11 results on '"Chaieb, Ghassen"'
Search Results
2. RecruitNet: A global database of plant recruitment networks
- Author
-
European Commission, Agencia Estatal de Investigación (España), Verdú, Miguel [0000-0002-9778-7692], Garrido, José L. [0000-0002-6859-4234], Alcántara, Julio M. [0000-0002-8003-7844], Montesinos-Navarro, Alicia [0000-0003-4656-0321], Aizen, Marcelo A. [0000-0001-9079-9749], Al-Namazi, Ali A. [0000-0003-2767-4366], Alifriqui, Mohamed [0000-0002-9176-7789], Allen, David [0000-0002-0712-9603], Anderson-Teixeira, Kristina J. [0000-0001-8461-9713], Armas, Cristina [0000-0003-0356-8075], Bastida, Jesús M. [0000-0002-8680-1401], Bonanomi, Giuliano [0000-0002-1831-4361], Paterno, Gustavo B. [0000-0001-9719-3037], Campoy, Josefina G. [0000-0002-7300-1173], Condit, Richard [0000-0003-4191-1495], Delalandre, Leo [0000-0003-2875-4587], Duarte, Milen [0000-0003-4784-9880], Fazlioglu, Fatih [0000-0002-4723-3640], Flores-Olvera, Hilda [0000-0002-3262-9570], Garcia, María Begoña [0000-0003-4231-6006], García-Fayos, Patricio [0000-0003-3449-5075], Goberna, Marta [0000-0001-5303-3429], Gómez Aparicio, Lorena [0000-0001-5122-3579], González-Pendás, Enrique [0000-0001-5058-7733], İpekdal, Kahraman [0000-0001-9968-3013], Kikvidze, Zaal [0000-0002-5007-4484], Ledo, Alicia [0000-0002-3967-6994], Liu, Hanlun [0000-0002-9424-4940], López García, Álvaro [0000-0001-8267-3572], Lortie, Christopher J. [0000-0002-4291-7023], Losapio, Gianalberto [0000-0001-7589-8706], Lutz, James A. [0000-0002-2560-0710], Luzuriaga, Arantzazu L. [0000-0001-5023-7813], Máliš, František [0000-0003-2760-6988], Michalet, Richard [0000-0002-6617-4789], Molina-Venegas, Rafael [0000-0001-5801-0736], Navarro-Cano, J. A. [0000-0001-8091-1063], Ortiz-Brunel, Juan P. [0000-0002-0695-8143], Pérez-Hernández, Vidal [0000-0001-6793-296X], Pistón, Nuria [0000-0003-4946-9945], Prieto, Iván [0000-0001-5549-1132], Prieto Rubio, Jorge [0000-0002-5600-5113], Pugnaire, Francisco I. [0000-0002-1227-6827], Ramírez, Nelson [0000-0002-6385-3866], Rey, Pedro J. [0000-0001-5550-0393], Sánchez-Martín, Ricardo [0000-0001-5272-3276], Schob, Christian [0000-0003-4472-2286], Tercero-Araque, Amanda [0000-0002-7255-5844], Usero, Francisco M. [0000-0002-4648-4202], Usta, Nurbahar [0000-0002-9265-2780], Zamora, Regino [0000-0002-5049-9968], Verdú, Miguel, Garrido, José L., Alcántara, Julio M., Montesinos-Navarro, Alicia, Aguilar, Salomón, Aizen, Marcelo A., Al-Namazi, Ali A., Alifriqui, Mohamed, Allen, David, Anderson-Teixeira, Kristina J., Armas, Cristina, Bastida, Jesús M., Bellido, Tono, Bonanomi, Giuliano, Paterno, Gustavo B., Briceño, Herbert, de Oliveira, Ricardo A.C., Campoy, Josefina G., Chaieb, Ghassen, Chu, Chengjin, Collins, Sarah E., Condit, Richard, Constantinou, Elena, Degirmenci, Cihan Ü., Delalandre, Leo, Duarte, Milen, Faife, Michel, Fazlioglu, Fatih, Fernando, Edwino S., Flores, Joel, Flores-Olvera, Hilda, Fodor, Ecaterina, Ganade, Gislene, Garcia, María Begoña, García-Fayos, Patricio, Gavini, Sabrina S., Goberna, M., Gómez Aparicio, Lorena, González-Pendás, Enrique, González-Robles, Ana, Hubbell, Stephen P., İpekdal, Kahraman, Jorquera, María J., Kikvidze, Zaal, Kütküt, Pınar, Ledo, Alicia, Lendínez, Sandra, Li, Buhang, Liu, Hanlun, Lloret, Francisco, López, Ramiro P., López García, Álvaro, Lortie, Christopher J., Losapio, Gianalberto, Lutz, James A., Luzuriaga, Arantzazu L., Máliš, František, Manrique, Esteban, Manzaneda, Antonio J., Marcilio-Silva, Vinicius, Michalet, Richard, Molina-Venegas, Rafael, Navarro-Cano, J. A., Novotny, Vojtech, Olesen, Jens M., Ortiz-Brunel, Juan P., Pajares-Murgó, María, Parissis, Nikolas, Parker, Geoffrey, Perea, Antonio J., Pérez-Hernández, Vidal, Pérez-Navarro, María Ángeles, Pistón, Nuria, Pizarro-Carbonell, Elisa, Prieto, Iván, Prieto Rubio, Jorge, Pugnaire, Francisco I., Ramírez, Nelson, Retuerto, Rubén, Rey, Pedro J., Rodriguez Ginart, Daniel A., Rodríguez-Sánchez, Mariana, Sánchez-Martín, Ricardo, Schob, Christian, Tavşanoğlu, Çağatay, Tedoradze, Giorgi, Tercero-Araque, Amanda, Tielbörger, Katja, Touzard, Blaise, Tüfekcioğlu, İrem, Turkis, Sevda, Usero, Francisco