96 results on '"Chandra"'
Search Results
2. Comparing Jupiter's Equatorial X‐Ray Emissions With Solar X‐Ray Flux Over 19 Years of the Chandra Mission.
- Author
-
McEntee, S. C., Jackman, C. M., Weigt, D. M., Dunn, W. R., Kashyap, V., Kraft, R., Louis, C. K., Branduardi‐Raymont, G., Gladstone, G. R., and Gallagher, P. T.
- Subjects
ATMOSPHERE of Jupiter ,MAGNETIC flux density ,X-rays ,JUPITER (Planet) ,VORONOI polygons ,PHOTON counting ,X-ray scattering - Abstract
We present a statistical study of Jupiter's disk X‐ray emissions using 19 years of Chandra X‐Ray Observatory (CXO) observations. Previous work has suggested that these emissions are consistent with solar X‐rays elastically scattered from Jupiter's upper atmosphere. We showcase a new pulse invariant (PI) filtering method that minimizes instrumental effects which may produce unphysical trends in photon counts across the nearly two‐decade span of the observations. We compare the CXO results with solar X‐ray flux data from the Geostationary Operational Environmental Satellites X‐ray Sensor for the wavelength band 1–8 Å (long channel), to quantify the correlation between solar activity and Jovian disk counts. We find a statistically significant Pearson's Correlation Coefficient of 0.9, which confirms that emitted Jovian disk X‐rays are predominantly governed by solar activity. We also utilize the high spatial resolution of the High Resolution Camera Instrument on‐board the CXO to map the disk photons to their positions on Jupiter's surface. Voronoi tessellation diagrams were constructed with the Juno Reference Model through Perijove 9 internal field model overlaid to identify any spatial preference of equatorial photons. After accounting for area and scattering across the curved surface of the planet, we find a preference of Jovian disk emission at 2–3.5 Gauss surface magnetic field strength. This suggests that a portion of the disk X‐rays may be linked to processes other than solar scattering: the spatial preference associated with magnetic field strength may imply increased precipitation from the radiation belts, as previously postulated. Plain Language Summary: The X‐ray radiation that Jupiter emits from the region around the equator, or disk region, behaves differently to the auroral X‐ray emissions (northern and southern lights). It has long been believed that these emissions are mainly caused by solar X‐rays that reflect off of the planet's upper atmosphere, lighting up the disk. These high‐energy X‐ray emissions can be observed by the Earth‐orbiting Chandra X‐ray Observatory (CXO). There have been multiple X‐ray campaigns of Jupiter using Chandra from 2000 to 2019. Here, we compare this data with solar X‐ray data from the Geostationary Operational Environmental Satellites and identify a strong link between the disk X‐ray emissions and solar activity. The High Resolution Camera on‐board the CXO also enables us to pinpoint the location of these emissions, which we incorporate with magnetic field data from NASA's Juno to provide a more complete picture of the conditions at Jupiter's upper atmosphere. Key Points: We present a statistical study of Jovian disk X‐rays from 19 years worth of Chandra data showing a strong correlation with solar X‐ray fluxJovian disk emissions are predominantly governed by solar activity. Pearson's Correlation Coefficient of 0.9 found between the dataAnalysis of spatial morphology of the disk emissions reveals preference of disk emission at 2–3.5 Gauss magnetic field strength [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Paeonia officinalis L.; Paeonia emodi Royle (Paeoniaceae)
- Author
-
Akbar, Shahid and Akbar, Shahid
- Published
- 2020
- Full Text
- View/download PDF
4. X-ray Data Analysis to Search for Magnetar Candidates in the Galactic Plane
- Author
-
Woochan Park and Hongjun An
- Subjects
magnetar ,Chandra ,Astronomy ,QB1-991 - Abstract
We report on our Galactic plane searches for magnetars in the archival Chandra X-ray Observatory (CXO) data. We summarize the properties of known magnetars and use them to establish a procedure for magnetar searches. The procedure includes four steps: source finding, spectral characterization, optical counterpart checks, and period searches. We searched 1,282 archival CXO observations, found 32,838 X-ray sources, and selected 25 intriguing candidates using the developed procedure. Although we do not firmly identify a magnetar among them, we significantly reduced the number of targets in future magnetar searches to be done with better X-ray telescopes.
- Published
- 2018
- Full Text
- View/download PDF
5. Deep learning-based super-resolution and de-noising for XMM-newton images
- Author
-
Sam F Sweere, Ivan Valtchanov, Maggie Lieu, Antonia Vojtekova, Eva Verdugo, Maria Santos-Lleo, Florian Pacaud, Alexia Briassouli, Daniel Cámpora Pérez, RS: FSE DACS, and Dept. of Advanced Computing Sciences
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,ILLUSTRISTNG SIMULATIONS ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,techniques: high angular resolution ,Astronomy and Astrophysics ,techniques: image processing ,X-rays: general ,DECONVOLUTION ,CHANDRA ,Space and Planetary Science ,Computer Science::Computer Vision and Pattern Recognition ,SIMILARITY ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,CLUSTERS ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,PHOTON IMAGING CAMERA - Abstract
The field of artificial intelligence based image enhancement has been rapidly evolving over the last few years and is able to produce impressive results on non-astronomical images. In this work, we present the first application of Machine Learning based super-resolution (SR) and de-noising (DN) to enhance X-ray images from the European Space Agency’s XMM-Newton telescope. Using XMM-Newton images in band [0.5, 2] keV from the European Photon Imaging Camera pn detector (EPIC-pn), we develop XMM-SuperRes and XMM-DeNoise – deep learning-based models that can generate enhanced SR and DN images from real observations. The models are trained on realistic XMM-Newton simulations such that XMM-SuperRes will output images with two times smaller point-spread function and with improved noise characteristics. The XMM-DeNoise model is trained to produce images with 2.5× the input exposure time from 20 to 50 ks. When tested on real images, DN improves the image quality by 8.2 per cent, as quantified by the global peak-signal-to-noise ratio. These enhanced images allow identification of features that are otherwise hard or impossible to perceive in the original or in filtered/smoothed images with traditional methods. We demonstrate the feasibility of using our deep learning models to enhance XMM-Newton X-ray images to increase their scientific value in a way that could benefit the legacy of the XMM-Newton archive.
- Published
- 2022
6. The galaxy cluster 'Pypeline' for X-ray temperature maps: ClusterPyXT.
- Author
-
Alden, B., Hallman, E.J., Rapetti, D., Burns, J.O., and Datta, A.
- Subjects
GALAXY clusters ,SHOCK waves ,X-rays ,PHYSICS ,X-ray scattering - Abstract
ClusterPyXT is a new software pipeline to generate spectral temperature, X-ray surface brightness, pressure, and density maps from X-ray observations of galaxy clusters. These data products help to elucidate the physics of processes occurring within clusters of galaxies, including turbulence, shock fronts, nonthermal phenomena, and the overall dynamics of cluster mergers. ClusterPyXT automates the creation of these data products with minimal user interaction, and allows for rapid analyses of archival data with user defined parameters and the ability to straightforwardly incorporate additional observations. In this paper, we describe in detail the use of this code and release it as an open source Python project on GitHub. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
7. Searches for continuous gravitational waves from young supernova remnants in the early third observing run of advanced LIGO and Virgo
- Author
-
Abbott R.a, Abbott T.D.b, Abraham S.c, Acernese F.d, e, Ackley K.f, Adams A.g, Adams C.h, Adhikari R.X.a, Adya V.B.i, Affeldt C.j, k, Agarwal D.c, Agathos M.l, m, Agatsuma K.n, Aggarwal N.o, Aguiar O.D.p, Aiello L.q, r, s, Ain A.t, u, Ajith P.v, Akutsu T.w, x, Aleman K.M.y, Allen G.z, Allocca A.e, Altin P.A.i, Amato A.ab, Anand S.a, Ananyeva A.a, Anderson S.B.a, Anderson W.G.ac, Ando M.ad, Angelova S.V.af, Ansoldi S.ag, Antelis J.M.ai, Antier S.aj, Appert S.a, Arai K.ak, Arai K.a, Arai Y.ak, Araki S.al, Araya A.am, Araya M.C.a, Areeda J.S.y, Arène M.aj, Aritomi N.ad, Arnaud N.an, Aronson S.M.ap, Arun K.G.aq, Asada H.ar, Asali Y.as, Ashton G.f, Aso Y.at, Aston S.M.h, Astone P.av, Aubin F.aw, Aufmuth P.j, AultONeal K.ai, Austin C.b, Babak S.aj, Badaracco F.r, Bader M.K.M.ax, Bae S.ay, Bae Y.az, Baer A.M.g, Bagnasco S.ba, Bai Y.a, Baiotti L.bb, Baird J.aj, Bajpai R.bc, Ball M.bd, Ballardin G.ao, Ballmer S.W.be, Bals M.ai, Balsamo A.g, Baltus G.bf, Banagiri S.bg, Bankar D.c, Bankar R.S.c, Barayoga J.C.a, Barbieri C.bh, Barish B.C.a, Barker D.bk, Barneo P.bl, Barone F.e, Barr B.bn, Barsotti L.bo, Barsuglia M.aj, Barta D.bp, Bartlett J.bk, Barton M.A.w, Bartos I.ap, Bassiri R.bq, Basti A.t, Bawaj M.br, Bayley J.C.bn, Baylor A.C.ac, Bazzan M.bt, Bécsy B.bv, Bedakihale V.M.bw, Bejger M.bx, Belahcene I.an, Benedetto V.by, Beniwal D.bz, Benjamin M.G.ai, Bennett T.F.ca, Bentley J.D.n, BenYaala M.af, Bergamin F.j, Berger B.K.bq, Bernuzzi S.m, Bersanetti D.cb, Bertolini A.ax, Betzwieser J.h, Bhandare R.cc, Bhandari A.V.c, Bhattacharjee D.cd, Bhaumik S.ap, Bidler J.y, Bilenko I.A.ce, Billingsley G.a, Birney R.cf, Birnholtz O.cg, Biscans S.a, Bischi M.ch, Biscoveanu S.bo, Bisht A.j, Biswas B.c, Bitossi M.t, Bizouard M.-A.cj, Blackburn J.K.a, Blackman J.ck, Blair C.D.h, Blair D.G.cl, Blair R.M.bk, Bobba F.cm, Bode N.j, Boer M.cj, Bogaert G.cj, Boldrini M.av, Bondu F.cp, Bonilla E.bq, Bonnand R.aw, Booker P.j, Boom B.A.ax, Bork R.a, Boschi V.t, Bose N.cq, Bose S.c, Bossilkov V.cl, Boudart V.bf, Bouffanais Y.bt, Bozzi A.ao, Bradaschia C.t, Brady P.R.ac, Bramley A.h, Branch A.h, Branchesi M.r, Brau J.E.bd, Breschi M.m, Briant T.cr, Briggs J.H.bn, Brillet A.cj, Brinkmann M.j, Brockill P.ac, Brooks A.F.a, Brooks J.ao, Brown D.D.bz, Brunett S.a, Bruno G.cs, Bruntz R.g, Bryant J.n, Buikema A.bo, Bulik T.ct, Bulten H.J.ax, Buonanno A.cv, Buscicchio R.n, Buskulic D.aw, Byer R.L.bq, Cadonati L.cx, Caesar M.cy, Cagnoli G.ab, Cahillane C.a, Cain H.W., IIIb, Bustillo J.C.cz, Callaghan J.D.bn, Callister T.A.da, Calloni E.e, Camp J.B.dc, Canepa M.cb, Cannavacciuolo M.cm, Cannon K.C.ae, Cao H.bz, Cao J.de, Cao Z.df, Capocasa E.w, Capote E.y, Carapella G.cm, Carbognani F.ao, Carlin J.B.dg, Carney M.F.o, Carpinelli M.dh, Carullo G.t, Carver T.L.q, Diaz J.C.ao, Casentini C.dj, Castaldi G.dl, Caudill S.ax, Cavaglià M.cd, Cavalier F.an, Cavalieri R.ao, Cella G.t, Cerdá-Durán P.do, Cesarini E.dk, Chaibi W.cj, Chakravarti K.c, Champion B.dp, Chan C.-H.dq, Chan C.ae, Chan C.L.cz, Chan M.dr, Chandra K.cq, Chanial P.ao, Chao S.dq, Charlton P.ds, Chase E.A.o, Chassande-Mottin E.aj, Chatterjee D.ac, Chaturvedi M.cc, Chen A.cz, Chen C.dt, Chen H.Y.dv, Chen J.dq, Chen K.dw, Chen X.cl, Chen Y.-B.ck, Chen Y.-R.du, Chen Z.q, Cheng H.ap, Cheong C.K.cz, Cheung H.Y.cz, Chia H.Y.ap, Chiadini F.cn, Chiang C.-Y.dy, Chierici R.dz, Chincarini A.cb, Chiofalo M.L.t, Chiummo A.ao, Cho G.ea, Cho H.S.eb, Choate S.cy, Choudhary R.K.cl, Choudhary S.c, Christensen N.cj, Chu H.dw, Chu Q.cl, Chu Y.-K.dy, Chua S.cr, Chung K.W.ec, Ciani G.bt, Ciecielag P.bx, Cie?lar M.bx, Cifaldi M.dj, Ciobanu A.A.bz, Ciolfi R.bu, Cipriano F.cj, Cirone A.cb, Clara F.bk, Clark E.N.ee, Clark J.A.cx, Clarke L.ef, Clearwater P.dg, Clesse S.eg, Cleva F.cj, Coccia E.r, Cohadon P.-F.cr, Cohen D.E.an, Cohen L.b, Colleoni M.eh, Collette C.G.ei, Colpi M.bh, Compton C.M.bk, Constancio M., Jr.p, Conti L.bu, Cooper S.J.n, Corban P.h, Corbitt T.R.b, Cordero-Carrión I.ej, Corezzi S.br, Corley K.R.as, Cornish N.bv, Corre D.an, Corsi A.ek, Cortese S.ao, Costa C.A.p, Cotesta R.cw, Coughlin M.W.bg, Coughlin S.B.o, q, Coulon J.-P.cj, Countryman S.T.as, Cousins B.el, Couvares P.a, Covas P.B.eh, Coward D.M.cl, Cowart M.J.h, Coyne D.C.a, Coyne R.em, Creighton J.D.E.ac, Creighton T.D.en, Criswell A.W.bg, Croquette M.cr, Crowder S.G.eo, Cudell J.R.bf, Cullen T.J.b, Cumming A.bn, Cummings R.bn, Cuoco E.t, Cury?o M.ct, Dal Canton T.an, Dálya G.eq, Dana A.bq, DaneshgaranBajastani L.M.ca, D'Angelo B.cb, Danilishin S.L.er, D'Antonio S.dk, Danzmann K.j, Darsow-Fromm C.es, Dasgupta A.bw, Datrier L.E.H.bn, Dattilo V.ao, Dave I.cc, Davier M.an, Davies G.S.et, Davis D.a, Daw E.J.ev, Dean R.cy, DeBra D.bq, Deenadayalan M.c, Degallaix J.ew, De Laurentis M.e, Deléglise S.cr, Del Favero V.dp, De Lillo F.cs, De Lillo N.bn, Del Pozzo W.t, DeMarchi L.M.o, De Matteis F.dj, D'Emilio V.q, Demos N.bo, Dent T.et, Depasse A.cs, De Pietri R.ex, De Rosa R.e, De Rossi C.ao, DeSalvo R.dl, De Simone R.dx, Dhurandhar S.c, Díaz M.C.en, Diaz-Ortiz M., Jr.ap, Didio N.A.be, Dietrich T.cw, Di Fiore L.e, Di Fronzo C.n, Di Giorgio C.cm, Di Giovanni F.do, Di Girolamo T.e, Di Lieto A.t, Ding B.ei, Di Pace S.av, Di Palma I.av, Di Renzo F.t, Divakarla A.K.ap, Dmitriev A.n, Doctor Z.bd, D'Onofrio L.e, Donovan F.bo, Dooley K.L.q, Doravari S.c, Dorrington I.q, Drago M.r, Driggers J.C.bk, Drori Y.a, Du Z.de, Ducoin J.-G.an, Dupej P.bn, Durante O.cm, D'Urso D.dh, Duverne P.-A.an, Dwyer S.E.bk, Easter P.J.f, Ebersold M.ez, Eddolls G.bn, Edelman B.bd, Edo T.B.a, Edy O.eu, Effler A.h, Eguchi S.dr, Eichholz J.i, Eikenberry S.S.ap, Eisenmann M.aw, Eisenstein R.A.bo, Ejlli A.q, Enomoto Y.ad, Errico L.e, Essick R.C.dv, Estellés H.eh, Estevez D.fa, Etienne Z.fb, Etzel T.a, Evans M.bo, Evans T.M.h, Ewing B.E.el, Fafone V.r, Fair H.be, Fairhurst S.q, Fan X.de, Farah A.M.dv, Farinon S.cb, Farr B.bd, Farr W.M.da, Farrow N.W.f, Fauchon-Jones E.J.q, Favata M.fc, Fays M.bf, Fazio M.fd, Feicht J.a, Fejer M.M.bq, Feng F.aj, Fenyvesi E.bp, Ferguson D.L.cx, Fernandez-Galiana A.bo, Ferrante I.t, Ferreira T.A.p, Fidecaro F.t, Figura P.ct, Fiori I.ao, Fishbach M.o, Fisher R.P.g, Fittipaldi R.cn, Fiumara V.cn, Flaminio R.w, Floden E.bg, Flynn E.y, Fong H.ae, Font J.A.do, Fornal B.fi, Forsyth P.W.F.i, Franke A.es, Frasca S.av, Frasconi F.t, Frederick C.fj, Frei Z.eq, Freise A.fk, Frey R.bd, Fritschel P.bo, Frolov V.V.h, Fronzé G.G.ba, Fujii Y.fl, Fujikawa Y.fm, Fukunaga M.ak, Fukushima M.x, Fulda P.ap, Fyffe M.h, Gabbard H.A.bn, Gadre B.U.cw, Gaebel S.M.n, Gair J.R.cw, Gais J.cz, Galaudage S.f, Gamba R.m, Ganapathy D.bo, Ganguly A.v, Gao D.fn, Gaonkar S.G.c, Garaventa B.cb, García-Núñez C.cf, García-Quirós C.eh, Garufi F.e, Gateley B.bk, Gaudio S.ai, Gayathri V.ap, Ge G.fn, Gemme G.cb, Gennai A.t, George J.cc, Gergely L.fo, Gewecke P.es, Ghonge S.cx, Ghosh A.cw, Ghosh A.fp, Ghosh S.ac, Ghosh S.q, Ghosh S.ap, Giacomazzo B.bh, Giacoppo L.av, Giaime J.A.b, h, Giardina K.D.h, Gibson D.R.cf, Gier C.af, Giesler M.ck, Giri P.t, Gissi F.by, Glanzer J.b, Gleckl A.E.y, Godwin P.el, Goetz E.fq, Goetz R.ap, Gohlke N.j, Goncharov B.f, González G.b, Gopakumar A.fr, Gosselin M.ao, Gouaty R.aw, Grace B.i, Grado A.e, Granata M.ew, Granata V.cm, Grant A.bn, Gras S.bo, Grassia P.a, Gray C.bk, Gray R.bn, Greco G.br, Green A.C.ap, Green R.q, Gretarsson A.M.ai, Gretarsson E.M.ai, Griffith D.a, Griffiths W.q, Griggs H.L.cx, Grignani G.br, Grimaldi A.ft, Grimes E.ai, Grimm S.J.r, Grote H.q, Grunewald S.cw, Gruning P.an, Guerrero J.G.y, Guidi G.M.ch, Guimaraes A.R.b, Guixé G.bl, Gulati H.K.bw, Guo H.