Kevin W. Lyu, Wen-Chi Lee, Chi-Lun Feng, Chi-Chen Lin, Yi-Wen Lo, Li-Hsun Lin, Dai-Ying Lin, Ren-Yu Hu, Shine-Bei Wu, Jo-Fan Chang, Szu-Ting Lin, Hsiu-Chuan Chou, Eugenie Wong Soon May, Eric Hung, and Hong-Lin Chan
Drug resistance is a frequent cause of failure in cancer chemotherapy treatments. In this study, a pair of uterine sarcoma cancer lines, MES-SA, and doxorubicin-resistant partners, MES-SA/DxR-2μM cells and MES-SA/DxR-8μM cells, as a model system to investigate resistance-dependent proteome alterations and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to perform this research and the results revealed that doxorubicin-resistance altered the expression of 208 proteins in which 129 identified proteins showed dose-dependent manners in response to the levels of resistance. Further studies have used RNA interference, H2A.X phosphorylation assay, cell viability analysis, and analysis of apoptosis against reticulocalbin-1 (RCN1) proteins, to prove its potency on the formation of doxorubicin resistance as well as the attenuation of doxorubicin-associated DNA double strand breakage. To sum up, our results provide useful diagnostic markers and therapeutic candidates such as RCN1 for the treatment of doxorubicin-resistant uterine cancer.