M., Usta, Nurbahar, Valiente-Banuet, Alfonso, Vargas-Colin, Alexia, Vogiatzakis, Ioannis, Zamora, Regino, European Commission, Agencia Estatal de Investigación (España), Verdú, Miguel [0000-0002-9778-7692], Garrido, José L. [0000-0002-6859-4234], Alcántara, Julio M. [0000-0002-8003-7844], Montesinos-Navarro, Alicia [0000-0003-4656-0321], Aizen, Marcelo A. [0000-0001-9079-9749], Al-Namazi, Ali A. [0000-0003-2767-4366], Alifriqui, Mohamed [0000-0002-9176-7789], Allen, David [0000-0002-0712-9603], Anderson-Teixeira, Kristina J. [0000-0001-8461-9713], Armas, Cristina [0000-0003-0356-8075], Bastida, Jesús M. [0000-0002-8680-1401], Bonanomi, Giuliano [0000-0002-1831-4361], Paterno, Gustavo B. [0000-0001-9719-3037], Campoy, Josefina G. [0000-0002-7300-1173], Condit, Richard [0000-0003-4191-1495], Delalandre, Leo [0000-0003-2875-4587], Duarte, Milen [0000-0003-4784-9880], Fazlioglu, Fatih [0000-0002-4723-3640], Flores-Olvera, Hilda [0000-0002-3262-9570], Garcia, María Begoña [0000-0003-4231-6006], García-Fayos, Patricio [0000-0003-3449-5075], Goberna, Marta [0000-0001-5303-3429], Gómez Aparicio, Lorena [0000-0001-5122-3579], González-Pendás, Enrique [0000-0001-5058-7733], İpekdal, Kahraman [0000-0001-9968-3013], Kikvidze, Zaal [0000-0002-5007-4484], Ledo, Alicia [0000-0002-3967-6994], Liu, Hanlun [0000-0002-9424-4940], López García, Álvaro [0000-0001-8267-3572], Lortie, Christopher J. [0000-0002-4291-7023], Losapio, Gianalberto [0000-0001-7589-8706], Lutz, James A. [0000-0002-2560-0710], Luzuriaga, Arantzazu L. [0000-0001-5023-7813], Máliš, František [0000-0003-2760-6988], Michalet, Richard [0000-0002-6617-4789], Molina-Venegas, Rafael [0000-0001-5801-0736], Navarro-Cano, J. A. [0000-0001-8091-1063], Ortiz-Brunel, Juan P. [0000-0002-0695-8143], Pérez-Hernández, Vidal [0000-0001-6793-296X], Pistón, Nuria [0000-0003-4946-9945], Prieto, Iván [0000-0001-5549-1132], Prieto Rubio, Jorge [0000-0002-5600-5113], Pugnaire, Francisco I. [0000-0002-1227-6827], Ramírez, Nelson [0000-0002-6385-3866], Rey, Pedro J. [0000-0001-5550-0393], Sánchez-Martín, Ricardo [0000-0001-5272-3276], Schob, Christian [0000-0003-4472-2286], Tercero-Araque, Amanda [0000-0002-7255-5844], Usero, Francisco M. [0000-0002-4648-4202], Usta, Nurbahar [0000-0002-9265-2780], Zamora, Regino [0000-0002-5049-9968], Verdú, Miguel, Garrido, José L., Alcántara, Julio M., Montesinos-Navarro, Alicia, Aguilar, Salomón, Aizen, Marcelo A., Al-Namazi, Ali A., Alifriqui, Mohamed, Allen, David, Anderson-Teixeira, Kristina J., Armas, Cristina, Bastida, Jesús M., Bellido, Tono, Bonanomi, Giuliano, Paterno, Gustavo B., Briceño, Herbert, de Oliveira, Ricardo A.C., Campoy, Josefina G., Chaieb, Ghassen, Chu, Chengjin, Collins, Sarah E., Condit, Richard, Constantinou, Elena, Degirmenci, Cihan Ü., Delalandre, Leo, Duarte, Milen, Faife, Michel, Fazlioglu, Fatih, Fernando, Edwino S., Flores, Joel, Flores-Olvera, Hilda, Fodor, Ecaterina, Ganade, Gislene, Garcia, María Begoña, García-Fayos, Patricio, Gavini, Sabrina S., Goberna, M., Gómez Aparicio, Lorena, González-Pendás, Enrique, González-Robles, Ana, Hubbell, Stephen P., İpekdal, Kahraman, Jorquera, María J., Kikvidze, Zaal, Kütküt, Pınar, Ledo, Alicia, Lendínez, Sandra, Li, Buhang, Liu, Hanlun, Lloret, Francisco, López, Ramiro P., López García, Álvaro, Lortie, Christopher J., Losapio, Gianalberto, Lutz, James A., Luzuriaga, Arantzazu L., Máliš, František, Manrique, Esteban, Manzaneda, Antonio J., Marcilio-Silva, Vinicius, Michalet, Richard, Molina-Venegas, Rafael, Navarro-Cano, J. A., Novotny, Vojtech, Olesen, Jens M., Ortiz-Brunel, Juan P., Pajares-Murgó, María, Parissis, Nikolas, Parker, Geoffrey, Perea, Antonio J., Pérez-Hernández, Vidal, Pérez-Navarro, María Ángeles, Pistón, Nuria, Pizarro-Carbonell, Elisa, Prieto, Iván, Prieto Rubio, Jorge, Pugnaire, Francisco I., Ramírez, Nelson, Retuerto, Rubén, Rey, Pedro J., Rodriguez Ginart, Daniel A., Rodríguez-Sánchez, Mariana, Sánchez-Martín, Ricardo, Schob, Christian, Tavşanoğlu, Çağatay, Tedoradze, Giorgi, Tercero-Araque, Amanda, Tielbörger, Katja, Touzard, Blaise, Tüfekcioğlu, İrem, Turkis, Sevda, Usero, Francisco M., Usta, Nurbahar, Valiente-Banuet, Alfonso, Vargas-Colin, Alexia, Vogiatzakis, Ioannis, and Zamora, Regino