-K.fi, Guo Y.ax, Gupta A.a, Gupta A.fv, Gupta P.ax, Gustafson E.K.a, Gustafson R.fw, Guzman F.ee, Ha S.fx, Haegel L.aj, Hagiwara A.ak, Haino S.dy, Halim O.ah, Hall E.D.bo, Hamilton E.Z.q, Hammond G.bn, Han W.-B.ga, Haney M.ez, Hanks J.bk, Hanna C.el, Hannam M.D.q, Hannuksela O.A.ax, Hansen H.bk, Hansen T.J.ai, Hanson J.h, Harder T.cj, Hardwick T.b, Haris K.v, Harms J.r, Harry G.M.gb, Harry I.W.eu, Hartwig D.es, Hasegawa K.ak, Haskell B.bx, Hasskew R.K.h, Haster C.-J.bo, Hattori K.gc, Haughian K.bn, Hayakawa H.gd, Hayama K.dr, Hayes F.J.bn, Healy J.dp, Heidmann A.cr, Heintze M.C.h, Heinze J.j, Heinzel J.ge, Heitmann H.cj, Hellman F.gf, Hello P.an, Helmling-Cornell A.F.bd, Hemming G.ao, Hendry M.bn, Heng I.S.bn, Hennes E.ax, Hennig J.j, Hennig M.H.j, Vivanco F.H.f, Heurs M.j, Hild S.ax, Hill P.af, Himemoto Y.gg, Hines A.S.ee, Hiranuma Y.gh, Hirata N.w, Hirose E.ak, Hochheim S.j, Hofman D.ew, Hohmann J.N.es, Holgado A.M.z, Holland N.A.i, Hollows I.J.ev, Holmes Z.J.bz, Holt K.h, Holz D.E.dv, Hong Z.gi, Hopkins P.q, Hough J.bn, Howell E.J.cl, Hoy C.G.q, Hoyland D.n, Hreibi A.j, Hsieh B.-H.ak, Hsu Y.dq, Huang G.-Z.gi, Huang H.-Y.dy, Huang P.fn, Huang Y.-C.du, Huang Y.-J.dy, Huang Y.-W.bo, Hübner M.T.f, Huddart A.D.ef, Huerta E.A.z, Hughey B.ai, Hui D.C.Y.gj, Hui V.aw, Husa S.eh, Huttner S.H.bn, Huxford R.el, Huynh-Dinh T.h, Ide S.gk, Idzkowski B.ct, Iess A.dj, Ikenoue B.x, Imam S.gi, Inayoshi K.gl, Inchauspe H.ap, Ingram C.bz, Inoue Y.dw, Intini G.av, Ioka K.gm, Isi M.bo, Isleif K.es, Ito K.gn, Itoh Y.go, Iyer B.R.v, Izumi K.gq, JaberianHamedan V.cl, Jacqmin T.cr, Jadhav S.J.gr, Jadhav S.P.c, James A.L.q, Jan A.Z.dp, Jani K.cx, Janssens K.gs, Janthalur N.N.gr, Jaranowski P.gt, Jariwala D.ap, Jaume R.eh, Jenkins A.C.ec, Jeon C.gu, Jeunon M.bg, Jia W.bo, Jiang J.ap, Jin H.-B.gv, Johns G.R.g, Jones A.W.cl, Jones D.I.gx, Jones J.D.bk, Jones P.n, Jones R.bn, Jonker R.J.G.ax, Ju L.cl, Jung K.fx, Jung P.gd, Junker J.j, Kaihotsu K.gn, Kajita T.gy, Kakizaki M.gc, Kalaghatgi C.V.q, Kalogera V.o, Kamai B.a, Kamiizumi M.gd, Kanda N.go, Kandhasamy S.c, Kang G.ay, Kanner J.B.a, Kao Y.dq, Kapadia S.J.v, Kapasi D.P.i, Karat S.a, Karathanasis C.gz, Karki S.cd, Kashyap R.el, Kasprzack M.a, Kastaun W.j, Katsanevas S.ao, Katsavounidis E.bo, Katzman W.h, Kaur T.cl, Kawabe K.bk, Kawaguchi K.ak, Kawai N.ha, Kawasaki T.ad, Kéfélian F.cj, Keitel D.eh, Key J.S.hb, Khadka S.bq, Khalili F.Y.ce, Khan I.r, Khan S.q, Khazanov E.A.hc, Khetan N.r, Khursheed M.cc, Kijbunchoo N.i, Kim C.gu, Kim J.C.he, Kim J.hf, Kim K.hg, Kim W.S.az, Kim Y.-M.fx, Kimball C.o, Kimura N.fy, King P.J.bk, Kinley-Hanlon M.bn, Kirchhoff R.j, Kissel J.S.bk, Kita N.ad, Kitazawa H.gn, Kleybolte L.es, Klimenko S.ap, Knee A.M.fq, Knowles T.D.fb, Knyazev E.bo, Koch P.j, Koekoek G.ax, Kojima Y.hh, Kokeyama K.gd, Koley S.ax, Kolitsidou P.q, Kolstein M.gz, Komori K.ad, Kondrashov V.a, Kong A.K.H.du, Kontos A.hi, Koper N.j, Korobko M.es, Kotake K.dr, Kovalam M.cl, Kozak D.B.a, Kozakai C.at, Kozu R.hj, Kringel V.j, Krishnendu N.V.j, Królak A.hk, Kuehn G.j, Kuei F.dq, Kumar A.gr, Kumar P.hm, Kumar R.bk, Kumar R.bw, Kume J.ae, Kuns K.bo, Kuo C.dw, Kuo H.-S.gi, Kuromiya Y.gn, Kuroyanagi S.hn, Kusayanagi K.ha, Kwak K.fx, Kwang S.ac, Laghi D.t, Lalande E.ho, Lam T.L.cz, Lamberts A.cj, Landry M.bk, Lane B.B.bo, Lang R.N.bo, Lange J.dp, Lantz B.bq, la Rosa I.aw, Lartaux-Vollard A.an, Lasky P.D.f, Laxen M.h, Lazzarini A.a, Lazzaro C.bt, Leaci P.av, Leavey S.j, Lecoeuche Y.K.bk, Lee H.K.hr, Lee H.M.hg, Lee H.W.he, Lee J.ea, Lee K.bq, Lee R.du, Lehmann J.j, Lemaître A.hs, Leon E.y, Leonardi M.w, Leroy N.an, Letendre N.aw, Levin Y.f, Leviton J.N.fw, Li A.K.Y.a, Li B.dq, Li J.o, Li K.L.du, Li T.G.F.cz, Li X.ck, Lin C.-Y.ht, Lin F.-K.dy, Lin F.-L.gi, Lin H.L.dw, Lin L.C.-C.fx, Linde F.ax, Linker S.D.ca, Linley J.N.bn, Littenberg T.B.hv, Liu G.C.dt, Liu J.j, Liu K.dq, Liu X.ac, Llorens-Monteagudo M.do, Lo R.K.L.a, Lockwood A.hw, Lollie M.L.b, London L.T.bo, Longo A.hx, Lopez D.ez, Lorenzini M.dj, Loriette V.hz, Lormand M.h, Losurdo G.t, Lough J.D.j, Lousto C.O.dp, Lovelace G.y, Lück H.j, Lumaca D.dj, Lundgren A.P.eu, Luo L.-W.dy, Macas R.q, MacInnis M.bo, Macleod D.M.q, MacMillan I.A.O.a, Macquet A.cj, Hernandez I.M.ac, Magaña-Sandoval F.ap, Magazzù C.t, Magee R.M.el, Maggiore R.n, Majorana E.av, Makarem C.a, Maksimovic I.hz, Maliakal S.a, Malik A.cc, Man N.cj, Mandic V.bg, Mangano V.av, Mango J.L.ia, Mansell G.L.bk, Manske M.ac, Mantovani M.ao, Mapelli M.bt, Marchesoni F.br, Marchio M.w, Marion F.aw, Mark Z.ck, Márka S.as, Márka Z.as, Markakis C.l, Markosyan A.S.bq, Markowitz A.a, Maros E.a, Marquina A.ej, Marsat S.aj, Martelli F.ch, Martin I.W.bn, Martin R.M.fc, Martinez M.gz, Martinez V.ab, Martinovic K.ec, Martynov D.V.n, Marx E.J.bo, Masalehdan H.es, Mason K.bo, Massera E.ev, Masserot A.aw, Massinger T.J.bo, Masso-Reid M.bn, Mastrogiovanni S.aj, Matas A.cw, Mateu-Lucena M.eh, Matichard F.a, Matiushechkina M.j, Mavalvala N.bo, McCann J.J.cl, McCarthy R.bk, McClelland D.E.i, McClincy P.el, McCormick S.h, McCuller L.bo, McGhee G.I.bn, McGuire S.C.ic, McIsaac C.eu, McIver J.fq, McManus D.J.i, McRae T.i, McWilliams S.T.fb, Meacher D.ac, Mehmet M.j, Mehta A.K.cw, Melatos A.dg, Melchor D.A.y, Mendell G.bk, Menendez-Vazquez A.gz, Menoni C.S.fd, Mercer R.A.ac, Mereni L.ew, Merfeld K.bd, Merilh E.L.bk, Merritt J.D.bd, Merzougui M.cj, Meshkov S.a, Messenger C.bn, Messick C.hq, Meyers P.M.dg, Meylahn F.j, Mhaske A.c, Miani A.ft, Miao H.n, Michaloliakos I.ap, Michel C.ew, Michimura Y.ad, Middleton H.dg, Milano L.aa, Miller A.L.ap, Millhouse M.dg, Mills J.C.q, Milotti E.ah, Milovich-Goff M.C.ca, Minazzoli O.cj, Minenkov Y.dk, Mio N.ie, Mir Ll.M.gz, Mishkin A.ap, Mishra C.if, Mishra T.ap, Mistry T.ev, Mitra S.c, Mitrofanov V.P.ce, Mitselmakher G.ap, Mittleman R.bo, Miyakawa O.gd, Miyamoto A.go, Miyazaki Y.ad, Miyo K.gd, Miyoki S.gd, Mo G.bo, Mogushi K.cd, Mohapatra S.R.P.bo, Mohite S.R.ac, Molina I.y, Molina-Ruiz M.gf, Mondin M.ca, Montani M.ch, Moore C.J.n, Moraru D.bk, Morawski F.bx, More A.c, Moreno C.ai, Moreno G.bk, Mori Y.gn, Morisaki S.ae, Moriwaki Y.gc, Mours B.fa, Mow-Lowry C.M.n, Mozzon S.eu, Muciaccia F.av, Mukherjee A.bn, Mukherjee D.el, Mukherjee S.en, Mukherjee S.bw, Mukund N.j, Mullavey A.h, Munch J.bz, Muñiz E.A.be, Murray P.G.bn, Musenich R.cb, Nadji S.L.j, Nagano K.gq, Nagano S.ih, Nagar A.ba, Nakamura K.w, Nakano H.ij, Nakano M.ak, Nakashima R.ha, Nakayama Y.gc, Nardecchia I.dj, Narikawa T.ak, Naticchioni L.av, Nayak B.ca, Nayak R.K.ik, Negishi R.gh, Neil B.F.cl, Neilson J.by, Nelemans G.il, Nelson T.J.N.h, Nery M.j, Neunzert A.hb, Ng K.Y.bo, Ng S.W.S.bz, Nguyen C.aj, Nguyen P.bd, Nguyen T.bo, Quynh L.N.im, Ni W.-T.fn, Nichols S.A.b, Nishizawa A.ae, Nissanke S.ax, Nocera F.ao, Noh M.fq, Norman M.q, North C.q, Nozaki S.gc, Nuttall L.K.eu, Oberling J.bk, O'Brien B.D.ap, Obuchi Y.x, O'Dell J.ef, Ogaki W.ak, Oganesyan G.r, Oh J.J.az, Oh K.gj, Oh S.H.az, Ohashi M.gd, Ohishi N.at, Ohkawa M.fm, Ohme F.j, Ohta H.ae, Okada M.A.p, Okutani Y.gk, Okutomi K.gd, Olivetto C.ao, Oohara K.gh, Ooi C.ad, Oram R.h, O'Reilly B.h, Ormiston R.G.bg, Ormsby N.D.g, Ortega L.F.ap, O'Shaughnessy R.dp, O'Shea E.hm, Oshino S.gd, Ossokine S.cw, Osthelder C.a, Otabe S.ha, Ottaway D.J.bz, Overmier H.h, Pace A.E.el, Pagano G.t, Page M.A.cl, Pagliaroli G.r, Pai A.cq, Pai S.A.cc, Palamos J.R.bd, Palashov O.hc, Palomba C.av, Pan K.du, Panda P.K.gr, Pang H.dw, Pang P.T.H.ax, Pankow C.o, Pannarale F.av, Pant B.C.cc, Paoletti F.t, Paoli A.ao, Paolone A.av, Parisi A.dt, Park J.hg, Parker W.h, Pascucci D.ax, Pasqualetti A.ao, Passaquieti R.t, Passuello D.t, Patel M.g, Patricelli B.t, Payne E.f, Pechsiri T.C.ap, Pedraza M.a, Pegoraro M.bu, Pele A.h, Arellano F.E.P.gd, Penn S.iq, Perego A.ft, Pereira A.ab, Pereira T.ir, Perez C.J.bk, Périgois C.aw, Perreca A.ft, Perriès S.dz, Petermann J.es, Petterson D.a, Pfeiffer H.P.cw, Pham K.A.bg, Phukon K.S.c, Piccinni O.J.av, Pichot M.cj, Piendibene M.t, Piergiovanni F.ch, Pierini L.av, Pierro V.by, Pillant G.ao, Pilo F.t, Pinard L.ew, Pinto I.M.by, Piotrzkowski B.J.ac, Piotrzkowski K.cs, Pirello M.bk, Pitkin M.iu, Placidi E.av, Plastino W.hx, Pluchar C.ee, Poggiani R.t, Polini E.aw, Pong D.Y.T.cz, Ponrathnam S.c, Popolizio P.ao, Porter E.K.aj, Powell J.iv, Pracchia M.aw, Pradier T.fa, Prajapati A.K.bw, Prasai K.bq, Prasanna R.gr, Pratten G.n, Prestegard T.ac, Principe M.by, Prodi G.A.fu, Prokhorov L.n, Prosposito P.dj, Prudenzi L.cw, Puecher A.ax, Punturo M.br, Puosi F.t, Puppo P.av, Pürrer M.cw, Qi H.q, Quetschke V.en, Quinonez P.J.ai, Quitzow-James R.cd, Raab F.J.bk, Raaijmakers G.ax, Radkins H.bk, Radulesco N.cj, Raffai P.eq, Rail S.X.ho, Raja S.cc, Rajan C.cc, Ramirez K.E.en, Ramirez T.D.y, Ramos-Buades A.cw, Rana J.el, Rapagnani P.av, Rapol U.D.ix, Ratto B.ai, Raymond V.q, Raza N.fq, Razzano M.t, Read J.y, Rees L.A.gb, Regimbau T.aw, Rei L.cb, Reid S.af, Reitze D.H.a, Relton P.q, Rettegno P.ba, Ricci F.av, Richardson C.J.ai, Richardson J.W.a, Richardson L.ee, Ricker P.M.z, Riemenschneider G.ba, Riles K.fw, Rizzo M.o, Robertson N.A.a, Robie R.a, Robinet F.an, Rocchi A.dk, Rocha J.A.y, Rodriguez S.y, Rodriguez-Soto R.D.ai, Rolland L.aw, Rollins J.G.a, Roma V.J.bd, Romanelli M.cp, Romano R.d, Romel C.L.bk, Romero A.gz, Romero-Shaw I.M.f, Romie J.H.h, Rose C.A.ac, Rosi?ska D.ct, Rosofsky S.G.z, Ross M.P.hw, Rowan S.bn, Rowlinson S.J.n, Roy S.c, Roy S.iz, Rozza D.dh, Ruggi P.ao, Ryan K.bk, Sachdev S.el, Sadecki T.bk, Sadiq J.et, Sago N.ja, Saito S.x, Saito Y.gd, Sakai K.jb, Sakai Y.gh, Sakellariadou M.ec, Sakuno Y.dr, Salafia O.S.bh, Salconi L.ao, Saleem M.aq, Salemi F.ft, Samajdar A.ax, Sanchez E.J.a, Sanchez J.H.y, Sanchez L.E.a, Sanchis-Gual N.jc, Sanders J.R.jd, Sanuy A.bl, Saravanan T.R.c, Sarin N.f, Sassolas B.ew, Satari H.cl, Sathyaprakash B.S.q, Sato S.je, Sato T.fm, Sauter O.ap, Savage R.L.bk, Savant V.c, Sawada T.go, Sawant D.cq, Sawant H.L.c, Sayah S.ew, Schaetzl D.a, Scheel M.ck, Scheuer J.o, Schindler-Tyka A.ap, Schmidt P.n, Schnabel R.es, Schneewind M.j, Schofield R.M.S.bd, Schönbeck A.es, Schulte B.W.j, Schutz B.F.j, Schwartz E.q, Scott J.bn, Scott S.M.i, Seglar-Arroyo M.aw, Seidel E.z, Sekiguchi T.ae, Sekiguchi Y.jf, Sellers D.h, Sengupta A.S.iz, Sennett N.cw, Sentenac D.ao, Seo E.G.cz, Sequino V.e, Sergeev A.hc, Setyawati Y.j, Shaffer T.bk, Shahriar M.S.o, Shams B.fi, Shao L.gl, Sharifi S.b, Sharma A.r, Sharma P.cc, Shawhan P.cv, Shcheblanov N.S.hs, Shen H.z, Shibagaki S.dr, Shikauchi M.ae, Shimizu R.x, Shimoda T.ad, Shimode K.gd, Shink R.ho, Shinkai H.jg, Shishido T.au, Shoda A.w, Shoemaker D.H.bo, Shoemaker D.M.hq, Shukla K.gf, ShyamSundar S.cc, Sieniawska M.ct, Sigg D.bk, Singer L.P.dc, Singh D.el, Singh N.ct, Singha A.ax, Sintes A.M.eh, Sipala V.dh, Skliris V.q, Slagmolen B.J.J.i, Slaven-Blair T.J.cl, Smetana J.n, Smith J.R.y, Smith R.J.E.f, Somala S.N.jh, Somiya K.ha, Son E.J.az, Soni K.c, Soni S.b, Sorazu B.bn, Sordini V.dz, Sorrentino F.cb, Sorrentino N.t, Sotani H.ji, Soulard R.cj, Souradeep T.c, Sowell E.ek, Spagnuolo V.ax, Spencer A.P.bn, Spera M.bt, Srivastava A.K.bw, Srivastava V.be, Staats K.o, Stachie C.cj, Steer D.A.aj, Steinlechner J.ax, Steinlechner S.ax, Stops D.J.n, Stover M.fj, Strain K.A.bn, Strang L.C.dg, Stratta G.ci, Strunk A.bk, Sturani R.ir, Stuver A.L.cy, Südbeck J.es, Sudhagar S.c, Sudhir V.bo, Sugimoto R.gq, Suh H.G.ac, Summerscales T.Z.jl, Sun H.cl, Sun L.a, i, Sunil S.bw, Sur A.bx, Suresh J.ae, Sutton P.J.q, Suzuki T.fm, Suzuki T.ak, Swinkels B.L.ax, Szczepa?czyk M.J.ap, Szewczyk P.ct, Tacca M.ax, Tagoshi H.ak, Tait S.C.bn, Takahashi H.jm, Takahashi R.w, Takamori A.am, Takano S.ad, Takeda H.ad, Takeda M.go, Talbot C.a, Tanaka H.jn, Tanaka K.go, Tanaka K.jn, Tanaka T.ak, Tanaka T.ja, Tanasijczuk A.J.cs, Tanioka S.w, Tanner D.B.ap, Tao D.a, Tapia A.y, Martin E.N.T.S.w, Tasson J.D.ge, Telada S.jo, Tenorio R.eh, Terkowski L.es, Test M.ac, Thirugnanasambandam M.P.c, Thomas M.h, Thomas P.bk, Thompson J.E.q, Thondapu S.R.cc, Thorne K.A.h, Thrane E.f, Tiwari S.ez, Tiwari S.fr, Tiwari V.q, Toland K.bn, Tolley A.E.eu, Tomaru T.w, Tomigami Y.go, Tomura T.gd, Tonelli M.t, Torres-Forné A.do, Torrie C.I.a, Tosta e Melo I.dh, Töyrä D.i, Trapananti A.br, Travasso F.br, Traylor G.h, Tringali M.C.ao, Tripathee A.fw, Troiano L.cn, Trovato A.aj, Trozzo L.gd, Trudeau R.J.a, Tsai D.S.dq, Tsai D.dq, Tsang K.W.ax, Tsang T.cz, Tsao J.-S.gi, Tse M.bo, Tso R.ck, Tsubono K.ad, Tsuchida S.go, Tsukada L.ae, Tsuna D.ae, Tsutsui T.ae, Tsuzuki T.x, Turconi M.cj, Tuyenbayev D.dy, Ubhi A.S.n, Uchikata N.ak, Uchiyama T.gd, Udall R.P.a, Ueda A.fy, Uehara T.jr, Ueno K.ae, Ueshima G.jt, Ugolini D.ju, Unnikrishnan C.S.fr, Uraguchi F.x, Urban A.L.b, Ushiba T.gd, Usman S.A.dv, Utina A.C.ax, Vahlbruch H.j, Vajente G.a, Vajpeyi A.f, Valdes G.b, Valentini M.ft, Valsan V.ac, van Bakel N.ax, van Beuzekom M.ax, van den Brand J.F.J.ax, van Den Broeck C.ax, Vander-Hyde D.C.be, van der Schaaf L.ax, van Heijningen J.V.cl, Vanosky J.a, van Putten M.H.P.M.jv, Vardaro M.ax, Vargas A.F.dg, Varma V.ck, Vasúth M.bp, Vecchio A.n, Vedovato G.bu, Veitch J.bn, Veitch P.J.bz, Venkateswara K.hw, Venneberg J.j, Venugopalan G.a, Verkindt D.aw, Verma Y.cc, Veske D.as, Vetrano F.ch, Viceré A.ch, Viets A.D.ia, Villa-Ortega V.et, Vinet J.-Y.cj, Vitale S.bo, Vo T.be, Vocca H.br, von Reis E.R.G.bk, von Wrangel J.j, Vorvick C.bk, Vyatchanin S.P.ce, Wade L.E.fj, Wade M.fj, Wagner K.J.dp, Walet R.C.ax, Walker M.g, Wallace G.S.af, Wallace L.a, Walsh S.ac, Wang J.fn, Wang J.Z.fw, Wang W.H.en, Ward R.L.i, Warner J.bk, Was M.aw, Washimi T.w, Washington N.Y.a, Watchi J.ei, Weaver B.bk, Wei L.j, Weinert M.j, Weinstein A.J.a, Weiss R.bo, Weller C.M.hw, Wellmann F.j, Wen L.cl, Weßels P.j, Westhouse J.W.ai, Wette K.i, Whelan J.T.dp, White D.D.y, Whiting B.F.ap, Whittle C.bo, Wilken D.j, Williams D.bn, Williams M.J.bn, Williamson A.R.eu, Willis J.L.a, Willke B.j, Wilson D.J.ee, Winkler W.j, Wipf C.C.a, Wlodarczyk T.cw, Woan G.bn, Woehler J.j, Wofford J.K.dp, Wong I.C.F.cz, Wu C.du, Wu D.S.j, Wu H.du, Wu S.du, Wysocki D.M.ac, Xiao L.a, Xu W.-R.gi, Yamada T.jn, Yamamoto H.a, Yamamoto K.gc, Yamamoto K.jn, Yamamoto T.gd, Yamashita K.gc, Yamazaki R.gk, Yang F.W.fi, Yang L.fd, Yang Y.ap, Yang Y.jw, Yang Z.bg, Yap M.J.i, Yeeles D.W.q, Yelikar A.B.dp, Ying M.dq, Yokogawa K.gn, Yokoyama J.ad, Yokozawa T.gd, Yoon A.g, Yoshioka T.gn, Yu H.ck, Yu H.bo, Yuzurihara H.ak, Zadro?ny A.hl, Zanolin M.ai, Zeidler S.jx, Zelenova T.ao, Zendri J.-P.bu, Zevin M.o, Zhan M.fn, Zhang H.gi, Zhang J.cl, Zhang L.a, Zhang R.ap, Zhang T.n, Zhao C.cl, Zhao G.ei, Zhao Y.fi, Zhao Y.w, Zhou Z.o, Zhu X.J.f, Zhu Z.