1. Vascular Tissue Engineering Using Scaffold-Free Prevascular Endothelial–Fibroblast Constructs
- Author
-
Stephen A. Fann, Sarah Grace Dennis, Heather Bainbridge, Sanket Pattanaik, Chase A. Arbra, and Michael J. Yost
- Subjects
Scaffold ,Angiogenesis ,0206 medical engineering ,lcsh:Medicine ,02 engineering and technology ,General Biochemistry, Genetics and Molecular Biology ,angiogenesis ,03 medical and health sciences ,blood vessel ,In vivo ,medicine ,Original Research Article ,prevascular ,Fibroblast ,lcsh:QH301-705.5 ,coculture models ,Engineered tissue ,030304 developmental biology ,0303 health sciences ,scaffold-free tissue engineering ,Chemistry ,lcsh:R ,020601 biomedical engineering ,endothelial cells ,Cell biology ,medicine.anatomical_structure ,lcsh:Biology (General) ,in vivo vascularization ,Vascular tissue engineering ,Blood vessel - Abstract
Vascularization remains a substantial limitation to the viability of engineered tissue. By comparing in vivo vascularization dynamics of a self-assembled prevascular endothelial–fibroblast model to avascular grafts, we explore the vascularization rate limitations in implants at early time intervals, during which tissue hypoxia begins to affect cell viability. Scaffold-free prevascular endothelial–fibroblast constructs (SPECs) may serve as a modular and reshapable vascular bed in replacement tissues. SPECs, fibroblast-only spheroids (FOS), and silicone implants were implanted in 54 Sprague Dawley rats and harvested at 6, 12, and 24 h (n = 5 per time point and implant type). We hypothesized that the primary endothelial networks of the SPECs allow earlier anastomosis and increased vessel formation in the interior of the implant compared to FOS and silicone implants within a 24 h window. All constructs were encapsulated by an endothelial lining at 6 h postimplantation and SPEC internal cords inosculated with the host vascular network by this time point. SPECs had a significantly higher microvascular area fraction and branch/junction density of penetrating cords at 6–12 h compared with other constructs. In addition, SPECs demonstrated perivascular cell recruitment, lumen formation, and network remodeling consistent with vessel maturation at 12–24 h; however, these implants were poorly perfused within our observation window, suggesting poor lumen patency. FOS vascular characteristics (microvessel area and penetrating cord density) increased within the 12–24 h period to represent those of the SPEC implants, suggesting a 12 h latency in host response to avascular grafts compared to prevascular grafts. Knowledge of this temporal advantage in in vitro prevascular network self-assembly as well as an understanding of the current limitations of SPEC engraftment builds on our theoretical temporal model of tissue graft vascularization and suggests a crucial time window, during which technological improvements and vascular therapy can improve engineered tissue survival.
- Published
- 2019
- Full Text
- View/download PDF