1. Spectral Energy Distribution Modeling of Broad Emission Line Quasars: From X-ray to Radio Wavelengths
- Author
-
Chakraborty, Avinanda, Kundu, Maitreya, Chatterjee, Suchetana, Panda, Swayamtrupta, Sar, Arijit, Jaison, Sandra, and Chatterjee, Ritaban
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the differences in physical properties of quasar-host galaxies using an optically selected sample of radio loud (RL) and radio quiet (RQ) quasars (in the redshift range 0.15 < z < 1.9) which we have further cross-matched with the VLA-FIRST survey catalog. The sources in our sample have broad Hbeta and MgII emission lines (1000 km/s < FWHM < 15000 km/s) with a subsample of high broad line quasars (FWHM > 15000 km/s). We construct the broadband spectral energy distribution (SED) of our broad line quasars using multi-wavelength archival data and targeted observations with the AstroSat telescope. We use the state-of-the-art SED modeling code CIGALE v2022.0 to model the SEDs and determine the best-fit physical parameters of the quasar host galaxies namely their star-formation rate (SFR), main-sequence stellar mass, luminosity absorbed by dust, e-folding time and stellar population age. We find that the emission from the host galaxy of our sources is between 20%-35% of the total luminosity, as they are mostly dominated by the central quasars. Using the best-fit estimates, we reconstruct the optical spectra of our quasars which show remarkable agreement in reproducing the observed SDSS spectra of the same sources. We plot the main-sequence relation for our quasars and note that they are significantly away from the main sequence of star-forming galaxies. Further, the main sequence relation shows a bimodality for our RL quasars indicating populations segregated by Eddington ratios. We conclude that RL quasars in our sample with lower Eddington ratios tend to have substantially lower star-formation rates for similar stellar mass. Our analyses, thus, provide a completely independent route in studying the host galaxies of quasars and addressing the radio dichotomy problem from the host galaxy perspective., Comment: Accepted in Astronomy & Astrophysics journal
- Published
- 2024