-H.df, Zucker M.E.a, Zweizig J.a, RS: FSE Grav. waves and fundamental physics, Grav. waves and fundamental physics, Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, A., Adams, C., Adhikari, R. X., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Aleman, K. M., Allen, G., Allocca, A., Altin, P. A., Amato, A., Anand, S., Ananyeva, A., Anderson, S. B., Anderson, W. G., Ando, M., Angelova, S. V., Ansoldi, S., Antelis, J. M., Antier, S., Appert, S., Arai, K., Arai, Y., Araki, S., Araya, A., Araya, M. C., Areeda, J. S., Arene, M., Aritomi, N., Arnaud, N., Aronson, S. M., Arun, K. G., Asada, H., Asali, Y., Ashton, G., Aso, Y., Aston, S. M., Astone, P., Aubin, F., Aufmuth, P., Aultoneal, K., Austin, C., Babak, S., Badaracco, F., Bader, M. K. M., Bae, S., Bae, Y., Baer, A. M., Bagnasco, S., Bai, Y., Baiotti, L., Baird, J., Bajpai, R., Ball, M., Ballardin, G., Ballmer, S. W., Bals, M., Balsamo, A., Baltus, G., Banagiri, S., Bankar, D., Bankar, R. S., Barayoga, J. C., Barbieri, C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Barton, M. A., Bartos, I., Bassiri, R., Basti, A., Bawaj, M., Bayley, J. C., Baylor, A. C., Bazzan, M., Becsy, B., Bedakihale, V. M., Bejger, M., Belahcene, I., Benedetto, V., Beniwal, D., Benjamin, M. G., Bennett, T. F., Bentley, J. D., Benyaala, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhandare, R., Bhandari, A. V., Bhattacharjee, D., Bhaumik, S., Bidler, J., Bilenko, I. A., Billingsley, G., Birney, R., Birnholtz, O., Biscans, S., Bischi, M., Biscoveanu, S., Bisht, A., Biswas, B., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blackman, J., Blair, C. D., Blair, D. G., Blair, R. M., Bobba, F., Bode, N., Boer, M., Bogaert, G., Boldrini, M., Bondu, F., Bonilla, E., Bonnand, R., Booker, P., Boom, B. A., Bork, R., Boschi, V., Bose, N., Bose, S., Bossilkov, V., Boudart, V., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P. R., Bramley, A., Branch, A., Branchesi, M., Brau, J. E., Breschi, M., Briant, T., Briggs, J. H., Brillet, A., Brinkmann, M., Brockill, P., Brooks, A. F., Brooks, J., Brown, D. D., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Buikema, A., Bulik, T., Bulten, H. J., Buonanno, A., Buscicchio, R., Buskulic, D., Byer, R. L., Cadonati, L., Caesar, M., Cagnoli, G., Cahillane, C., Cain, H. W., Bustillo, J. C., Callaghan, J. D., Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Cannavacciuolo, M., Cannon, K. C., Cao, H., Cao, J., Cao, Z., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlin, J. B., Carney, M. F., Carpinelli, M., Carullo, G., Carver, T. L., Diaz, J. C., Casentini, C., Castaldi, G., Caudill, S., Cavaglia, M., Cavalier, F., Cavalieri, R., Cella, G., Cerda-Duran, P., Cesarini, E., Chaibi, W., Chakravarti, K., Champion, B., Chan, C. -H., Chan, C., Chan, C. L., Chan, M., Chandra, K., Chanial, P., Chao, S., Charlton, P., Chase, E. A., Chassande-Mottin, E., Chatterjee, D., Chaturvedi, M., Chen, A., Chen, C., Chen, H. Y., Chen, J., Chen, K., Chen, X., Chen, Y. -B., Chen, Y. -R., Chen, Z., Cheng, H., Cheong, C. K., Cheung, H. Y., Chia, H. Y., Chiadini, F., Chiang, C. -Y., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Cho, G., Cho, H. S., Choate, S., Choudhary, R. K., Choudhary, S., Christensen, N., Chu, H., Chu, Q., Chu, Y. -K., Chua, S., Chung, K. W., Ciani, G., Ciecielag, P., Cieslar, M., Cifaldi, M., Ciobanu, A. A., Ciolfi, R., Cipriano, F., Cirone, A., Clara, F., Clark, E. N., Clark, J. A., Clarke, L., Clearwater, P., Clesse, S., Cleva, F., Coccia, E., Cohadon, P. -F., Cohen, D. E., Cohen, L., Colleoni, M., Collette, C. G., Colpi, M., Compton, C. M., Constancio, M., Conti, L., Cooper, S. J., Corban, P., Corbitt, T. R., Cordero-Carrion, I., Corezzi, S., Corley, K. R., Cornish, N., Corre, D., Corsi, A., Cortese, S., Costa, C. A., Cotesta, R., Coughlin, M. W., Coughlin, S. B., Coulon, J. -P., Countryman, S. T., Cousins, B., Couvares, P., Covas, P. B., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Creighton, J. D. E., Creighton, T. D., Criswell, A. W., Croquette, M., Crowder, S. G., Cudell, J. R., Cullen, T. J., Cumming, A., Cummings, R., Cuoco, E., Curylo, M., Dal Canton, T., Dalya, G., Dana, A., Daneshgaranbajastani, L. M., D'Angelo, B., Danilishin, S. L., D'Antonio, S., Danzmann, K., Darsow-Fromm, C., Dasgupta, A., Datrier, L. E. H., Dattilo, V., Dave, I., Davier, M., Davies, G. S., Davis, D., Daw, E. J., Dean, R., Debra, D., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deleglise, S., Del Favero, V., De Lillo, F., De Lillo, N., Del Pozzo, W., Demarchi, L. M., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., De Pietri, R., De Rosa, R., De Rossi, C., Desalvo, R., De Simone, R., Dhurandhar, S., Diaz, M. C., Diaz-Ortiz, M., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giorgio, C., Di Giovanni, F., Di Girolamo, T., Di Lieto, A., Ding, B., Di Pace, S., Di Palma, I., Di Renzo, F., Divakarla, A. K., Dmitriev, A., Doctor, Z., D'Onofrio, L., Donovan, F., Dooley, K. L., Doravari, S., Dorrington, I., Drago, M., Driggers, J. C., Drori, Y., Du, Z., Ducoin, J. -G., Dupej, P., Durante, O., D'Urso, D., Duverne, P. -A., Dwyer, S. E., Easter, P. J., Ebersold, M., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eguchi, S., Eichholz, J., Eikenberry, S. S., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Enomoto, Y., Errico, L., Essick, R. C., Estelles, H., Estevez, D., Etienne, Z., Etzel, T., Evans, M., Evans, T. M., Ewing, B. E., Fafone, V., Fair, H., Fairhurst, S., Fan, X., Farah, A. M., Farinon, S., Farr, B., Farr, W. M., Farrow, N. W., Fauchon-Jones, E. J., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Feng, F., Fenyvesi, E., Ferguson, D. L., Fernandez-Galiana, A., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Floden, E., Flynn, E., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franke, A., Frasca, S., Frasconi, F., Frederick, C., Frei, Z., Freise, A., Frey, R., Fritschel, P., Frolov, V. V., Fronze, G. G., Fujii, Y., Fujikawa, Y., Fukunaga, M., Fukushima, M., Fulda, P., Fyffe, M., Gabbard, H. A., Gadre, B. U., Gaebel, S. M., Gair, J. R., Gais, J., Galaudage, S., Gamba, R., Ganapathy, D., Ganguly, A., Gao, D., Gaonkar, S. G., Garaventa, B., Garcia-Nunez, C., Garcia-Quiros, C., Garufi, F., Gateley, B., Gaudio, S., Gayathri, V., Ge, G., Gemme, G., Gennai, A., George, J., Gergely, L., Gewecke, P., Ghonge, S., Ghosh, A., Ghosh, S., Giacomazzo, B., Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gier, C., Giesler, M., Giri, P., Gissi, F., Glanzer, J., Gleckl, A. E., Godwin, P., Goetz, E., Goetz, R., Gohlke, N., Goncharov, B., Gonzalez, G., Gopakumar, A., Gosselin, M., Gouaty, R., Grace, B., Grado, A., Granata, M., Granata, V., Grant, A., Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A. C., Green, R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W., Griggs, H. L., Grignani, G., Grimaldi, A., Grimes, E., Grimm, S. J., Grote, H., Grunewald, S., Gruning, P., Guerrero, J. G., Guidi, G. M., Guimaraes, A. R., Guixe, G., Gulati, H. K., Guo, H. -K., Guo, Y., Gupta, A., Gupta, P., Gustafson, E. K., Gustafson, R., Guzman, F., Ha, S., Haegel, L., Hagiwara, A., Haino, S., Halim, O., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hansen, H., Hansen, T. J., Hanson, J., Harder, T., Hardwick, T., Haris, K., Harms, J., Harry, G. M., Harry, I. W., Hartwig, D., Hasegawa, K., Haskell, B., Hasskew, R. K., Haster, C. -J., Hattori, K., Haughian, K., Hayakawa, H., Hayama, K., Hayes, F. J., Healy, J., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Hendry, M., Heng, I. S., Hennes, E., Hennig, J., Hennig, M. H., Vivanco, F. H., Heurs, M., Hild, S., Hill, P., Himemoto, Y., Hines, A. S., Hiranuma, Y., Hirata, N., Hirose, E., Hochheim, S., Hofman, D., Hohmann, J. N., Holgado, A. M., Holland, N. A., Hollows, I. J., Holmes, Z. J., Holt, K., Holz, D. E., Hong, Z., Hopkins, P., Hough, J., Howell, E. J., Hoy, C. G., Hoyland, D., Hreibi, A., Hsieh, B. -H., Hsu, Y., Huang, G. -Z., Huang, H. -Y., Huang, P., Huang, Y. -C., Huang, Y. -J., Huang, Y. -W., Hubner, M. T., Huddart, A. D., Huerta, E. A., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huttner, S. H., Huxford, R., Huynh-Dinh, T., Ide, S., Idzkowski, B., Iess, A., Ikenoue, B., Imam, S., Inayoshi, K., Inchauspe, H., Ingram, C., Inoue, Y., Intini, G., Ioka, K., Isi, M., Isleif, K., Ito, K., Itoh, Y., Iyer, B. R., Izumi, K., Jaberianhamedan, V., Jacqmin, T., Jadhav, S. J., Jadhav, S. P., James, A. L., Jan, A. Z., Jani, K., Janssens, K., Janthalur, N. N., Jaranowski, P., Jariwala, D., Jaume, R., Jenkins, A. C., Jeon, C., Jeunon, M., Jia, W., Jiang, J., Jin, H. -B., Johns, G. R., Jones, A. W., Jones, D. I., Jones, J. D., Jones, P., Jones, R., Jonker, R. J. G., Ju, L., Jung, K., Jung, P., Junker, J., Kaihotsu, K., Kajita, T., Kakizaki, M., Kalaghatgi, C. V., Kalogera, V., Kamai, B., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kao, Y., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Karki, S., Kashyap, R., Kasprzack, M., Kastaun, W., Katsanevas, S., Katsavounidis, E., Katzman, W., Kaur, T., Kawabe, K., Kawaguchi, K., Kawai, N., Kawasaki, T., Kefelian, F., Keitel, D., Key, J. S., Khadka, S., Khalili, F. Y., Khan, I., Khan, S., Khazanov, E. A., Khetan, N., Khursheed, M., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, J., Kim, K., Kim, W. S., Kim, Y. -M., Kimball, C., Kimura, N., King, P. J., Kinley-Hanlon, M., Kirchhoff, R., Kissel, J. S., Kita, N., Kitazawa, H., Kleybolte, L., Klimenko, S., Knee, A. M., Knowles, T. D., Knyazev, E., Koch, P., Koekoek, G., Kojima, Y., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kondrashov, V., Kong, A. K. H., Kontos, A., Koper, N., Korobko, M., Kotake, K., Kovalam, M., Kozak, D. B., Kozakai, C., Kozu, R., Kringel, V., Krishnendu, N. V., Krolak, A., Kuehn, G., Kuei, F., Kumar, A., Kumar, P., Kumar, R., Kume, J., Kuns, K., Kuo, C., Kuo, H. -S., Kuromiya, Y., Kuroyanagi, S., Kusayanagi, K., Kwak, K., Kwang, S., Laghi, D., Lalande, E., Lam, T. L., Lamberts, A., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., la Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lecoeuche, Y. K., Lee, H. K., Lee, H. M., Lee, H. W., Lee, J., Lee, K., Lee, R., Lehmann, J., Lemaitre, A., Leon, E., Leonardi, M., Leroy, N., Letendre, N., Levin, Y., Leviton, J. N., Li, A. K. Y., Li, B., Li, J., Li, K. L., Li, T. G. F., Li, X., Lin, C. -Y., Lin, F. -K., Lin, F. -L., Lin, H. L., Lin, L. C. -C., Linde, F., Linker, S. D., Linley, J. N., Littenberg, T. B., Liu, G. C., Liu, J., Liu, K., Liu, X., Llorens-Monteagudo, M., Lo, R. K. L., Lockwood, A., Lollie, M. L., London, L. T., Longo, A., Lopez, D., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J. D., Lousto, C. O., Lovelace, G., Luck, H., Lumaca, D., Lundgren, A. P., Luo, L. -W., Macas, R., Macinnis, M., Macleod, D. M., Macmillan, I. A. O., Macquet, A., Hernandez, I. M., Magana-Sandoval, F., Magazzu, C., Magee, R. M., Maggiore, R., Majorana, E., Makarem, C., Maksimovic, I., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mango, J. L., Mansell, G. L., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Marchio, M., Marion, F., Mark, Z., Marka, S., Marka, Z., Markakis, C., Markosyan, A. S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, M., Martinez, V., Martinovic, K., Martynov, D. V., Marx, E. J., Masalehdan, H., Mason, K., Massera, E., Masserot, A., Massinger, T. J., Masso-Reid, M., Mastrogiovanni, S., Matas, A., Mateu-Lucena, M., Matichard, F., Matiushechkina, M., Mavalvala, N., Mccann, J. J., Mccarthy, R., Mcclelland, D. E., Mcclincy, P., Mccormick, S., Mcculler, L., Mcghee, G. I., Mcguire, S. C., Mcisaac, C., Mciver, J., Mcmanus, D. J., Mcrae, T., Mcwilliams, S. T., Meacher, D., Mehmet, M., Mehta, A. K., Melatos, A., Melchor, D. A., Mendell, G., Menendez-Vazquez, A., Menoni, C. S., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Merritt, J. D., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Meyers, P. M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Milano, L., Miller, A. L., Millhouse, M., Mills, J. C., Milotti, E., Milovich-Goff, M. C., Minazzoli, O., Minenkov, Y., Mio, N., Mir, Ll. M., Mishkin, A., Mishra, C., Mishra, T., Mistry, T., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Miyamoto, A., Miyazaki, Y., Miyo, K., Miyoki, S., Mo, G., Mogushi, K., Mohapatra, S. R. P., Mohite, S. R., Molina, I., Molina-Ruiz, M., Mondin, M., Montani, M., Moore, C. J., Moraru, D., Morawski, F., More, A., Moreno, C., Moreno, G., Mori, Y., Morisaki, S., Moriwaki, Y., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, A., Mukherjee, D., Mukherjee, S., Mukund, N., Mullavey, A., Munch, J., Muniz, E. A., Murray, P. G., Musenich, R., Nadji, S. L., Nagano, K., Nagano, S., Nagar, A., Nakamura, K., Nakano, H., Nakano, M., Nakashima, R., Nakayama, Y., Nardecchia, I., Narikawa, T., Naticchioni, L., Nayak, B., Nayak, R. K., Negishi, R., Neil, B. F., Neilson, J., Nelemans, G., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, K. Y., Ng, S. W. S., Nguyen, C., Nguyen, P., Nguyen, T., Quynh, L. N., Ni, W. -T., Nichols, S. A., Nishizawa, A., Nissanke, S., Nocera, F., Noh, M., Norman, M., North, C., Nozaki, S., Nuttall, L. K., Oberling, J., O'Brien, B. D., Obuchi, Y., O'Dell, J., Ogaki, W., Oganesyan, G., Oh, J. J., Oh, K., Oh, S. H., Ohashi, M., Ohishi, N., Ohkawa, M., Ohme, F., Ohta, H., Okada, M. A., Okutani, Y., Okutomi, K., Olivetto, C., Oohara, K., Ooi, C., Oram, R., O'Reilly, B., Ormiston, R. G., Ormsby, N. D., Ortega, L. F., O'Shaughnessy, R., O'Shea, E., Oshino, S., Ossokine, S., Osthelder, C., Otabe, S., Ottaway, D. J., Overmier, H., Pace, A. E., Pagano, G., Page, M. A., Pagliaroli, G., Pai, A., Pai, S. A., Palamos, J. R., Palashov, O., Palomba, C., Pan, K., Panda, P. K., Pang, H., Pang, P. T. H., Pankow, C., Pannarale, F., Pant, B. C., Paoletti, F., Paoli, A., Paolone, A., Parisi, A., Park, J., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patel, M., Patricelli, B., Payne, E., Pechsiri, T. C., Pedraza, M., Pegoraro, M., Pele, A., Arellano, F. E. P., Penn, S., Perego, A., Pereira, A., Pereira, T., Perez, C. J., Perigois, C., Perreca, A., Perries, S., Petermann, J., Petterson, D., Pfeiffer, H. P., Pham, K. A., Phukon, K. S., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierro, V., Pillant, G., Pilo, F., Pinard, L., Pinto, I. M., Piotrzkowski, B. J., Piotrzkowski, K., Pirello, M., Pitkin, M., Placidi, E., Plastino, W., Pluchar, C., Poggiani, R., Polini, E., Pong, D. Y. T., Ponrathnam, S., Popolizio, P., Porter, E. K., Powell, J., Pracchia, M., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Pratten, G., Prestegard, T., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Prudenzi, L., Puecher, A., Punturo, M., Puosi, F., Puppo, P., Purrer, M., Qi, H., Quetschke, V., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raaijmakers, G., Radkins, H., Radulesco, N., Raffai, P., Rail, S. X., Raja, S., Rajan, C., Ramirez, K. E., Ramirez, T. D., Ramos-Buades, A., Rana, J., Rapagnani, P., Rapol, U. D., Ratto, B., Raymond, V., Raza, N., Razzano, M., Read, J., Rees, L. A., Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Rettegno, P., Ricci, F., Richardson, C. J., Richardson, J. W., Richardson, L., Ricker, P. M., Riemenschneider, G., Riles, K., Rizzo, M., Robertson, N. A., Robie, R., Robinet, F., Rocchi, A., Rocha, J. A., Rodriguez, S., Rodriguez-Soto, R. D., Rolland, L., Rollins, J. G., Roma, V. J., Romanelli, M., Romano, R., Romel, C. L., Romero, A., Romero-Shaw, I. M., Romie, J. H., Rose, C. A., Rosinska, D., Rosofsky, S. G., Ross, M. P., Rowan, S., Rowlinson, S. J., Roy, S., Rozza, D., Ruggi, P., Ryan, K., Sachdev, S., Sadecki, T., Sadiq, J., Sago, N., Saito, S., Saito, Y., Sakai, K., Sakai, Y., Sakellariadou, M., Sakuno, Y., Salafia, O. S., Salconi, L., Saleem, M., Salemi, F., Samajdar, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sanuy, A., Saravanan, T. R., Sarin, N., Sassolas, B., Satari, H., Sathyaprakash, B. S., Sato, S., Sato, T., Sauter, O., Savage, R. L., Savant, V., Sawada, T., Sawant, D., Sawant, H. L., Sayah, S., Schaetzl, D., Scheel, M., Scheuer, J., Schindler-Tyka, A., Schmidt, P., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schonbeck, A., Schulte, B. W., Schutz, B. F., Schwartz, E., Scott, J., Scott, S. M., Seglar-Arroyo, M., Seidel, E., Sekiguchi, T., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sennett, N., Sentenac, D., Seo, E. G., Sequino, V., Sergeev, A., Setyawati, Y., Shaffer, T., Shahriar, M. S., Shams, B., Shao, L., Sharifi, S., Sharma, A., Sharma, P., Shawhan, P., Shcheblanov, N. S., Shen, H., Shibagaki, S., Shikauchi, M., Shimizu, R., Shimoda, T., Shimode, K., Shink, R., Shinkai, H., Shishido, T., Shoda, A., Shoemaker, D. H., Shoemaker, D. M., Shukla, K., Shyamsundar, S., Sieniawska, M., Sigg, D., Singer, L. P., Singh, D., Singh, N., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, R. J. E., Somala, S. N., Somiya, K., Son, E. J., Soni, K., Soni, S., Sorazu, B., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Souradeep, T., Sowell, E., Spagnuolo, V., Spencer, A. P., Spera, M., Srivastava, A. K., Srivastava, V., Staats, K., Stachie, C., Steer, D. A., Steinlechner, J., Steinlechner, S., Stops, D. J., Stover, M., Strain, K. A., Strang, L. C., Stratta, G., Strunk, A., Sturani, R., Stuver, A. L., Sudbeck, J., Sudhagar, S., Sudhir, V., Sugimoto, R., Suh, H. G., Summerscales, T. Z., Sun, H., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P. J., Suzuki, T., Swinkels, B. L., Szczepanczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takano, S., Takeda, H., Takeda, M., Talbot, C., Tanaka, H., Tanaka, K., Tanaka, T., Tanasijczuk, A. J., Tanioka, S., Tanner, D. B., Tao, D., Tapia, A., Martin, E. N. T. S., Tasson, J. D., Telada, S., Tenorio, R., Terkowski, L., Test, M., Thirugnanasambandam, M. P., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tiwari, S., Tiwari, V., Toland, K., Tolley, A. E., Tomaru, T., Tomigami, Y., Tomura, T., Tonelli, M., Torres-Forne, A., Torrie, C. I., Tosta e Melo, I., Toyra, D., Trapananti, A., Travasso, F., Traylor, G., Tringali, M. C., Tripathee, A., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsai, D. S., Tsai, D., Tsang, K. W., Tsang, T., Tsao, J. -S., Tse, M., Tso, R., Tsubono, K., Tsuchida, S., Tsukada, L., Tsuna, D., Tsutsui, T., Tsuzuki, T., Turconi, M., Tuyenbayev, D., Ubhi, A. S., Uchikata, N., Uchiyama, T., Udall, R. P., Ueda, A., Uehara, T., Ueno, K., Ueshima, G., Ugolini, D., Unnikrishnan, C. S., Uraguchi, F., Urban, A. L., Ushiba, T., Usman, S. A., Utina, A. C., Vahlbruch, H., Vajente, G., Vajpeyi, A., Valdes, G., Valentini, M., Valsan, V., van Bakel, N., van Beuzekom, M., van den Brand, J. F. J., van Den Broeck, C., Vander-Hyde, D. C., van der Schaaf, L., van Heijningen, J. V., Vanosky, J., van Putten, M. H. P. M., Vardaro, M., Vargas, A. F., Varma, V., Vasuth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Venneberg, J., Venugopalan, G., Verkindt, D., Verma, Y., Veske, D., Vetrano, F., Vicere, A., Viets, A. D., Villa-Ortega, V., Vinet, J. -Y., Vitale, S., Vo, T., Vocca, H., von Reis, E. R. G., von Wrangel, J., Vorvick, C., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Walet, R. C., Walker, M., Wallace, G. S., Wallace, L., Walsh, S., Wang, J., Wang, J. Z., Wang, W. H., Ward, R. L., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watchi, J., Weaver, B., Wei, L., Weinert, M., Weinstein, A. J., Weiss, R., Weller, C. M., Wellmann, F., Wen, L., Wessels, P., Westhouse, J. W., Wette, K., Whelan, J. T., White, D. D., Whiting, B. F., Whittle, C., Wilken, D., Williams, D., Williams, M. J., Williamson, A. R., Willis, J. L., Willke, B., Wilson, D. J., Winkler, W., Wipf, C. C., Wlodarczyk, T., Woan, G., Woehler, J., Wofford, J. K., Wong, I. C. F., Wu, C., Wu, D. S., Wu, H., Wu, S., Wysocki, D. M., Xiao, L., Xu, W. -R., Yamada, T., Yamamoto, H., Yamamoto, K., Yamamoto, T., Yamashita, K., Yamazaki, R., Yang, F. W., Yang, L., Yang, Y., Yang, Z., Yap, M. J., Yeeles, D. W., Yelikar, A. B., Ying, M., Yokogawa, K., Yokoyama, J., Yokozawa, T., Yoon, A., Yoshioka, T., Yu, H., Yuzurihara, H., Zadrozny, A., Zanolin, M., Zeidler, S., Zelenova, T., Zendri, J. -P., Zevin, M., Zhan, M., Zhang, H., Zhang, J., Zhang, L., Zhang, R., Zhang, T., Zhao, C., Zhao, G., Zhao, Y., Zhou, Z., Zhu, X. J., Zhu, Z. -H., Zucker, M. E., Zweizig, J., Spectroscopies optiques des matériaux verres, amorphes et à nanoparticules (SOPRANO), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Laboratoire Kastler Brossel (LKB [Collège de France]), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Collège de France (CdF (institution)), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Laboratoire des matériaux avancés (LMA), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Marne-la-Vallée (UPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), Institut des Hautes Etudes Scientifiques (IHES), IHES, LIGO Scientific, VIRGO, KAGRA, Virgo, Van Swinderen Institute for Particle Physics and G, (Astro)-Particles Physics, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut des Hautes Études Scientifiques (IHES), Other Research IHEF (IoP, FNWI), IoP (FNWI), Abbott, R, Abbott, T, Abraham, S, Acernese, F, Ackley, K, Adams, A, Adams, C, Adhikari, R, Adya, V, Affeldt, C, Agarwal, D, Agathos, M, Agatsuma, K, Aggarwal, N, Aguiar, O, Aiello, L, Ain, A, Ajith, P, Akutsu, T, Aleman, K, Allen, G, Allocca, A, Altin, P, Amato, A, Anand, S, Ananyeva, A, Anderson, S, Anderson, W, Ando, M, Angelova, S, Ansoldi, S, Antelis, J, Antier, S, Appert, S, Arai, K, Arai, Y, Araki, S, Araya, A, Araya, M, Areeda, J, Arene, M, Aritomi, N, Arnaud, N, Aronson, S, Arun, K, Asada, H, Asali, Y, Ashton, G, Aso, Y, Aston, S, Astone, P, Aubin, F, Aufmuth, P, Aultoneal, K, Austin, C, Babak, S, Badaracco, F, Bader, M, Bae, S, Bae, Y, Baer, A, Bagnasco, S, Bai, Y, Baiotti, L, Baird, J, Bajpai, R, Ball, M, Ballardin, G, Ballmer, S, Bals, M, Balsamo, A, Baltus, G, Banagiri, S, Bankar, D, Bankar, R, Barayoga, J, Barbieri, C, Barish, B, Barker, D, Barneo, P, Barone, F, Barr, B, Barsotti, L, Barsuglia, M, Barta, D, Bartlett, J, Barton, M, Bartos, I, Bassiri, R, Basti, A, Bawaj, M, Bayley, J, Baylor, A, Bazzan, M, Becsy, B, Bedakihale, V, Bejger, M, Belahcene, I, Benedetto, V, Beniwal, D, Benjamin, M, Bennett, T, Bentley, J, Benyaala, M, Bergamin, F, Berger, B, Bernuzzi, S, Bersanetti, D, Bertolini, A, Betzwieser, J, Bhandare, R, Bhandari, A, Bhattacharjee, D, Bhaumik, S, Bidler, J, Bilenko, I, Billingsley, G, Birney, R, Birnholtz, O, Biscans, S, Bischi, M, Biscoveanu, S, Bisht, A, Biswas, B, Bitossi, M, Bizouard, M, Blackburn, J, Blackman, J, Blair, C, Blair, D, Blair, R, Bobba, F, Bode, N, Boer, M, Bogaert, G, Boldrini, M, Bondu, F, Bonilla, E, Bonnand, R, Booker, P, Boom, B, Bork, R, Boschi, V, Bose, N, Bose, S, Bossilkov, V, Boudart, V, Bouffanais, Y, Bozzi, A, Bradaschia, C, Brady, P, Bramley, A, Branch, A, Branchesi, M, Brau, J, Breschi, M, Briant, T, Briggs, J, Brillet, A, Brinkmann, M, Brockill, P, Brooks, A, Brooks, J, Brown, D, Brunett, S, Bruno, G, Bruntz, R, Bryant, J, Buikema, A, Bulik, T, Bulten, H, Buonanno, A, Buscicchio, R, Buskulic, D, Byer, R, Cadonati, L, Caesar, M, Cagnoli, G, Cahillane, C, Cain, H, Bustillo, J, Callaghan, J, Callister, T, Calloni, E, Camp, J, Canepa, M, Cannavacciuolo, M, Cannon, K, Cao, H, Cao, J, Cao, Z, Capocasa, E, Capote, E, Carapella, G, Carbognani, F, Carlin, J, Carney, M, Carpinelli, M, Carullo, G, Carver, T, Diaz, J, Casentini, C, Castaldi, G, Caudill, S, Cavaglia, M, Cavalier, F, Cavalieri, R, Cella, G, Cerda-Duran, P, Cesarini, E, Chaibi, W, Chakravarti, K, Champion, B, Chan, C, Chan, M, Chandra, K, Chanial, P, Chao, S, Charlton, P, Chase, E, Chassande-Mottin, E, Chatterjee, D, Chaturvedi, M, Chen, A, Chen, C, Chen, H, Chen, J, Chen, K, Chen, X, Chen, Y, Chen, Z, Cheng, H, Cheong, C, Cheung, H, Chia, H, Chiadini, F, Chiang, C, Chierici, R, Chincarini, A, Chiofalo, M, Chiummo, A, Cho, G, Cho, H, Choate, S, Choudhary, R, Choudhary, S, Christensen, N, Chu, H, Chu, Q, Chu, Y, Chua, S, Chung, K, Ciani, G, Ciecielag, P, Cieslar, M, Cifaldi, M, Ciobanu, A, Ciolfi, R, Cipriano, F, Cirone, A, Clara, F, Clark, E, Clark, J, Clarke, L, Clearwater, P, Clesse, S, Cleva, F, Coccia, E, Cohadon, P, Cohen, D, Cohen, L, Colleoni, M, Collette, C, Colpi, M, Compton, C, Constancio, M, Conti, L, Cooper, S, Corban, P, Corbitt, T, Cordero-Carrion, I, Corezzi, S, Corley, K, Cornish, N, Corre, D, Corsi, A, Cortese, S, Costa, C, Cotesta, R, Coughlin, M, Coughlin, S, Coulon, J, Countryman, S, Cousins, B, Couvares, P, Covas, P, Coward, D, Cowart, M, Coyne, D, Coyne, R, Creighton, J, Creighton, T, Criswell, A, Croquette, M, Crowder, S, Cudell, J, Cullen, T, Cumming, A, Cummings, R, Cuoco, E, Curylo, M, Dal Canton, T, Dalya, G, Dana, A, Daneshgaranbajastani, L, D'Angelo, B, Danilishin, S, D'Antonio, S, Danzmann, K, Darsow-Fromm, C, Dasgupta, A, Datrier, L, Dattilo, V, Dave, I, Davier, M, Davies, G, Davis, D, Daw, E, Dean, R, Debra, D, Deenadayalan, M, Degallaix, J, De Laurentis, M, Deleglise, S, Del Favero, V, De Lillo, F, De Lillo, N, Del Pozzo, W, Demarchi, L, De Matteis, F, D'Emilio, V, Demos, N, Dent, T, Depasse, A, De Pietri, R, De Rosa, R, De Rossi, C, Desalvo, R, De Simone, R, Dhurandhar, S, Diaz, M, Diaz-Ortiz, M, Didio, N, Dietrich, T, Di Fiore, L, Di Fronzo, C, Di Giorgio, C, Di Giovanni, F, Di Girolamo, T, Di Lieto, A, Ding, B, Di Pace, S, Di Palma, I, Di Renzo, F, Divakarla, A, Dmitriev, A, Doctor, Z, D'Onofrio, L, Donovan, F, Dooley, K, Doravari, S, Dorrington, I, Drago, M, Driggers, J, Drori, Y, Du, Z, Ducoin, J, Dupej, P, Durante, O, D'Urso, D, Duverne, P, Dwyer, S, Easter, P, Ebersold, M, Eddolls, G, Edelman, B, Edo, T, Edy, O, Effler, A, Eguchi, S, Eichholz, J, Eikenberry, S, Eisenmann, M, Eisenstein, R, Ejlli, A, Enomoto, Y, Errico, L, Essick, R, Estelles, H, Estevez, D, Etienne, Z, Etzel, T, Evans, M, Evans, T, Ewing, B, Fafone, V, Fair, H, Fairhurst, S, Fan, X, Farah, A, Farinon, S, Farr, B, Farr, W, Farrow, N, Fauchon-Jones, E, Favata, M, Fays, M, Fazio, M, Feicht, J, Fejer, M, Feng, F, Fenyvesi, E, Ferguson, D, Fernandez-Galiana, A, Ferrante, I, Ferreira, T, Fidecaro, F, Figura, P, Fiori, I, Fishbach, M, Fisher, R, Fittipaldi, R, Fiumara, V, Flaminio, R, Floden, E, Flynn, E, Fong, H, Font, J, Fornal, B, Forsyth, P, Franke, A, Frasca, S, Frasconi, F, Frederick, C, Frei, Z, Freise, A, Frey, R, Fritschel, P, Frolov, V, Fronze, G, Fujii, Y, Fujikawa, Y, Fukunaga, M, Fukushima, M, Fulda, P, Fyffe, M, Gabbard, H, Gadre, B, Gaebel, S, Gair, J, Gais, J, Galaudage, S, Gamba, R, Ganapathy, D, Ganguly, A, Gao, D, Gaonkar, S, Garaventa, B, Garcia-Nunez, C, Garcia-Quiros, C, Garufi, F, Gateley, B, Gaudio, S, Gayathri, V, Ge, G, Gemme, G, Gennai, A, George, J, Gergely, L, Gewecke, P, Ghonge, S, Ghosh, A, Ghosh, S, Giacomazzo, B, Giacoppo, L, Giaime, J, Giardina, K, Gibson, D, Gier, C, Giesler, M, Giri, P, Gissi, F, Glanzer, J, Gleckl, A, Godwin, P, Goetz, E, Goetz, R, Gohlke, N, Goncharov, B, Gonzalez, G, Gopakumar, A, Gosselin, M, Gouaty, R, Grace, B, Grado, A, Granata, M, Granata, V, Grant, A, Gras, S, Grassia, P, Gray, C, Gray, R, Greco, G, Green, A, Green, R, Gretarsson, A, Gretarsson, E, Griffith, D, Griffiths, W, Griggs, H, Grignani, G, Grimaldi, A, Grimes, E, Grimm, S, Grote, H, Grunewald, S, Gruning, P, Guerrero, J, Guidi, G, Guimaraes, A, Guixe, G, Gulati, H, Guo, H, Guo, Y, Gupta, A, Gupta, P, Gustafson, E, Gustafson, R, Guzman, F, Ha, S, Haegel, L, Hagiwara, A, Haino, S, Halim, O, Hall, E, Hamilton, E, Hammond, G, Han, W, Haney, M, Hanks, J, Hanna, C, Hannam, M, Hannuksela, O, Hansen, H, Hansen, T, Hanson, J, Harder, T, Hardwick, T, Haris, K, Harms, J, Harry, G, Harry, I, Hartwig, D, Hasegawa, K, Haskell, B, Hasskew, R, Haster, C, Hattori, K, Haughian, K, Hayakawa, H, Hayama, K, Hayes, F, Healy, J, Heidmann, A, Heintze, M, Heinze, J, Heinzel, J, Heitmann, H, Hellman, F, Hello, P, Helmling-Cornell, A, Hemming, G, Hendry, M, Heng, I, Hennes, E, Hennig, J, Hennig, M, Vivanco, F, Heurs, M, Hild, S, Hill, P, Himemoto, Y, Hines, A, Hiranuma, Y, Hirata, N, Hirose, E, Hochheim, S, Hofman, D, Hohmann, J, Holgado, A, Holland, N, Hollows, I, Holmes, Z, Holt, K, Holz, D, Hong, Z, Hopkins, P, Hough, J, Howell, E, Hoy, C, Hoyland, D, Hreibi, A, Hsieh, B, Hsu, Y, Huang, G, Huang, H, Huang, P, Huang, Y, Hubner, M, Huddart, A, Huerta, E, Hughey, B, Hui, D, Hui, V, Husa, S, Huttner, S, Huxford, R, Huynh-Dinh, T, Ide, S, Idzkowski, B, Iess, A, Ikenoue, B, Imam, S, Inayoshi, K, Inchauspe, H, Ingram, C, Inoue, Y, Intini, G, Ioka, K, Isi, M, Isleif, K, Ito, K, Itoh, Y, Iyer, B, Izumi, K, Jaberianhamedan, V, Jacqmin, T, Jadhav, S, James, A, Jan, A, Jani, K, Janssens, K, Janthalur, N, Jaranowski, P, Jariwala, D, Jaume, R, Jenkins, A, Jeon, C, Jeunon, M, Jia, W, Jiang, J, Jin, H, Johns, G, Jones, A, Jones, D, Jones, J, Jones, P, Jones, R, Jonker, R, Ju, L, Jung, K, Jung, P, Junker, J, Kaihotsu, K, Kajita, T, Kakizaki, M, Kalaghatgi, C, Kalogera, V, Kamai, B, Kamiizumi, M, Kanda, N, Kandhasamy, S, Kang, G, Kanner, J, Kao, Y, Kapadia, S, Kapasi, D, Karat, S, Karathanasis, C, Karki, S, Kashyap, R, Kasprzack, M, Kastaun, W, Katsanevas, S, Katsavounidis, E, Katzman, W, Kaur, T, Kawabe, K, Kawaguchi, K, Kawai, N, Kawasaki, T, Kefelian, F, Keitel, D, Key, J, Khadka, S, Khalili, F, Khan, I, Khan, S, Khazanov, E, Khetan, N, Khursheed, M, Kijbunchoo, N, Kim, C, Kim, J, Kim, K, Kim, W, Kim, Y, Kimball, C, Kimura, N, King, P, Kinley-Hanlon, M, Kirchhoff, R, Kissel, J, Kita, N, Kitazawa, H, Kleybolte, L, Klimenko, S, Knee, A, Knowles, T, Knyazev, E, Koch, P, Koekoek, G, Kojima, Y, Kokeyama, K, Koley, S, Kolitsidou, P, Kolstein, M, Komori, K, Kondrashov, V, Kong, A, Kontos, A, Koper, N, Korobko, M, Kotake, K, Kovalam, M, Kozak, D, Kozakai, C, Kozu, R, Kringel, V, Krishnendu, N, Krolak, A, Kuehn, G, Kuei, F, Kumar, A, Kumar, P, Kumar, R, Kume, J, Kuns, K, Kuo, C, Kuo, H, Kuromiya, Y, Kuroyanagi, S, Kusayanagi, K, Kwak, K, Kwang, S, Laghi, D, Lalande, E, Lam, T, Lamberts, A, Landry, M, Lane, B, Lang, R, Lange, J, Lantz, B, la