1. EZH2 inhibition or genetic ablation suppresses cyst growth in autosomal dominant polycystic kidney disease
- Author
-
Jiayi Lv, Bingxue Lan, Lili Fu, Chaoran He, Wei Zhou, Xi Wang, Chenchen Zhou, Zhiguo Mao, Yupeng Chen, Changlin Mei, and Cheng Xue
- Subjects
Polycystic kidney disease ,Autosomal dominant ,Epigenetics ,Enhancer of zeste homolog 2 ,Ferroptosis ,p21 ,Medicine - Abstract
Abstract Background Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent genetic disorder characterized by the formation of renal cysts leading to kidney failure. Despite known genetic underpinnings, the variability in disease progression suggests additional regulatory layers, including epigenetic modifications. Methods We utilized various ADPKD models, including Pkd1 and Ezh2 conditional knockout (Pkd1 delta/delta :Ezh2 delta/delta) mice, to explore the role of Enhancer of Zeste Homolog 2 (EZH2) in cystogenesis. Pharmacological inhibition of EZH2 was performed using GSK126 or EPZ-6438 across multiple models. Results EZH2 expression was significantly upregulated in Pkd1 −/− cells, Pkd1 delta/delta mice, and human ADPKD kidneys. EZH2 inhibition attenuates cyst development in MDCK cells and a mouse embryonic kidney cyst model. Both Ezh2 conditional knockout and GSK126 treatment suppressed renal cyst growth and protected renal function in Pkd1 delta/delta mice. Mechanistically, cAMP/PKA/CREB pathway increased EZH2 expression. EZH2 mediated cystogenesis by enhancing methylation and activation of STAT3, promoting cell cycle through p21 suppression, and stimulating non-phosphorylated β-catenin in Wnt signaling pathway. Additionally, EZH2 enhanced ferroptosis by inhibiting SLC7A11 and GPX4 in ADPKD. Conclusion Our findings elucidate the pivotal role of EZH2 in promoting renal cyst growth through epigenetic mechanisms and suggest that EZH2 inhibition or ablation may serve as a novel therapeutic approach for managing ADPKD.
- Published
- 2024
- Full Text
- View/download PDF