associated phosphatase activity could be a druggable target in clinical therapy for hepatitis B.
- Published
- 2024
- Full Text
- View/download PDF