Rosa, I, Lartaux-Vollard, A, Lasky, P, Laxen, M, Lazzarini, A, Lazzaro, C, Leaci, P, Leavey, S, Lecoeuche, Y, Lee, H, Lee, J, Lee, K, Lee, R, Lehmann, J, Lemaitre, A, Leon, E, Leonardi, M, Leroy, N, Letendre, N, Levin, Y, Leviton, J, Li, A, Li, B, Li, J, Li, K, Li, T, Li, X, Lin, C, Lin, F, Lin, H, Lin, L, Linde, F, Linker, S, Linley, J, Littenberg, T, Liu, G, Liu, J, Liu, K, Liu, X, Llorens-Monteagudo, M, Lo, R, Lockwood, A, Lollie, M, London, L, Longo, A, Lopez, D, Lorenzini, M, Loriette, V, Lormand, M, Losurdo, G, Lough, J, Lousto, C, Lovelace, G, Luck, H, Lumaca, D, Lundgren, A, Luo, L, Macas, R, Macinnis, M, Macleod, D, Macmillan, I, Macquet, A, Hernandez, I, Magana-Sandoval, F, Magazzu, C, Magee, R, Maggiore, R, Majorana, E, Makarem, C, Maksimovic, I, Maliakal, S, Malik, A, Man, N, Mandic, V, Mangano, V, Mango, J, Mansell, G, Manske, M, Mantovani, M, Mapelli, M, Marchesoni, F, Marchio, M, Marion, F, Mark, Z, Marka, S, Marka, Z, Markakis, C, Markosyan, A, Markowitz, A, Maros, E, Marquina, A, Marsat, S, Martelli, F, Martin, I, Martin, R, Martinez, M, Martinez, V, Martinovic, K, Martynov, D, Marx, E, Masalehdan, H, Mason, K, Massera, E, Masserot, A, Massinger, T, Masso-Reid, M, Mastrogiovanni, S, Matas, A, Mateu-Lucena, M, Matichard, F, Matiushechkina, M, Mavalvala, N, Mccann, J, Mccarthy, R, Mcclelland, D, Mcclincy, P, Mccormick, S, Mcculler, L, Mcghee, G, Mcguire, S, Mcisaac, C, Mciver, J, Mcmanus, D, Mcrae, T, Mcwilliams, S, Meacher, D, Mehmet, M, Mehta, A, Melatos, A, Melchor, D, Mendell, G, Menendez-Vazquez, A, Menoni, C, Mercer, R, Mereni, L, Merfeld, K, Merilh, E, Merritt, J, Merzougui, M, Meshkov, S, Messenger, C, Messick, C, Meyers, P, Meylahn, F, Mhaske, A, Miani, A, Miao, H, Michaloliakos, I, Michel, C, Michimura, Y, Middleton, H, Milano, L, Miller, A, Millhouse, M, Mills, J, Milotti, E, Milovich-Goff, M, Minazzoli, O, Minenkov, Y, Mio, N, Mir, L, Mishkin, A, Mishra, C, Mishra, T, Mistry, T, Mitra, S, Mitrofanov, V, Mitselmakher, G, Mittleman, R, Miyakawa, O, Miyamoto, A, Miyazaki, Y, Miyo, K, Miyoki, S, Mo, G, Mogushi, K, Mohapatra, S, Mohite, S, Molina, I, Molina-Ruiz, M, Mondin, M, Montani, M, Moore, C, Moraru, D, Morawski, F, More, A, Moreno, C, Moreno, G, Mori, Y, Morisaki, S, Moriwaki, Y, Mours, B, Mow-Lowry, C, Mozzon, S, Muciaccia, F, Mukherjee, A, Mukherjee, D, Mukherjee, S, Mukund, N, Mullavey, A, Munch, J, Muniz, E, Murray, P, Musenich, R, Nadji, S, Nagano, K, Nagano, S, Nagar, A, Nakamura, K, Nakano, H, Nakano, M, Nakashima, R, Nakayama, Y, Nardecchia, I, Narikawa, T, Naticchioni, L, Nayak, B, Nayak, R, Negishi, R, Neil, B, Neilson, J, Nelemans, G, Nelson, T, Nery, M, Neunzert, A, Ng, K, Ng, S, Nguyen, C, Nguyen, P, Nguyen, T, Quynh, L, Ni, W, Nichols, S, Nishizawa, A, Nissanke, S, Nocera, F, Noh, M, Norman, M, North, C, Nozaki, S, Nuttall, L, Oberling, J, O'Brien, B, Obuchi, Y, O'Dell, J, Ogaki, W, Oganesyan, G, Oh, J, Oh, K, Oh, S, Ohashi, M, Ohishi, N, Ohkawa, M, Ohme, F, Ohta, H, Okada, M, Okutani, Y, Okutomi, K, Olivetto, C, Oohara, K, Ooi, C, Oram, R, O'Reilly, B, Ormiston, R, Ormsby, N, Ortega, L, O'Shaughnessy, R, O'Shea, E, Oshino, S, Ossokine, S, Osthelder, C, Otabe, S, Ottaway, D, Overmier, H, Pace, A, Pagano, G, Page, M, Pagliaroli, G, Pai, A, Pai, S, Palamos, J, Palashov, O, Palomba, C, Pan, K, Panda, P, Pang, H, Pang, P, Pankow, C, Pannarale, F, Pant, B, Paoletti, F, Paoli, A, Paolone, A, Parisi, A, Park, J, Parker, W, Pascucci, D, Pasqualetti, A, Passaquieti, R, Passuello, D, Patel, M, Patricelli, B, Payne, E, Pechsiri, T, Pedraza, M, Pegoraro, M, Pele, A, Arellano, F, Penn, S, Perego, A, Pereira, A, Pereira, T, Perez, C, Perigois, C, Perreca, A, Perries, S, Petermann, J, Petterson, D, Pfeiffer, H, Pham, K, Phukon, K, Piccinni, O, Pichot, M, Piendibene, M, Piergiovanni, F, Pierini, L, Pierro, V, Pillant, G, Pilo, F, Pinard, L, Pinto, I, Piotrzkowski, B, Piotrzkowski, K, Pirello, M, Pitkin, M, Placidi, E, Plastino, W, Pluchar, C, Poggiani, R, Polini, E, Pong, D, Ponrathnam, S, Popolizio, P, Porter, E, Powell, J, Pracchia, M, Pradier, T, Prajapati, A, Prasai, K, Prasanna, R, Pratten, G, Prestegard, T, Principe, M, Prodi, G, Prokhorov, L, Prosposito, P, Prudenzi, L, Puecher, A, Punturo, M, Puosi, F, Puppo, P, Purrer, M, Qi, H, Quetschke, V, Quinonez, P, Quitzow-James, R, Raab, F, Raaijmakers, G, Radkins, H, Radulesco, N, Raffai, P, Rail, S, Raja, S, Rajan, C, Ramirez, K, Ramirez, T, Ramos-Buades, A, Rana, J, Rapagnani, P, Rapol, U, Ratto, B, Raymond, V, Raza, N, Razzano, M, Read, J, Rees, L, Regimbau, T, Rei, L, Reid, S, Reitze, D, Relton, P, Rettegno, P, Ricci, F, Richardson, C, Richardson, J, Richardson, L, Ricker, P, Riemenschneider, G, Riles, K, Rizzo, M, Robertson, N, Robie, R, Robinet, F, Rocchi, A, Rocha, J, Rodriguez, S, Rodriguez-Soto, R, Rolland, L, Rollins, J, Roma, V, Romanelli, M, Romano, R, Romel, C, Romero, A, Romero-Shaw, I, Romie, J, Rose, C, Rosinska, D, Rosofsky, S, Ross, M, Rowan, S, Rowlinson, S, Roy, S, Rozza, D, Ruggi, P, Ryan, K, Sachdev, S, Sadecki, T, Sadiq, J, Sago, N, Saito, S, Saito, Y, Sakai, K, Sakai, Y, Sakellariadou, M, Sakuno, Y, Salafia, O, Salconi, L, Saleem, M, Salemi, F, Samajdar, A, Sanchez, E, Sanchez, J, Sanchez, L, Sanchis-Gual, N, Sanders, J, Sanuy, A, Saravanan, T, Sarin, N, Sassolas, B, Satari, H, Sathyaprakash, B, Sato, S, Sato, T, Sauter, O, Savage, R, Savant, V, Sawada, T, Sawant, D, Sawant, H, Sayah, S, Schaetzl, D, Scheel, M, Scheuer, J, Schindler-Tyka, A, Schmidt, P, Schnabel, R, Schneewind, M, Schofield, R, Schonbeck, A, Schulte, B, Schutz, B, Schwartz, E, Scott, J, Scott, S, Seglar-Arroyo, M, Seidel, E, Sekiguchi, T, Sekiguchi, Y, Sellers, D, Sengupta, A, Sennett, N, Sentenac, D, Seo, E, Sequino, V, Sergeev, A, Setyawati, Y, Shaffer, T, Shahriar, M, Shams, B, Shao, L, Sharifi, S, Sharma, A, Sharma, P, Shawhan, P, Shcheblanov, N, Shen, H, Shibagaki, S, Shikauchi, M, Shimizu, R, Shimoda, T, Shimode, K, Shink, R, Shinkai, H, Shishido, T, Shoda, A, Shoemaker, D, Shukla, K, Shyamsundar, S, Sieniawska, M, Sigg, D, Singer, L, Singh, D, Singh, N, Singha, A, Sintes, A, Sipala, V, Skliris, V, Slagmolen, B, Slaven-Blair, T, Smetana, J, Smith, J, Smith, R, Somala, S, Somiya, K, Son, E, Soni, K, Soni, S, Sorazu, B, Sordini, V, Sorrentino, F, Sorrentino, N, Sotani, H, Soulard, R, Souradeep, T, Sowell, E, Spagnuolo, V, Spencer, A, Spera, M, Srivastava, A, Srivastava, V, Staats, K, Stachie, C, Steer, D, Steinlechner, J, Steinlechner, S, Stops, D, Stover, M, Strain, K, Strang, L, Stratta, G, Strunk, A, Sturani, R, Stuver, A, Sudbeck, J, Sudhagar, S, Sudhir, V, Sugimoto, R, Suh, H, Summerscales, T, Sun, H, Sun, L, Sunil, S, Sur, A, Suresh, J, Sutton, P, Suzuki, T, Swinkels, B, Szczepanczyk, M, Szewczyk, P, Tacca, M, Tagoshi, H, Tait, S, Takahashi, H, Takahashi, R, Takamori, A, Takano, S, Takeda, H, Takeda, M, Talbot, C, Tanaka, H, Tanaka, K, Tanaka, T, Tanasijczuk, A, Tanioka, S, Tanner, D, Tao, D, Tapia, A, Martin, E, Tasson, J, Telada, S, Tenorio, R, Terkowski, L, Test, M, Thirugnanasambandam, M, Thomas, M, Thomas, P, Thompson, J, Thondapu, S, Thorne, K, Thrane, E, Tiwari, S, Tiwari, V, Toland, K, Tolley, A, Tomaru, T, Tomigami, Y, Tomura, T, Tonelli, M, Torres-Forne, A, Torrie, C, Tosta e Melo, I, Toyra, D, Trapananti, A, Travasso, F, Traylor, G, Tringali, M, Tripathee, A, Troiano, L, Trovato, A, Trozzo, L, Trudeau, R, Tsai, D, Tsang, K, Tsang, T, Tsao, J, Tse, M, Tso, R, Tsubono, K, Tsuchida, S, Tsukada, L, Tsuna, D, Tsutsui, T, Tsuzuki, T, Turconi, M, Tuyenbayev, D, Ubhi, A, Uchikata, N, Uchiyama, T, Udall, R, Ueda, A, Uehara, T, Ueno, K, Ueshima, G, Ugolini, D, Unnikrishnan, C, Uraguchi, F, Urban, A, Ushiba, T, Usman, S, Utina, A, Vahlbruch, H, Vajente, G, Vajpeyi, A, Valdes, G, Valentini, M, Valsan, V, van Bakel, N, van Beuzekom, M, van den Brand, J, van Den Broeck, C, Vander-Hyde, D, van der Schaaf, L, van Heijningen, J, Vanosky, J, van Putten, M, Vardaro, M, Vargas, A, Varma, V, Vasuth, M, Vecchio, A, Vedovato, G, Veitch, J, Veitch, P, Venkateswara, K, Venneberg, J, Venugopalan, G, Verkindt, D, Verma, Y, Veske, D, Vetrano, F, Vicere, A, Viets, A, Villa-Ortega, V, Vinet, J, Vitale, S, Vo, T, Vocca, H, von Reis, E, von Wrangel, J, Vorvick, C, Vyatchanin, S, Wade, L, Wade, M, Wagner, K, Walet, R, Walker, M, Wallace, G, Wallace, L, Walsh, S, Wang, J, Wang, W, Ward, R, Warner, J, Was, M, Washimi, T, Washington, N, Watchi, J, Weaver, B, Wei, L, Weinert, M, Weinstein, A, Weiss, R, Weller, C, Wellmann, F, Wen, L, Wessels, P, Westhouse, J, Wette, K, Whelan, J, White, D, Whiting, B, Whittle, C, Wilken, D, Williams, D, Williams, M, Williamson, A, Willis, J, Willke, B, Wilson, D, Winkler, W, Wipf, C, Wlodarczyk, T, Woan, G, Woehler, J, Wofford, J, Wong, I, Wu, C, Wu, D, Wu, H, Wu, S, Wysocki, D, Xiao, L, Xu, W, Yamada, T, Yamamoto, H, Yamamoto, K, Yamamoto, T, Yamashita, K, Yamazaki, R, Yang, F, Yang, L, Yang, Y, Yang, Z, Yap, M, Yeeles, D, Yelikar, A, Ying, M, Yokogawa, K, Yokoyama, J, Yokozawa, T, Yoon, A, Yoshioka, T, Yu, H, Yuzurihara, H, Zadrozny, A, Zanolin, M, Zeidler, S, Zelenova, T, Zendri, J, Zevin, M, Zhan, M, Zhang, H, Zhang, J, Zhang, L, Zhang, R, Zhang, T, Zhao, C, Zhao, G, Zhao, Y, Zhou, Z, Zhu, X, Zhu, Z, Zucker, M, Zweizig, J, The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collaboration, Arai, Koya, Arai, Koji, Arène, M., Bécsy, B., Cain III, H. W., Calderón Bustillo, J., Casanueva Diaz, J., Cavaglià, M., Cerdá-Durán, P., Chiang, C-Y., Chu, Y-K., Cieślar, M., Constancio Jr., M., Cordero-Carrión, I., Curyło, M., Dálya, G., D’Angelo, B., D’Antonio, S., Deléglise, S., D’Emilio, V., Díaz, M. C., Diaz-Ortiz Jr., M., D’Onofrio, L., D’Urso, D., Estellés, H., Fronzé, G. G., García-Núñez, C., García-Quirós, C., Ghosh, Abhirup., Ghosh, Archisman, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Sourath, González, G., Guixé, G., Gupta, Anchal, Gupta, Anuradha, Hernandez Vivanco, F., Hsieh, B-H., Huang, G-Z., Huang, H-Y., Huang, Y-C., Hübner, M. T., Kéfélian, F., Królak, A., Kumar, Rahul, Kumar, Rakesh, Kuo, H-S., La Rosa, I., Lemaître, A., Lin, C-Y., Lin, F-K., Lin, F-L., Lück, H., Magaña Hernandez, I., Magaña-Sandoval, F., Magazzù, C., Márka, S., Márka, Z., Mo, Geoffrey, Mukherjee, Arunava, Mukherjee, Soma, Mukherjee, Subroto, Muñiz, E. A., Nguyen Quynh, L., O’Brien, B. D., O’Dell, J., O’Reilly, B., O’Shaughnessy, R., O’Shea, E., Peña Arellano, F. E., Périgois, C., Perriès, S., Pürrer, M., Rosińska, D., Roy, Santosh, Roy, Soumen, Schönbeck, A., Südbeck, J., Suzuki, Takamasa, Suzuki, Toshikazu, Szczepańczyk, M. J., Tanaka, Kazuyuki, Tanaka, Kenta, Tanaka, Taiki, Tanaka, Takahiro, Tapia San Martin, E. N., Tiwari, Shubhanshu, Tiwari, Srishti, Torres-Forné, A., Töyrä, D., Tsao, J-S., Van Den Broeck, C., Vasúth, M., Viceré, A., Weßels, P., Xu, W-R., Yamamoto, Kazuhiro, Yamamoto, Kohei, Yang, Yang, Yang, Yi, Yu, Hang, Yu, Haocun, Zadrożny, A., Zhao, Yue, and Zhao, Yuhang
- Subjects
TIMING NOISE ,Astronomy ,Supernova remnants (1667) ,FOS: Physical sciences ,Gravitational wave astronomy (675) ,Gravitational waves (678) ,Neutron stars (1108) ,Astrophysics ,Astronomy & Astrophysics ,Vela ,01 natural sciences ,CHANDRA ,Pulsar ,0103 physical sciences ,Gravitational wave astronomy ,Gravitational waves ,Neutron stars ,Supernova remnants ,Supernova remnant ,010303 astronomy & astrophysics ,QC ,QB ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Science & Technology ,OBJECT ,Settore FIS/05 ,010308 nuclear & particles physics ,Gravitational wave ,CONSTRAINTS ,Astronomy and Astrophysics ,PULSAR ,LIGO ,G291.0-0.1 ,CASSIOPEIA ,Neutron star ,Supernova ,DA 495 ,Amplitude ,Space and Planetary Science ,Physical Sciences ,X-RAY ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena ,EMISSION - Abstract
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a frequency band spanning from 10~Hz to 2~kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95\% confidence level in sample sub-bands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and $r$-mode amplitude. The best 95\% confidence constraints placed on the signal strain are $7.7\times 10^{-26}$ and $7.8\times 10^{-26}$ near 200~Hz for the supernova remnants G39.2--0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and $r$-mode amplitude reach $\lesssim 10^{-7}$ and $ \lesssim 10^{-5}$, respectively, at frequencies above $\sim 400$~Hz for the closest supernova remnant G266.2--1.2/Vela Jr., https://dcc.ligo.org/P2000479
- Published
- 2021
8. Assessing Quasi‐Periodicities in Jovian X‐Ray Emissions: Techniques and Heritage Survey.
- Author
-
Jackman, C. M., Knigge, C., Altamirano, D., Gladstone, R., Dunn, W., Elsner, R., Kraft, R., Branduardi‐Raymont, G., and Ford, P.
- Subjects
MONTE Carlo method ,FAST Fourier transforms ,AURORAL zones ,RAYLEIGH waves ,BIG data - Abstract
Jupiter's auroral X‐rays are rather mysterious, with an unknown driver, and several previous reports of individual cases of quasi‐periodic emission. In this work we revisit heritage X‐ray data sets from the 1990s to 2015 and apply robust significance testing of emerging quasi‐periodicities, seeking to understand the robustness and regularity of previously reported quasi‐periodic emissions. Our analysis incorporates the use of the Rayleigh test as an alternative to Lomb‐Scargle analysis or Fast Fourier Transforms, where Rayleigh is particularly suited to a time‐tagged data set of sparse counts such as is common for jovian X‐ray data. Furthermore, the analysis techniques that we present (including Rayleigh testing and Monte Carlo simulation) can be applied to any time‐tagged data set. The code to conduct such analysis is released as supplementary information to accompany this paper. The five most significant (p value <0.01) quasi‐periods from Jupiter's northern auroral region have periods ranging from ~8.0 to 45.96 min, and the two most significant (p value <0.01) quasi‐periods from the south have periods of ~14.1 and ~34.9 min. The selection of a restrictive hot spot source region seems to be critical for detecting quasi‐periodic emission, suggesting that the site of pulsations may be spatially localized. Periods vary from one Jupiter rotation to the next in one long observation, and the north and south are shown to pulse independently in another conjugate observation. These results have important implications for understanding the driver of jovian X‐ray emission. Key Points: Timing analysis of Chandra observations of Jupiter's X‐ray auroras from 1999 to 2015Statistically significant quasi‐periodicities in jovian auroral X‐rays are relatively rare and periods variable, even on successive planetary rotationsWe use Rayleigh testing and Monte Carlo simulation to search for statistically significant quasi‐periods in sparse, time‐tagged data [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
9. Chandra X-ray Observations of the High Redshift Cluster of Galaxies RDCSJ0910+5422
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,galaxies ,CDGS 58 ,X-rays ,Astrophysics::Cosmology and Extragalactic Astrophysics ,clusters ,Chandra - Abstract
Two X-ray observations of Chandra are analyzed. The resulting adaptively smoothed image showed no bimodality, and the color image showed a cool core with a decreasing temperature gradient. The surface brightness profile was well-fit, and shows the spatial distribution of X-ray emission. Extracting and measuring the spectra of inner and outer regions confirmed that the energy is relatively similar between them; therefore, it is most likely not a relaxed cluster. The data suggested that there is a merging process at some level. It is possible to be a late-stage merger, or one observed in the line of sight, but it is indiscernible.
