1. Delamination Detection in Layered Waveguides using Ostrovsky Wave Packets
- Author
-
Tamber, J. S., Chappell, D. J., and Tranter, M. R.
- Subjects
Nonlinear Sciences - Pattern Formation and Solitons - Abstract
We examine the scattering of Ostrovsky wave packets, generated from an incident solitary wave, in a two layered waveguide with a delamination in the centre and soft (imperfect) bonding either side of the centre. The layers of the waveguide are assumed to consist of different materials, and the strains are described by a system of coupled Boussinesq equations. A semi-analytical approach consisting of matched asymptotic multiple-scale expansions is applied, leading to Ostrovsky equations in soft bonded regions and Korteweg-de Vries equations in the delaminated region. This semi-analytical method has good agreement with direct numerical simulations, validating the approach. In the delaminated regions, Ostrovsky wave packets evolve into a train of solitary waves, which subsequently evolve into Ostrovsky wave packets in the second bonded region. Analysis of the phase shift in the wave packet, introduced from the delaminated region, allows us to predict both the position and the length of the delamination; the first time this has been achieved using nonlinear waves. These results motivate experiments to validate the theoretical results, with the aim of creating a tool to monitor the integrity of layered structures., Comment: 9 pages, 7 figures
- Published
- 2024