- Published
- 2022
- Full Text
- View/download PDF
10. Annealing bounds to prevent further Charge Transfer Inefficiency increase of the Chandra X-ray CCDs.
- Author
-
Monmeyran, Corentin, Patel, Neil S., Bautz, Mark W., Grant, Catherine E., Prigozhin, Gregory Y., Agarwal, Anuradha, and Kimerling, Lionel C.
- Subjects
- *
CHARGE coupled devices , *X-ray telescopes , *CHARGE transfer , *POINT defects , *RADIATION damage - Abstract
After the front-illuminated CCDs on board the X-ray telescope Chandra were damaged by radiation after launch, it was decided to anneal them in an effort to remove the defects introduced by the irradiation. The annealing led to an unexpected increase of the Charge Transfer Inefficiency (CTI). The performance degradation is attributed to point defect interactions in the devices. Specifically, the annealing at 30 °C activated the diffusion of the main interstitial defect in the device, the carbon interstitial, which led to its association with a substitutional impurity, ultimately resulting in a stable and electrically active defect state. Because the formation reaction of this carbon interstitial and substitutional impurity associate is diffusion limited, we recommend a higher upper bound for the annealing temperature and duration of any future CCD anneals, that of −50 °C for one day or −60 °C for a week, to prevent further CTI increase. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
11. Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo
- Author
-
Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, A., Adams, C., Adhikari, R.X., Adya, V.B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Aleman, K.M., Allen, G., Allocca, A., Altin, P.A., Amato, A., Anand, S., Ananyeva, A., Anderson, S.B., Anderson, W.G., Ando, M., Angelova, S.V., Ansoldi, S., Antelis, J.M., Antier, S., Appert, S., Arai, K., Arai, Y., Araki, S., Araya, A., Araya, M.C., Areeda, J.S., Arene, M., Aritomi, N., Arnaud, N., Aronson, S.M., Arun, K.G., Asada, H., Asali, Y., Ashton, G., Aso, Y., Hild, Stefan, Danilishin, Stefan, Steinlechner, Jessica, Steinlechner, Sebastian, Hennig, Margot, Hennig, Jan-Simon, Utina, Andrei, Spagnuolo, Viola, van den Brand, Johannes, Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, A., Adams, C., Adhikari, R.X., Adya, V.B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Aleman, K.M., Allen, G., Allocca, A., Altin, P.A., Amato, A., Anand, S., Ananyeva, A., Anderson, S.B., Anderson, W.G., Ando, M., Angelova, S.V., Ansoldi, S., Antelis, J.M., Antier, S., Appert, S., Arai, K., Arai, Y., Araki, S., Araya, A., Araya, M.C., Areeda, J.S., Arene, M., Aritomi, N., Arnaud, N., Aronson, S.M., Arun, K.G., Asada, H., Asali, Y., Ashton, G., Aso, Y., Hild, Stefan, Danilishin, Stefan, Steinlechner, Jessica, Steinlechner, Sebastian, Hennig, Margot, Hennig, Jan-Simon, Utina, Andrei, Spagnuolo, Viola, and van den Brand, Johannes
- Abstract
We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a fRequency band spanning from 10 to 2 kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample subbands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and r-mode amplitude. The best 95% confidence constraints placed on the signal strain are 7.7 x 10(-26) and 7.8 x 10(-26) near 200 Hz for the supernova remnants G39.2-0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and r-mode amplitude reach less than or similar to 10(-7) and less than or similar to 10(-5), respectively, at frequencies above similar to 400 Hz for the closest supernova remnant G266.2-1.2/Vela Jr.
- Published
- 2021
12. Relativistic X-Ray Jets from the Black Hole X-Ray Binary MAXI J1820+070
- Author
-
Espinasse, M., Corbel, S., Kaaret, P., Tremou, E., Migliori, G., Plotkin, Richard, Bright, J., Tomsick, J., Tzioumis, A., Fender, R., Orosz, J.A., Gallo, E., Homan, J., Jonker, P.G., Miller-Jones, James, Russell, D.M., Motta, S., Espinasse, M., Corbel, S., Kaaret, P., Tremou, E., Migliori, G., Plotkin, Richard, Bright, J., Tomsick, J., Tzioumis, A., Fender, R., Orosz, J.A., Gallo, E., Homan, J., Jonker, P.G., Miller-Jones, James, Russell, D.M., and Motta, S.
- Abstract
The black hole MAXI J1820+070 was discovered during its 2018 outburst and was extensively monitored across the electromagnetic spectrum. Following the detection of relativistic radio jets, we obtained four Chandra X-ray observations taken between 2018 November and 2019 June, along with radio observations conducted with the Very Large Array and MeerKAT arrays. We report the discovery of X-ray sources associated with the radio jets moving at relativistic velocities with a possible deceleration at late times. The broadband spectra of the jets are consistent with synchrotron radiation from particles accelerated up to very high energies (>10 TeV) by shocks produced by the jets interacting with the interstellar medium. The minimal internal energy estimated from the X-ray observations for the jets is ∼1041 erg, significantly larger than the energy calculated from the radio flare alone, suggesting most of the energy is possibly not radiated at small scales but released through late-time interactions.
- Published
- 2020
13. Evidence of Runaway Gas Cooling in the Absence of Supermassive Black Hole Feedback at the Epoch of Cluster Formation
- Author
-
Hlavacek-Larrondo, J., Rhea, C. L., Webb, T., McDonald, M., Muzzin, A., Wilson, G., Finner, K., Valin, F., Bonaventura, N., Cooper, M., Fabian, A. C., Gendron-Marsolais, M-L, Jee, M. J., Lidman, C., Mezcua, M., Noble, A., Russell, H. R., Surace, J., Trudeau, A., Yee, H. K. C., Hlavacek-Larrondo, J., Rhea, C. L., Webb, T., McDonald, M., Muzzin, A., Wilson, G., Finner, K., Valin, F., Bonaventura, N., Cooper, M., Fabian, A. C., Gendron-Marsolais, M-L, Jee, M. J., Lidman, C., Mezcua, M., Noble, A., Russell, H. R., Surace, J., Trudeau, A., and Yee, H. K. C.
- Abstract
Cosmological simulations, as well as mounting evidence from observations, have shown that supermassive black holes play a fundamental role in regulating the formation of stars throughout cosmic time. This has been clearly demonstrated in the case of galaxy clusters in which powerful feedback from the central black hole is preventing the hot intracluster gas from cooling catastrophically, thus reducing the expected star formation rates by orders of magnitude. These conclusions, however, have been almost entirely based on nearby clusters. Based on new Chandra X-ray observations, we present the first observational evidence for massive, runaway cooling occurring in the absence of supermassive black hole feedback in the high-redshift galaxy cluster SpARCS104922.6 + 564032.5 (z = 1.709). The hot intracluster gas appears to be fueling a massive burst of star formation (900Myr(-1)) that is offset by dozens of kpc from the central galaxy. The burst is co-spatial with the coolest intracluster gas but not associated with any galaxy in the cluster. In less than 100 million years, such runaway cooling can form the same amount of stars as in the Milky Way. Therefore, intracluster stars are not only produced by tidal stripping and the disruption of cluster galaxies, but can also be produced by runaway cooling of hot intracluster gas at early times. Overall, these observations show the dramatic impact when supermassive black hole feedback fails to operate in clusters. They indicate that in the highest overdensities, such as clusters and protoclusters, runaway cooling may be a new and important mechanism for fueling massive bursts of star formation in the early universe.
- Published
- 2020
14. Element Stratification in the Middle-aged SN Ia Remnant G344.7-0.1
- Author
-
Fukushima, Kotaro, Yamaguchi, Hiroya, Slane, Patrick O., Park, Sangwook, Katsuda, Satoru, Sano, Hidetoshi, Lopez, Laura A., Plucinsky, Paul P., Kobayashi, Shogo B., Matsushita, Kyoko, Fukushima, Kotaro, Yamaguchi, Hiroya, Slane, Patrick O., Park, Sangwook, Katsuda, Satoru, Sano, Hidetoshi, Lopez, Laura A., Plucinsky, Paul P., Kobayashi, Shogo B., and Matsushita, Kyoko
- Abstract
Despite their importance, a detailed understanding of Type Ia supernovae (SNe Ia) remains elusive. X-ray measurements of the element distributions in supernova remnants (SNRs) offer important clues for understanding the explosion and nucleosynthesis mechanisms for SNe Ia. However, it is challenging to observe the entire ejecta mass in X-rays for young SNRs, because the central ejecta may not have been heated by the reverse shock yet. Here we present over 200 kilosecond Chandra observations of the Type Ia SNR G344.7-0.1, whose age is old enough for the reverse shock to have reached the SNR center, providing an opportunity to investigate the distribution of the entire ejecta mass. We reveal a clear stratification of heavy elements with a centrally peaked distribution of the Fe ejecta surrounded by intermediate-mass elements (IMEs: Si, S, Ar Ca) with an arc-like structure. The centroid energy of the Fe K emission is marginally lower in the central Fe-rich region than in the outer IME-rich regions, suggesting that the Fe ejecta were shock-heated more recently. These results are consistent with the prediction for standard SN Ia models, where the heavier elements are synthesized in the interior of an exploding white dwarf. We find, however, that the peak location of the Fe K emission is slightly offset to the west with respect to the geometric center of the SNR. This apparent asymmetry is likely due to the inhomogeneous density distribution of the ambient medium, consistent with our radio observations of the ambient molecular and neutral gas.
- Published
- 2020
15. Reproduction package for the paper: 'The hot interstellar medium towards 4U 1820-30: a Bayesian analysis'
- Author
-
Daniele Rogantini, Elisa Costantini, Missagh Mehdipour, Lucien Kuiper, Piero Ranalli, and Rens Waters
- Subjects
SPEX ,XMM-Newton ,Interstellar medium ,Photoionisation model ,Astronomy ,High resolution X-ray spectroscopy ,Low-mass X-ray binary ,Astrophysics ,Bayesian data analysis ,Chandra ,LMXB: 4U 1820-30 - Abstract
This is thereproduction package for the A&A paper"The hot interstellar medium towards 4U 1820-30: a Bayesian analysis" by Rogantini et al. (2020). It contains data reduction scripts and aPython notebook for the characterization of the high-ionisation lines detected in the spectra of the low-mass X-ray binary 4U 1820-30. [Update in progress]
- Published
- 2020
- Full Text
- View/download PDF
16. The Secret XUV Lives of Cepheids: FUV/X-ray observations of Polaris and β Dor.
- Author
-
Engle, Scott G., Guinan, Edward F., DePasquale, Joseph, and Evans, Nancy
- Subjects
- *
CEPHEIDS , *X-ray astronomy , *ASTRONOMICAL observations , *POLESTAR , *SPECTRUM analysis - Abstract
We report on the surprising recent discovery of strong FUV emissions in two bright, nearby Classical Cepheids from analyses of FUSE archival observations and one of our own approved observations just prior to the failure of the satellite. Polaris and β Dor are currently the only two Cepheids to have been observed with FUSE, and β Dor is the only one to have multiple spectra. Both Cepheids show strong C III (977 Å, 1176 Å) and O VI (1032 Å, 1038 Å) emissions, indicative of 50,000–500,000 K plasma, well above the photospheric temperatures of the stars. More remarkably, β Dor displays variability in the FUV emission strengths which appears to be correlated to its 9.84-d pulsation period. This phenomenon has never before been observed in Cepheids. The FUV studies are presented along with our recent Chandra/XMM X-ray observations of Polaris and β Dor, in which X-ray detections were found for both stars. Further X-ray observations have been proposed to unambiguously determine the origin and nature of the observed high energy emissions from the targets, possibly arising from warm winds, shocks, or pulsationally induced magnetic activity. The initial results of this study are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
17. Evidence of Runaway Gas Cooling in the Absence of Supermassive Black Hole Feedback at the Epoch of Cluster Formation
- Author
-
Myungkook J. Jee, Gillian Wilson, Kyle Finner, Michael McDonald, Jason Surace, A. Trudeau, Julie Hlavacek-Larrondo, Michael C. Cooper, Howard K. C. Yee, Helen Russell, Marie Lou Gendron-Marsolais, Adam Muzzin, F. Valin, N. Bonaventura, T. M. A. Webb, Andrew C. Fabian, M. Mezcua, Carter Rhea, Allison Noble, C. Lidman, Natural Sciences and Engineering Research Council of Canada, and National Aeronautics and Space Administration (US)
- Subjects
Cooling flows ,SAMPLE ,010504 meteorology & atmospheric sciences ,AGN FEEDBACK ,Physics::Instrumentation and Detectors ,Milky Way ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,High-redshift galaxy clusters ,01 natural sciences ,SPECTROSCOPIC CONFIRMATION ,Computer Science::Digital Libraries ,STAR-FORMATION ,CHANDRA ,Intracluster medium ,0103 physical sciences ,Supermassive black holes ,Astrophysics::Solar and Stellar Astrophysics ,INTRACLUSTER LIGHT ,ACCRETION ,010303 astronomy & astrophysics ,X-ray observatories ,Galaxy cluster ,X-RAY CAVITIES ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,Supermassive black hole ,Star formation ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Black hole ,Stars ,RELAXED GALAXY CLUSTERS ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics ,EMISSION - Abstract
arXiv:2007.15660v1, Cosmological simulations, as well as mounting evidence from observations, have shown that supermassive black holes play a fundamental role in regulating the formation of stars throughout cosmic time. This has been clearly demonstrated in the case of galaxy clusters in which powerful feedback from the central black hole is preventing the hot intracluster gas from cooling catastrophically, thus reducing the expected star formation rates by orders of magnitude. These conclusions, however, have been almost entirely based on nearby clusters. Based on new Chandra X-ray observations, we present the first observational evidence for massive, runaway cooling occurring in the absence of supermassive black hole feedback in the high-redshift galaxy cluster SpARCS104922.6 + 564032.5 (z = 1.709). The hot intracluster gas appears to be fueling a massive burst of star formation (≈900 M⊙ yr−1) that is offset by dozens of kpc from the central galaxy. The burst is co-spatial with the coolest intracluster gas but not associated with any galaxy in the cluster. In less than 100 million years, such runaway cooling can form the same amount of stars as in the Milky Way. Therefore, intracluster stars are not only produced by tidal stripping and the disruption of cluster galaxies, but can also be produced by runaway cooling of hot intracluster gas at early times. Overall, these observations show the dramatic impact when supermassive black hole feedback fails to operate in clusters. They indicate that in the highest overdensities, such as clusters and protoclusters, runaway cooling may be a new and important mechanism for fueling massive bursts of star formation in the early universe., J.H.-L. acknowledges support from NSERC via the Discovery grant program, as well as the Canada Research Chair program. C.R. acknowledges financial support from the physics department of the Université de Montréal. G.W. acknowledges support from the National Science Foundation through grant AST-1517863, by HST program number GO15294, and by grant number 80NSSC17K0019 issued through the NASA Astrophysics Data Analysis Program (ADAP). Support for program number GO-15294 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. M.J.J. acknowledges support for the current research from the National Research Foundation of Korea under the programs 2017R1A2B2004644 and 2020R1A4A2002885. H.R.R. acknowledges support from an STFC Ernest Rutherford Fellowship and an Anne McLaren Fellowship.
- Published
- 2020
18. LoCuSS: exploring the connection between local environment, star formation and dust mass in Abell 1758
- Author
-
Graham P. Smith, Eiichi Egami, Matteo Bianconi, Alexis Finoguenov, Sean L. McGee, Chris P. Haines, and Department of Physics
- Subjects
SAMPLE ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,CHANDRA ,Intracluster medium ,X-RAY GROUPS ,0103 physical sciences ,Galaxy formation and evolution ,SIMPLE-MODEL ,Astrophysics::Solar and Stellar Astrophysics ,galaxies: clusters: individual: Abell 1758 ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Star formation ,Astronomy and Astrophysics ,Mass ratio ,115 Astronomy, Space science ,Astrophysics - Astrophysics of Galaxies ,MOLECULAR GAS ,EVOLUTION ,Accretion (astrophysics) ,Galaxy ,Redshift ,GALAXIES ,STELLAR ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,galaxies: star formation ,Astrophysics::Earth and Planetary Astrophysics ,galaxies: evolution ,CLUSTERS ,INFALL - Abstract
We explore the connection between dust and star formation, in the context of environmental effects on galaxy evolution. In particular, we exploit the susceptibility of dust to external processes to assess the influence of dense environment on star-forming galaxies. We have selected cluster Abell 1758 from the Local Cluster Substructure Survey (LoCuSS). Its complex dynamical state is an ideal test-bench to track dust removal and destruction in galaxies due to merger and accretion shocks. We present a systematic panchromatic study (from 0.15 $\rm \mu$m with GALEX to 500 $\rm \mu$m with Herschel) of spectroscopically confirmed star-forming cluster galaxies at intermediate redshift. We observe that the main subclusters (A1758N and A1758S) belong to two separate large-scale structures, with no overlapping galaxy members. Star-forming cluster members are distributed preferentially outside cluster central regions, and are not grouped in substructures. Rather, these galaxies are being funneled towards the main subclusters along separate accretion filaments. Additionally, we present the first study of dust-to-stellar (DTS) mass ratio used as indicator for local environmental influence on galaxy evolution. Star-forming cluster members show lower mean values (32% at 2.4$\rm \sigma$) of DTS mass ratio and lower levels of infrared emission from birth clouds with respect to coeval star-forming field galaxies. This picture is consistent with the majority of star-forming cluster members infalling in isolation. Upon accretion, star-formation is observed to decrease and warm dust is destroyed due to heating from the intracluster medium radiation, ram-pressure stripping and merger shocks., Comment: 16 pages, 11 figures. Accepted for publication in MNRAS
- Published
- 2020
19. Chandra and XMM-Newton Observations of HO Maser Galaxy Mrk 266.
- Author
-
Wang, J., Zhang, J., and Fan, J.
- Subjects
- *
GALAXY spectra , *ASTRONOMICAL masers , *ASTRONOMICAL observatories , *ACTIVE galactic nuclei , *ASTRONOMICAL models , *DATA analysis - Abstract
For HO megamaser galaxy Mrk 266, its Chandra and XMM-Newton data are analyzed here. It shows existence of two obscured nuclei (separation is ~ 5). Our preferred model, the high energy reflected model can fit the hard component of both nuclei spectra well. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
20. Charge Transfer Reactions.
- Author
-
Dennerl, Konrad
- Subjects
- *
CHARGE transfer , *CHARGE exchange , *ASTROPHYSICS , *NUCLEAR fusion , *INTERSTELLAR medium , *SUPERNOVA remnants , *GALAXY clusters , *DARK matter - Abstract
Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
21. TOWARDS A UNITARIAN VIEW OF CHANDRA JETS.
- Author
-
SAMBRUNA, R. M., MARASCHI, L., and TAVECCHIO, F.
- Subjects
- *
EXTRAGALACTIC distances , *X-rays , *ASTROPHYSICAL jets , *SYNCHROTRON radiation , *ELECTRODYNAMICS , *STOCHASTIC approximation - Abstract
In almost a decade of operations, Chandra has observed and discovered the X-ray counterparts of several tens of extragalactic radio jets, with a variety of morphologies and SEDs. Here we take a fresh approach and assume that we do not know their relationship. We then search for phenomenological trends. While admittedly naive, this perspective allow us to start identifying key quantities towards a large-scale jet "unitarian view", just as was previously done for their compact, pc-scale cousins, the blazars. Similarly to the latter, we find that key parameters governing the properties of Chandra jets are their powers and the mass flux, the latter parameterizing the jet interaction with the ambient gas. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
22. X-rays from Venus observed with Chandra
- Author
-
Dennerl, Konrad
- Subjects
- *
VENUSIAN atmosphere , *UPPER atmosphere observations , *CHARGE exchange , *THERMOSPHERE , *SOLAR wind , *X-rays , *VENUS (Planet) - Abstract
Abstract: X-ray observations of Venus are so challenging that the first detection of Venusian X-rays succeeded only in January 2001, with the Chandra satellite. The X-rays from Venus were found to result from fluorescent scattering of solar X-rays in the Venusian thermosphere. An additional component, caused by charge exchange of highly charged heavy ions in the solar wind with atoms in the Venusian exosphere, was suspected, but could not be unambiguously detected. This was hampered by the fact that the observation occurred during solar maximum, when the solar X-ray flux is highest. In order to investigate the presence of an additional charge exchange component, Venus was observed again in March 2006 and October 2007 with Chandra, taking advantage of the fact that the solar X-ray flux had decreased considerably on its way to solar minimum. In fact, these subsequent observations were able to show that also the Venusian exosphere is emitting X-rays, due to its interaction with the solar wind. Here an overview of all the existing X-ray observations of Venus is presented, including first results from the most recent one, which took place after the arrival of Venus Express, providing the first ever opportunity to combine a remote X-ray observation of a planetary exosphere with simultaneous in situ measurements of the solar wind. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
23. The pioneers of venom production for Australian antivenoms
- Author
-
Mirtschin, Peter
- Subjects
- *
POISONOUS animals , *VENOM , *SNAKEBITES , *TOXINS - Abstract
Abstract: Before the introduction of the first Australian antivenom was the era of the self-styled ‘snakemen’ and their diverse snakebite remedies. Many received multiple bites from highly dangerous snakes, some of which were deliberately taken to either prove a certain treatment or liven up their show. The mortality rate among these handlers and showmen was high. Production of the first effective Australian antivenom, the tiger snake antivenom, in 1930, began the scientific approach to treating snakebite and opened new frontiers for professional and amateur snake people. Collecting venoms in the development and early production of antivenoms was carried out by a number of professional herpetologists often with little or no reward and in some instances at the ultimate cost of their lives. This paper reviews the most important of those late nineteenth and twentieth century snakemen and their contributions to venom research, antivenom production and current toxinological knowledge. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
24. X-ray populations in galaxies
- Author
-
Fabbiano, G.
- Subjects
- *
GALACTIC X-ray sources , *X-ray astronomy , *GALAXIES , *ASTRONOMY - Abstract
Abstract: High-resolution Chandra observations have allowed the detection of populations of X-ray sources in galaxies of all morphological types. The X-ray Luminosity Functions (XLFs) of these X-ray source populations have been derived and studied to uncover the drivers for the formation and evolution of binaries in different stellar populations and environments. These XLFs also provide a tool for identifying the nature of the X-ray source population, since different XLFs characterize X-ray sources belonging to young and old stellar populations. Similarly, X-ray colors can be used for identifying different types of X-ray sources. Ultra-Luminous X-ray sources (ULXs, LX >1039 ergss−1) are found to be associated with star-forming stellar populations. The study of the ULX population of the Antennae galaxies points to compact accreting binaries. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
25. X-ray and Gamma-ray properties of AGN: Results from XMM-Newton, Chandra and INTEGRAL
- Author
-
Komossa, Stefanie
- Subjects
- *
GALAXIES , *X-rays , *GRAVITATIONAL collapse , *SUPERMASSIVE black holes - Abstract
Abstract: The X-ray observatories XMM-Newton and Chandra provided a wealth of exciting new results on active galaxies, and many more are expected to emerge soon from the Gamma-ray mission INTEGRAL. Chandra delivered X-ray images of outstanding detail, reaching subarcsecond spatial resolution for the first time in X-ray astronomy. XMM-Newton with its high sensitivity provided X-ray spectra of unprecedented signal/noise. Spectra are resolved in great detail with the spectrometers aboard XMM-Newton and Chandra for the first time. INTEGRAL is dedicated to imaging and spectroscopy in the X-ray and Gamma-ray regime up to 3 MeV with significantly improved sensitivity and resolution as compared to previous Gamma-ray missions. The X-ray and Gamma-ray imaging and spectral observations are greatly improving our understanding of the physical processes in the central region of active galaxies. Here, I give a review of recent X-ray and Gamma-ray results on Active Galactic Nuclei. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
26. Galaxies at the detection limits of deep X-ray surveys
- Author
-
Griffiths, Richard E., Miyaji, Takamitsu, and Knudson, Adam
- Subjects
- *
GALAXIES , *REDSHIFT , *X-rays , *ASTRONOMY - Abstract
Abstract: The great sensitivities of the Chandra X-ray Observatory and XMM-Newton have allowed us to begin to explore the X-ray emission from galaxies at moderate to high redshift. By using the stacking method, we show that we can detect the ensemble emission from normal elliptical, spiral and irregular galaxies out to redshifts approaching unity. The average X-ray luminosity of these galaxy types can then be compared with the results of models of the evolution in the numbers of low-mass and high-mass X-ray binaries and can possibly be used to constrain models of star formation. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
27. The X-ray background and the deep X-ray surveys
- Author
-
Gilli, R.
- Subjects
- *
X-rays , *COSMIC rays , *POPULATION , *REDSHIFT - Abstract
Abstract: The deep X-ray surveys performed by the two major X-ray observatories on flight, Chandra and XMM, are being resolving the bulk of the cosmic X-ray background (XRB) in the 2–10 keV energy band, where the sky flux is dominated by extragalactic emission. Although the actual fraction depends on the absolute sky flux, which is measured with an uncertainty of ∼40%, most of the XRB is already resolved. Optical identifications of the X-ray sources in the deep surveys are being showing that these are mainly AGN, most of which being obscured as predicted by population synthesis models. However, first results indicate that the redshift distribution of the sources making the XRB seems to peak at much lower redshift than predicted by the models. In this article, I will briefly review and discuss the measurements of the XRB spectrum and the AGN synthesis models of the XRB. Then, I will introduce the Chandra and XMM deep X-ray surveys, mainly focusing on the Chandra Deep Field North and South. Finally, the properties of the X-ray sources populating the deep surveys will be described and compared with the predictions of the most recent synthesis models. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
28. Chandra observations of SNR 1987A
- Author
-
Park, S., Zhekov, S.A., Burrows, D.N., Michael, E., McCray, R., Garmire, G.P., and Hasinger, G.
- Subjects
- *
SUPERNOVA remnants , *X-ray astronomy , *OBSERVATORIES , *HIGH resolution spectroscopy - Abstract
We report on the results of our monitoring program of the X-ray remnant of supernova 1987A with the Chandra X-ray Observatory. We have performed two new observations during the Chandra Cycle 3 period, bringing the total to six monitoring observations over the past three years. These six observations provide a detailed time history of the birth of a new supernova remnant in X-rays. The high angular resolution images indicate that soft X-ray bright knots are associated with the optical spots, while hard X-ray features are better correlated with radio images. We interpret this in terms of a model in which fast shocks propagating through the circumstellar HII region produce the hard X-ray and radio emission, while the soft X-ray and optical emission arise in slower shocks entering into dense knots in the circumstellar inner ring. New observations begin to show changes in the morphology that may herald a new stage in the development of this incipient supernova remnant. The observed X-ray fluxes increase by nearly a factor of three over the last 30 months. The X-ray remnant is expanding at a velocity of ∼5000 km s−1. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
29. Modeling of Proton-Induced CCD Degradation in the Chandra X-Ray Observatory.
- Author
-
Lo, D. H. and Srour, J. R.
- Subjects
- *
CHARGE coupled devices , *PROTON-induced X-ray emission , *SPECTROMETERS , *CHARGE transfer , *NUCLEAR science , *INTEGRATED circuits - Abstract
Modeling results are presented for proton-induced degradation of charge-coupled devices (CCDs) used in the Advanced CCD Imaging Spectrometer instrument on the Chandra X-Ray Observatory. A methodology is described that provides insights regarding degradation mechanisms and on-orbit performance for front-illuminated and back-illuminated CCDs. Proton-induced changes in charge transfer Inefficiency are modeled. The observed amount of on-orbit degradation can be accounted for using a proton spectrum at the CCD location that has the same shape as the spectrum incident on the spacecraft but has a fluence that is reduced in magnitude by a factor of ∼ 105. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
30. Simulations and Mitigation of Pile-Up in XMM CCD Instruments.
- Author
-
Lumb, D.
- Abstract
Simulations of the XMM EPIC instruments are presented. They suggest the correct operating mode must be chosen to ensure that spectral analysis of the data is not compromised by ‘pile-up’ effects. The performanceis contrasted with the CHANDRA AXAF CCD Imaging Spectrometer, showing how the higher effective area but better over-sampling of its mirror response function in XMM, impacts this pile-up criteria. Targetsexceeding a flux of a few 10
-12 ergs cm-2 s-1 will becompromised for spectral analysis in these CCD instruments, unlesscare is taken in defining correct instrument configurations. Somesimple methods of mitigating the effects are described, but this featureof X-ray pile-up warrants careful attention in calibration. [ABSTRACT FROM AUTHOR]- Published
- 2000
- Full Text
- View/download PDF
31. Detection of anti-correlation of hot and cold baryons in galaxy clusters
- Author
-
Pasquale Mazzotta, Arya Farahi, Sarah L. Mulroy, Christine O'Donnell, Nobuhiro Okabe, Hervé Bourdin, Rossella Martino, August E. Evrard, Alexis Finoguenov, John E. Carlstrom, Chris P. Haines, Graham P. Smith, Daniel P. Marrone, and Department of Physics
- Subjects
0301 basic medicine ,ASTROPHYSICS ,SAMPLE ,Galaxies and clusters ,General Physics and Astronomy ,02 engineering and technology ,Astrophysics ,SCALING RELATIONS ,Cosmology ,CHANDRA ,lcsh:Science ,Physics ,Multidisciplinary ,Settore FIS/05 ,detection method ,simulation ,021001 nanoscience & nanotechnology ,astronomy ,GAS ,covariance ,0210 nano-technology ,INFALL ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Stellar mass ,Science ,Dark matter ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,MASS ,observational method ,General Biochemistry, Genetics and Molecular Biology ,Article ,03 medical and health sciences ,Cluster (physics) ,wavelength, article ,Galaxy cluster ,LOCUSS ,Astrophysics::Galaxy Astrophysics ,prediction ,General Chemistry ,115 Astronomy, Space science ,Astrophysics - Astrophysics of Galaxies ,matrix ,Galaxy ,SIMULATIONS ,baryon ,Baryon ,Stars ,030104 developmental biology ,correlation ,Astrophysics of Galaxies (astro-ph.GA) ,COSMOLOGY ,Astronomy and astrophysics ,hydrodynamics ,cold stress ,lcsh:Q - Abstract
The largest clusters of galaxies in the Universe contain vast amounts of dark matter, plus baryonic matter in two principal phases, a majority hot gas component and a minority cold stellar phase comprising stars, compact objects, and low-temperature gas. Hydrodynamic simulations indicate that the highest-mass systems retain the cosmic fraction of baryons, a natural consequence of which is anti-correlation between the masses of hot gas and stars within dark matter halos of fixed total mass. We report observational detection of this anti-correlation based on 4 elements of a $9\times9$ element covariance matrix for nine cluster properties, measured from X-ray, optical, infrared and millimetre wavelength observations of 41 clusters from the Local Cluster Substructure Survey. These clusters were selected using explicit and quantitative selection rules that were then encoded in our hierarchical Bayesian model. Our detection of anti-correlation is consistent with predictions from contemporary hydrodynamic cosmological simulations that were not tuned to reproduce this signal., Comment: Published in the 2 July issue of Nature Communications. For published version, see https://rdcu.be/bICJG . The full posterior chains is available at https://doi.org/10.6084/m9.figshare.8001218
- Published
- 2019
32. Modeling CHANDRA Low Energy Transmission Grating Spectrometer Observations of Classical Novae with PHOENIX.
- Author
-
Petz, A., Hauschildt, P. H., Ness, J. U., and Starrfield, S.
- Subjects
- *
STELLAR atmospheres , *NOVAE (Astronomy) , *X-ray spectroscopy , *DIFFRACTION gratings , *SPECTROMETERS , *SPECTRUM analysis instruments , *ASTROPHYSICS - Abstract
We use the PHOENIX code package to model the X-ray spectrum of Nova V4743 Sagittarii observed with the LETGS onboard the Chandra satellite on 19 March 2003. To analyze nova atmospheres and related systems with an underlying nuclear burning envelope at X-ray wavelengths, it was necessary to update the code with new microphysics. We demonstrate that the X-ray emission is dominated by thermal bremsstrahlung and that the hard X-rays are dominated by Fe and N absorption. Preliminary models are calculated assuming solar abundances. It is shown that the models can be used to determine element abundances in the nova ejecta by increasing the absorption in the shell. © 2005 American Institute of Physics [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
33. Element Stratification in the Middle-aged SN Ia Remnant G344.7–0.1
- Author
-
Satoru Katsuda, Hiroya Yamaguchi, Kotaro Fukushima, Paul P. Plucinsky, Kyoko Matsushita, Shogo B. Kobayashi, Hidetoshi Sano, Patrick Slane, Sangwook Park, and Laura A. Lopez
- Subjects
NUCLEOSYNTHESIS ,Physics ,Supernova remnants ,RAY-EMISSION ,MODELS ,CONSTRAINTS ,Stratification (water) ,Astronomy and Astrophysics ,Geophysics ,GALACTIC PLANE SURVEY ,CHANDRA ,EJECTA ,Interstellar medium ,SUPERNOVA REMNANT ,Space and Planetary Science - Abstract
Despite their importance, a detailed understanding of Type Ia supernovae (SNe Ia) remains elusive. X-ray measurements of the element distributions in supernova remnants (SNRs) offer important clues for understanding the explosion and nucleosynthesis mechanisms for SNe Ia. However, it is challenging to observe the entire ejecta mass in X-rays for young SNRs, because the central ejecta may not have been heated by the reverse shock yet. Here we present over 200 kilosecond Chandra observations of the Type Ia SNR G344.7-0.1, whose age is old enough for the reverse shock to have reached the SNR center, providing an opportunity to investigate the distribution of the entire ejecta mass. We reveal a clear stratification of heavy elements with a centrally peaked distribution of the Fe ejecta surrounded by intermediate-mass elements (IMEs: Si, S, Ar Ca) with an arc-like structure. The centroid energy of the Fe K emission is marginally lower in the central Fe-rich region than in the outer IME-rich regions, suggesting that the Fe ejecta were shock-heated more recently. These results are consistent with the prediction for standard SN Ia models, where the heavier elements are synthesized in the interior of an exploding white dwarf. We find, however, that the peak location of the Fe K emission is slightly offset to the west with respect to the geometric center of the SNR. This apparent asymmetry is likely due to the inhomogeneous density distribution of the ambient medium, consistent with our radio observations of the ambient molecular and neutral gas.
- Published
- 2020
34. Locuss: the infall of X-ray groups on to massive clusters
- Author
-
Matteo Bianconi, Luis E. Campusano, Arif Babul, Chris P. Haines, Sean L. McGee, Pasquale Mazzotta, Alexis Finoguenov, F. Ziparo, Graham P. Smith, Eiichi Egami, Nobuhiro Okabe, M. J. Pereira, C Loyola, Doctoral Programme in Particle Physics and Universe Sciences, and Department of Physics
- Subjects
COSMIC EVOLUTION ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,LARGE-SCALE BIAS ,COSMOLOGICAL PARAMETERS ,MERGER RATES ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,dark matter ,STAR-FORMATION ,Physical cosmology ,CHANDRA ,Galaxy groups and clusters ,galaxies: groups: general ,0103 physical sciences ,XMM-NEWTON OBSERVATIONS ,010303 astronomy & astrophysics ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Star formation ,Settore FIS/05 ,Astronomy ,Astronomy and Astrophysics ,115 Astronomy, Space science ,HIERARCHICAL-MODELS ,Astrophysics - Astrophysics of Galaxies ,LUMINOUS GALAXY CLUSTERS ,galaxies: clusters: general ,DARK-MATTER HALOES ,Space and Planetary Science ,X-rays: galaxies: clusters ,Astrophysics of Galaxies (astro-ph.GA) ,large-scale structure of Universe ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Galaxy clusters are expected to form hierarchically in a LCDM universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass halos. Galaxy clusters assemble late, doubling their masses since z~0.5, and so the outer regions of clusters should be replete with infalling group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters at z~0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2x10^13-7x10^14Msun, and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is ~25x higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2x10^14Msun, or 19% of the mass within the primary cluster itself. We estimate that ~10^15Msun clusters increase their masses by 16% between z=0.223 and the present day due to the accretion of groups with M200>10^13.2Msun. This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound in halos. The mass function of the infalling X-ray groups appears significantly top-heavy with respect to that of field X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter halos being biased tracers of the underlying large-scale density distribution., 20 pages, 17 figures. Submitted to MNRAS. Comments welcome
- Published
- 2018
35. Polaris: Mass and Multiplicity.
- Author
-
Evans, Nancy Remage, Schaefer, Gail, Bond, Howard E., Nelan, Edmund, Bono, Giuseppe, Karovska, Margarita, Wolk, Scott, Sasselov, Dimitar, Guinan, Edward, Engle, Scott, Schlegel, Eric, and Mason, Brian
- Abstract
Polaris, the nearest and brightest classical Cepheid, is a member of at least a triple system. It has a wide (18″) physical companion, the F-type dwarf Polaris B. Polaris itself is a single-lined spectroscopic binary with an orbital period of ∼30 years (Kamper 1996). By combining Hipparcos measurements of the instantaneous proper motion with long-term measurements and the Kamper radial-velocity orbit, Wielen et al (2000) have predicted the astrometric orbit of the close companion. Using the Hubble Space Telescope and the Advanced Camera for Surveys' High-Resolution Channel with an ultraviolet (F220W) filter, we have now directly detected the close companion. Based on the Wielen et al orbit, the Hipparcos parallax, and our measurement of the separation (0″.176 ± 0″.002), we find a preliminary mass of 5.0 ± 1.5 M⊙ for the Cepheid and 1.38 ± 0.61 M⊙ for the close companion. These values will be refined by additional HST observations scheduled for the next 3 years.We have also obtained a Chandra ACIS-I image of the Polaris field. Two distant companions C and D are not X-rays sources and hence are not young enough to be physical companions of the Cepheid. There is one additional stellar X-ray source in the field, located 253″ from Polaris A, which is a possible companion. Further investigation of such a distant companion is valuable to confirm the full extent of the system. [ABSTRACT FROM PUBLISHER]
- Published
- 2008
- Full Text
- View/download PDF
36. To be or not to be: the case of the hot WHIM absorption in the blazar PKS 2155–304 sight line
- Author
-
Pekka Heinämäki, Massimiliano Bonamente, Evan M. Tilton, Alexis Finoguenov, Lauri Juhan Liivamägi, Taotao Fang, Elmo Tempel, E. Saar, Jelle Kaastra, J. Ahoranta, Jukka Nevalainen, and Department of Physics
- Subjects
BL Lacertae objects: individual: PKS 2155-304 ,PHYSICAL-PROPERTIES ,Astrophysics ,O-VI ,01 natural sciences ,CHANDRA ,0103 physical sciences ,Absorption (electromagnetic radiation) ,Blazar ,010303 astronomy & astrophysics ,XMM-NEWTON ,BARYONS ,Physics ,PKS 2155-304 ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,115 Astronomy, Space science ,EVOLUTION ,Baryon ,Sight line ,GAS ,Space and Planetary Science ,cosmology: observations ,X-RAY-ABSORPTION ,Intergalactic medium ,intergalactic medium ,large-scale structure of Universe - Abstract
The cosmological missing baryons at z < 1 most likely hide in the hot (T ≳ 105.5 K) phase of the warm hot intergalactic medium (WHIM). While the hot WHIM is hard to detect due to its high ionisation level, the warm (T ≲ 105.5 K) phase of the WHIM has been very robustly detected in the far-ultraviolet (FUV) band. We adopted the assumption that the hot and warm WHIM phases are co-located and therefore used the FUV-detected warm WHIM as a tracer for the cosmologically interesting hot WHIM. We performed an X-ray follow-up in the sight line of the blazar PKS 2155–304 at the redshifts where previous FUV measurements of O VI, Si IV, and broad Lyman-alpha (BLA) absorption have indicated the existence of the warm WHIM. We looked for the O VII Heα and O VIII Lyα absorption lines, the most likely hot WHIM tracers. Despite the very large exposure time (≈1 Ms), the Reflection Grating Spectrometer unit 1 (RGS1) on-board XMM-Newton data yielded no significant detection which corresponds to upper limits of log N(O VII(cm−2)) ≤ 14.5−15.2 and log N(O VIII(cm−2)) ≤ 14.5−15.2. An analysis of the data obtained with the combination of the Low Energy Transmission Grating (LETG) and the High Resolution Camera (HRC) on-board Chandra yielded consistent results. However, the data obtained with the LETG, combined with the Advanced CCD Imaging Spectrometer (ACIS) lead to the detection of an feature resembling an absorption line at λ ≈ 20 Å at simple one-parameter confidence level of 3.7σ, consistent with several earlier LETG/ACIS reports. Given the high statistical quality of the RGS1 data, the possibility of RGS1 accidentally missing the true line at λ ∼ 20 Å is very low: 0.006%. Neglecting this, the LETG/ACIS detection can be interpreted as Lyα transition of O VIII at one of the redshifts (z ≈ 0.054) of FUV-detected warm WHIM. Given the very convincing X-ray spectral evidence for and against the existence of the λ ∼ 20 Å feature, we cannot conclude whether or not it is a true astrophysical absorption line. Considering cosmological simulations, the probability of the LETG/ACIS λ ∼ 20 Å feature being due to the astrophysical O VIII absorber co-located with the FUV-detected O VI absorber is at the very low level of ≲0.1%. We cannot completely rule out the very unlikely possibility that the LETG/ACIS 20 Å feature is due to a transient event located close to the blazar.
- Published
- 2019
37. From Dying Stars to Living Cells.
- Author
-
Golden, Frederic, Johnson, Mary, and Nash, J. Madeleine
- Subjects
NOBEL Prizes ,JURORS - Published
- 1983
38. The origin of the hot metal-poor gas in NGC 1291
- Author
-
I. Perez, K. Freeman, Kapteyn Astronomical Institute, and Astronomy
- Subjects
Galaxy : abundances ,X-rays : galaxies ,Metallicity ,FOS: Physical sciences ,galaxies : kinematics and dynamics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Ring (chemistry) ,CHANDRA ,Metal ,ABUNDANCES ,Bulge ,galaxies : structure ,Astrophysics::Solar and Stellar Astrophysics ,Emission spectrum ,SOLAR ,Astrophysics::Galaxy Astrophysics ,Long-slit spectroscopy ,Physics ,Astrophysics (astro-ph) ,Astronomy and Astrophysics ,Gas dynamics ,REGIONS ,SA GALAXIES ,Space and Planetary Science ,visual_art ,visual_art.visual_art_medium ,Astrophysics::Earth and Planetary Astrophysics ,galaxies : ISM ,Bar (unit) - Abstract
In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the high velocity that it reaches ($\approx$ 700 \kms) as it falls to the bottom of the potential well. This would explain why the stellar metallicity in the bulge region is around solar while the hot gas metallicity is around 0.1 solar. We carried out an observational test to check this hypothesis by measuring the metallicity of HII regions in the outer ring to check whether they matched the hot gas metallicity. For this purpose we obtained medium resolution long slit spectroscopy with FORS1 on the ESO VLT at Paranal and obtained the metallicities using emission line ratio diagnostics. The obtained metallicities are compatible with the bulge stellar metallicities but very different from the hot-gas metallicity. However, when comparing the different time-scales, the gas in the ring had time enough to get enriched through stellar processes, therefore we cannot rule out the dynamical mechanism as the heating process of the gas. However, the blue colours of the outer ring and the dust structures in the bar region could suggest that the origin of the X-ray hot gas is due to the infall of material from further out., 6 pages, 6 figures. A&A accepted
- Published
- 2006
39. Radio–X‐Ray Correlation and the 'Quiescent State' of Black Hole Sources
- Author
-
Feng Yuan and Wei Cui
- Subjects
accretion, accretion disks ,black hole physics ,galaxies : active ,ism : jets and outflows ,x-rays : stars ,xte j1118+480 ,jet model ,dominated accretion ,low/hard state ,binaries ,spectrum ,xte-j1118+480 ,advection ,emission ,chandra ,Physics ,Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,X-ray ,FOS: Physical sciences ,Quiescent state ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Critical value ,Galaxy ,Accretion (astrophysics) ,Observational evidence ,Space and Planetary Science ,Astrophysics::Galaxy Astrophysics - Abstract
Recently a correlation between the radio and X-ray luminosities is found, $L_{\rm R}\propto L_{\rm X}^{0.7}$, in black hole sources including black hole candidates in our galaxy and active galactic nuclei. We first show that the correlation can be understood in the context of an accretion-jet model developed for explaining the spectral and timing properties of XTE J1118+480. More importantly, we show that when the X-ray luminosity is below a critical value, $\la (10^{-5}$--$10^{-6}) L_{\rm Edd}$, if the jet persists, the correlation should turn and become steeper, $L_{\rm R}\propto L_{\rm X}^{1.23}$, and the X-ray radiation of the system should be dominated by the emission from the jet, rather than by the accretion flow. Possible observational evidence for our predictions is presented and future observations to further test our predictions are proposed., 16 pages, 3 figures, the final version accepted by ApJ
- Published
- 2005
40. The HI halo of spiral galaxies
- Subjects
galaxies : individuals (NGC 2403 ,CHANDRA ,NGC 891) ,HIGH-VELOCITY CLOUDS ,NGC-2403 ,galaxies : structure and dynamics ,galaxies : halo ,galaxies : ISM - Abstract
A deep H I survey with the VLA of the spiral galaxy NGC 2403 has revealed the existence of a thick, low density layer of neutral gas surrounding the thin 'cold' disk. This layer has a mean rotation velocity 25-50 km s(-1) lower than that of the disk and a 10-20 km s(-1) inflow towards the centre of the galaxy. In the central parts there are velocity differences from rotation of up to 150 km s(-1). Chandra observations of NGC 2403 show a diffuse, hot X-ray emitting gas component with a temperature of a few 106 K. These results point at galactic fountain type of flows between disk and halo. 'Halo' gas with similar characteristics has also been observed in other spiral galaxies (e.g. NGC 6946, NGC 891). Such gas is probably similar to the IVCs and to some of the HVCs of the Milky Way.
- Published
- 2004
41. The AGN content of ultraluminous IR galaxies: High resolution VLA imaging of the IRAS 1 Jy ULIRG sample
- Author
-
Neil M. Nagar, Roberto Maiolino, Andrew S. Wilson, Heino Falcke, Sylvain Veilleux, Kapteyn Astronomical Institute, and Astronomy
- Subjects
RADIO-SOURCES ,1-JY SAMPLE ,galaxies : active ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,FOS: Physical sciences ,High resolution ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galaxy merger ,Luminosity ,SEYFERT-GALAXIES ,CHANDRA ,accretion ,surveys ,radio continuum : galaxies ,medicine ,Nuclear Experiment ,Radio imaging ,Astrophysics::Galaxy Astrophysics ,Physics ,Luminous infrared galaxy ,accretion, accretion disks ,accretion disks ,Astrophysics (astro-ph) ,Astronomy and Astrophysics ,LUMINOUS INFRARED GALAXIES ,ACTIVE GALACTIC NUCLEUS ,galaxies : jets ,Galaxy ,BASE-LINE INTERFEROMETRY ,STARBURSTS ,medicine.anatomical_structure ,Space and Planetary Science ,VLBI ,Nucleus ,Radio detection ,OPTICAL SPECTROSCOPY - Abstract
This paper presents the results of a high resolution radio imaging survey of 83 of the 118 ultraluminous infrared galaxies (ULIRGs) in the IRAS 1 Jy ULIRG sample. We have observed these ULIRGs at 15GHz with the Very Large Array (VLA). We find that ~75% of Seyferts (both type 1 and 2) and LINERs have radio nuclei which are compact at our 150mas resolution. The detection rate of HII nuclei is significantly lower (32%); the detections among these are preferentially HII + LINER/Seyfert composite nuclei. Among ULIRGs with multiple optical or near-IR nuclei our observations detected only one (or no) nucleus; in these the radio detection is typically towards the brightest near-IR nucleus. The compactness of the radio sources, the higher detection rates in AGN-type nuclei than HII nuclei, the preferential detection of nuclei with unresolved point sources in the near-IR, the low soft X-ray to nuclear radio luminosity ratio (arguing against thermal emission powering the radio nuclei), and the lack of correlation between radio power and Halpha luminosity, all support an origin of the detected radio nuclei in AGN related activity. This result is especially interesting for LINER ULIRGs for which signatures of AGNs have often been ambiguous in other wavebands. Such a high incidence of AGN would provide, for the first time, a large sample in which to study the interplay between AGN, starbursts, and galaxy mergers., Comment: To appear in A&A. 8 pages
- Published
- 2003
42. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR
- Author
-
Franz E. Bauer, Fiona A. Harrison, Jaesub Hong, Charles J. Hailey, Brian W. Grefenstette, John A. Tomsick, William W. Craig, Nicolas M. Barrière, Melania Nynka, William W. Zhang, Finn E. Christensen, Steven E. Boggs, Frederick K. Baganoff, Kaya Mori, Kristin K. Madsen, Roman Krivonos, Daniel Stern, and Arash Bodaghee
- Subjects
SGR-A-ASTERISK ,Astrophysics::High Energy Astrophysical Phenomena ,LINE EMISSION ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Photoionization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Luminosity ,CHANDRA ,GALACTIC-CENTER REGION ,Cluster (physics) ,Astrophysics::Galaxy Astrophysics ,Line (formation) ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,BRIGHTEST FLARE ,Star formation ,ASTRONOMY ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,XMM-NEWTON OBSERVATION ,STELLAR CLUSTERS ,Star cluster ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,DISCOVERY ,MOLECULAR CLOUDS ,Astrophysics - High Energy Astrophysical Phenomena ,MASSIVE STARS - Abstract
The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K_alpha line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario., Comment: 15 pages, 9 figures, accepted for publication in ApJ
- Published
- 2014
43. First hard X-ray detection of the non-thermal emission around the Arches cluster: morphology and spectral studies with NuSTAR
- Author
-
Krivonos, Roman A., Tomsick, John A., Bauer, Franz E., Baganoff, Frederick K., Barriere, Nicolas M., Bodaghee, Arash, Boggs, Steven E., Christensen, Finn Erland, Craig, William W., Grefenstette, Brian W., Hailey, Charles J., Harrison, Fiona A., Hong, JaeSub, Madsen, Kristin K., Mori, Kaya, Nynka, Melania, Stern, Daniel, Zhang, William W., Krivonos, Roman A., Tomsick, John A., Bauer, Franz E., Baganoff, Frederick K., Barriere, Nicolas M., Bodaghee, Arash, Boggs, Steven E., Christensen, Finn Erland, Craig, William W., Grefenstette, Brian W., Hailey, Charles J., Harrison, Fiona A., Hong, JaeSub, Madsen, Kristin K., Mori, Kaya, Nynka, Melania, Stern, Daniel, and Zhang, William W.
- Abstract
The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe Ku line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario.
- Published
- 2014
44. CAR RAMMING KILLS TEENS.
- Author
-
KIESCH, ZACHARY
- Abstract
DAVID MUIR (ABC NEWS) (Off-camera) And we turn next here to the deadly collision in Southern California. A car ramming into another car with six teenagers inside. Three of the teenagers killed. And tonight, the highway patrol saying the adult driver did it on purpose. Here's ABC's Zachary Kiesch. [ABSTRACT FROM PUBLISHER]
- Published
- 2020
45. Sunyaev-Zel’dovich Observations Using Large-Format Millimeter Arrays
- Author
-
Czakon, Nicole Gisela
- Subjects
Sunyaev-Zel'dovich Effect ,Galaxy Clusters ,Large-Scale Structure Formation ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Bolocam ,Astrophysics::Galaxy Astrophysics ,Chandra - Abstract
Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ. Using this catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation. Future Bolocam analysis efforts are set on resolving these discrepancies by approximating cluster mass jointly with different observational probes.
- Published
- 2013
- Full Text
- View/download PDF
46. A relation between circumnuclear H I, dust, and optical cores in low-power radio galaxies
- Author
-
Ilse van Bemmel, Raffaella Morganti, Gustaaf van Moorsel, Tom Oosterloo, and Astronomy
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Active galactic nucleus ,SAMPLE ,Radio galaxy ,galaxies: active ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,REDSHIFTS ,CHANDRA ,ABSORPTION ,3C-293 ,Absorption (electromagnetic radiation) ,Astrophysics::Galaxy Astrophysics ,NGC-1275 PHENOMENON ,Physics ,radio lines: galaxies ,radio continuum: galaxies ,radio lines: ISM ,INTERSTELLAR-MEDIUM ,NUCLEI ,Astronomy and Astrophysics ,Torus ,HYDROGEN ,Galaxy ,Space and Planetary Science ,GAS ,galaxies: evolution ,galaxies: ISM ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
From new observations and literature data we investigate the presence of HI, dust, and optical cores in the central kiloparsec of low-power radio galaxies. The goal of this pilot study is to identify physical relations between these components, which can help us to study kinematics and feeding mechanisms in future samples of active galaxies. Our results are consistent with neutral gas being associated with dust on sub-kiloparsec scales. Objects that have HI absorption always have significant amounts of dust in their host galaxy. If there is no visible dust in the host galaxy, there is also no HI absorption. The presence of an unresolved optical core correlates with the HI column density, with the core being absent in high column density sources. This work opens a path for studying the kinematics of cold material in the central regions of active galaxies by combining information of HI absorption and molecular lines. Consistent with previous work, we find no evidence for a compact, parsec-scale obscuring torus in low-power radio galaxies., Accepted for publication in A&A
- Published
- 2012
47. Discovery of TeV Gamma Ray Emission from Tycho's Supernova Remnant
- Author
-
S. McArthur, D. S. Hanna, P. Majumdar, J. E. Ward, V. A. Acciari, J. P. Finley, Philip Kaaret, A. S. Madhavan, Wystan Benbow, V. Bugaev, M. Kertzman, Gernot Maier, J. H. Buckley, T. C. Weekes, G. Tešić, M. J. Lang, E. Collins-Hughes, J. S. Perkins, S. P. Wakely, R. Dickherber, A. Cesarini, T. Aune, D. Gall, M. Beilicke, E. Aliu, S. Thibadeau, John L. Quinn, Henric Krawczynski, Karen Byrum, Geza Gyuk, Jamie Holder, G. Demet Senturk, H. J. Rose, A. Furniss, R. A. Ong, A. Varlotta, J. Grube, A. N. Otte, Frank Krennrich, M. Schroedter, Manel Errando, R. Guenette, M. Vivier, Reshmi Mukherjee, S. M. Bradbury, L. Ciupik, Vladimir Vassiliev, A. Cannon, C. M. Hui, S. Griffin, Stephan LeBohec, N. Karlsson, K. Tsurusaki, N. Galante, D. B. Saxon, David Kieda, David A. Williams, M. Theiling, N. H. Park, Patrick Slane, G. Finnegan, A. W. Smith, P. T. Reynolds, C. Duke, Lucy Fortson, Amanda Weinstein, Matthew Wood, G. H. Gillanders, P. Moriarty, S. Godambe, Dirk Pandel, M. Orr, Martin Pohl, K. Ragan, B. Zitzer, E. Roache, Thomas Brian Humensky, John P. Hughes, L. C. Reyes, A. McCann, Wei Cui, T. Weisgarber, S. Vincent, G. H. Sembroski, and T. C. Arlen
- Subjects
catalog ,Photon ,shock acceleration ,Point source ,chandra ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,FOS: Physical sciences ,Astrophysics ,Type (model theory) ,01 natural sciences ,spectrum ,expansion ,0103 physical sciences ,Supernova remnant ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,hess ,010308 nuclear & particles physics ,turbulence ,Gamma ray ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,gamma rays: general ,astronomy ,galactic plane survey ,Crab Nebula ,Space and Planetary Science ,ddc:520 ,High Energy Physics::Experiment ,ism: individual objects (g120.1+01.4, tycho=ver j0025+641) ,constraints ,Astrophysics - High Energy Astrophysical Phenomena ,Energy (signal processing) - Abstract
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at $00^{\rm h} \ 25^{\rm m} \ 27.0^{\rm s},\ +64^{\circ} \ 10^{\prime} \ 50^{\prime\prime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42\;\textrm{TeV})^{-\Gamma}$ with $\Gamma = 1.95 \pm 0.51_{stat} \pm 0.30_{sys}$ and $C = (1.55 \pm 0.43_{stat} \pm 0.47_{sys}) \times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $\sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $\sim 80 \mu$G, which may be interpreted as evidence for magnetic field amplification., Comment: 6 pages, 3 figures. Accepted in ApJL
- Published
- 2011
48. Active Galactic Nuclei at hard X-ray energies: absorption, reflection and the unified model
- Author
-
Ricci, Claudio and Courvoisier, Thierry
- Subjects
CXB ,Black Holes ,INTEGRAL ,Astrophysics::High Energy Astrophysical Phenomena ,Active Galactic Nuclei ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomie ,Astrophysics ,Chandra ,Noyaux Actif de Galaxie ,XMM-Newton ,Rayons X ,X-rays ,Seyfert ,ddc:520 ,AGN ,Swift ,Astrophysics::Galaxy Astrophysics ,Suzaku - Abstract
Active Galactic Nuclei (AGN) are the most luminous persistent sources in the Universe, and are believed to be powered by accretion onto supermassive black holes. My work is mainly focused on the study of X-ray spectra of AGN, with particular attention to the unification scenarios. AGN are classified according to their optical spectra, and different types of AGN are thought to be intrinsically the same object, just observed from different lines of sight with respect to a molecular torus. In this work, differences between different classes of AGN, unforeseen by the unification model, are found. These differences appear to be due to a larger reflection component in the spectra of more obscured objects, which could be related to the latter having on average more material around than the former.
- Published
- 2011
49. Discovery of K-Shell Emission Lines of Neutral Atoms in the Galactic Center Region
- Author
-
Syukyo G. Ryu, Takeshi Go Tsuru, Masayoshi Nobukawa, Katsuji Koyama, Vincent Tatischeff, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Astrophysics::High Energy Astrophysical Phenomena ,Electron shell ,chemistry.chemical_element ,FOS: Physical sciences ,Astrophysics ,Electron ,01 natural sciences ,ISM: clouds ,ISM: abundances ,X-rays: ISM RAY-IMAGING SPECTROMETER ,CHANDRA ,VIEW ,0103 physical sciences ,SPECTRA ,Emission spectrum ,010303 astronomy & astrophysics ,Line (formation) ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Argon ,Energetic neutral atom ,Galaxy: center ,010308 nuclear & particles physics ,IRON ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Galactic Center ,Astronomy and Astrophysics ,ASCA ,Plasma ,SUZAKU ,chemistry ,DIFFUSE-X-RAY ,13. Climate action ,Space and Planetary Science ,MOLECULAR CLOUDS ,REFLECTION-NEBULA ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The K-shell emission line of neutral irons from the Galactic center (GC) region is one of the key for the structure and activity of the GC. The origin is still open question, but possibly due either to X-ray radiation or to electron bombarding to neutral atoms. To address this issue, we analyzed the Suzaku X-ray spectrum from the GC region of intense neutral iron line emission, and report on the discovery of Kalpha lines of neutral argon, calcium, chrome, and manganese atoms. The equivalent widths of these Kalpha lines indicate that the metal abundances in the GC region should be ~1.6 and ~4 of solar value, depending on the X-ray and the electron origins, respectively. On the other hand, the metal abundances in the hot plasma in the GC region are found to be ~1-2 solar. These results favor that the origin of the neutral Kalpha lines are due to X-ray irradiation., Comment: 7 pages, 5 figures, accepted for publication in PASJ (Vol.62, No.2, pp.423--429)
- Published
- 2010
- Full Text
- View/download PDF
50. XEUS: The physics of the hot evolving universe
- Author
-
Johan A. M. Bleeker, Richard E. Griffiths, Yoshihiro Ueda, Andrew C. Fabian, Lothar Strüder, Massimo Cappi, S. Sciortino, Marc Türler, Alan Smith, M. N. Pavlinsky, W. N. Brandt, Francisco J. Carrera, Piet A. J. de Korte, Jelle Kaastra, Kazuhisa Mitsuda, Andrea Comastri, Enrico Costa, Xavier Barcons, Thomas Boller, Shuang-Nan Zhang, S. M. Kahn, M. G. Watson, Günther Hasinger, Kazuo Makishima, Kirpal Nandra, Hans Böhringer, Cristian Vignali, Richard Willingale, Mariano Mendez, Roberto Gilli, Takaya Ohashi, Hideyo Kunieda, Marshall W. Bautz, Didier Barret, Jacco Vink, Giorgio G. C. Palumbo, Tadayuki Takahashi, Tom Dwelly, Martin J. L. Turner, Monique Arnaud, Kathryn A. Flanagan, M. J. Page, Richard L. Kelley, Giorgio Matt, Thierry J.-L. Courvoisier, R. S. Warwick, Ronaldo Bellazzini, Astronomy, Arnaud M., Barcons X., Barret D., Bautz M., Bellazzini R., Bleeker J., Bohringer H., Boller Th., Brandt W.N., Cappi M., Carrera F., Comastri A., Costa E., Courvoisier T., de Korte P., Dwelly T., Fabian A.C., Flanagan K., Gilli R., Griffiths R., Hasinger G., Kaastra J., Kahn S., Kelley R., Kunieda H., Makishima K., Matt G., Mendez M., Mitsuda K., Nandra K., Ohashi T., Page M., Palumbo G.G.C., Pavlinsky M., Sciortino S., Smith A., Struder L., Takahashi T., Turler M., Turner M., Ueda Y., Vignali C., Vink J., Warwick R., Watson M., Willingale R., and Zhang S.N.
- Subjects
Cosmic Vision ,media_common.quotation_subject ,RAY ,Cosmic vision ,Cosmic ray ,Advanced Telescope for High Energy Astrophysics ,law.invention ,Telescope ,CHANDRA ,X-ray astronomy ,Observatory ,law ,Angular resolution ,BLACK-HOLES ,DETECTOR ,media_common ,Physics ,BARYONS ,SPECTRUM ,Astronomy ,Astronomy and Astrophysics ,Universe ,XEUS ,RESOLUTION ,Space and Planetary Science ,OPTICS - Abstract
This paper describes the next generation X-ray observatory XEUS which has been submitted to the European Space Agency in the framework of the Cosmic Vision 2015-2025 competition and has been selected for an assessment study. The paper summarizes the scientific goals and instrumental concepts of the proposed X-ray telescope with 5 m2 effective area and angular resolution better than 5 arc sec.
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.