- Abstract
Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country
- Published
- 2023
3. RecruitNet: A global database of plant recruitment networks
- Author
-
Verdú, Miguel, Garrido, Jose L., Alcántara, Julio M., Montesinos-Navarro, Alicia, Aguilar, Salomón, Aizen, Marcelo A., Al-Namazi, Ali A., Alifriqui, Mohamed, Allen, David, Anderson-Teixeira, Kristina J., Armas, Cristina, Bastida, Jesús M., Bellido, Tono, Bonanomi, Giuliano, Paterno, Gustavo B., Briceño, Herbert, de Oliveira, Ricardo A.C., Campoy, Josefina G., Chaieb, Ghassen, Chu, Chengjin, and Schöb, Christian
- Subjects
recruitment ,plant–plant interactions ,ecological networks ,replacement ,facilitation - Abstract
Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes > 850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ( "canopy species ") and plants in their early stages of recruitment ( "recruit species "). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications., Ecology, 104 (2), ISSN:0012-9658, ISSN:1939-9170
- Published
- 2023
4. Changes in facilitation intensity with salinity and aridity in continental saline depressions of Tunisia
- Author
-
Chaieb, Ghassen, UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Faculté des sciences de Bizerte (Tunisie), Richard Michalet, Chedly Abdelly, and STAR, ABES
- Subjects
[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Collapse de la facilitation ,Saline ecosystems ,Plant-Plant interactions ,Interactions biotiques ,[SDV.EE.ECO] Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Ecosystèmes salins ,Stress hydrique ,Plant Facilitation ,Climat méditerranéen aride ,Arid climate - Abstract
We aim to clarify the debate of the community ecology literature on changes in plant-plant interaction along water stress gradients. We focused on the importance of the type of stress (resources vs. non-resources) and the method used (observational vs. experimental) to quantify biotic interactions. The continental saline depressions (Sebkhas) of Tunisia, characterized by the existence of a strong gradient of salinity in contrasting climatic conditions, is an excellent model system to clarify this debate, in particular by separating the effects of salinity from water stress.In a first step, we carried out an observational study on the scale of the Tunisian arid zone in order to identify the consequences of the possible interactions existing between topography and climate and determining variations in salinity and water stress and ultimately the structure, composition of plant communities and ecosystem functioning. We set up a field design combining a topographic position treatment (with four habitats) and a water stress treatment (with two climate conditions: the wet arid climate and the dry arid climate) with four replicates at the regional scale. We also carried out two experiments, one on the effect of neighbors using the observational method with transplants of three dominant species in all treatments and a second on the effect of the method (observational vs. experimental) with transplantation of three Poaceae in the two least saline habitats.The observational study clearly showed that salinity was the major direct factor determining the composition, diversity and structure of communities, as well as the productivity of ecosystems and their fertility. Aridity has less, more subtle effects, which can only be spatially compared in the least saline habitat between the low and high arid climates.The first experimental study showed that salinity stress (a direct, non-resource factor) induced a facilitation collapse that increased with increasing aridity, both temporally and spatially. The switch to competition in extreme conditions of aridity predicted in the literature was not found. This is very likely due to the weakly competitive strategy of Chamaephytes dominating the most saline habitats. The second experimental study showed that, before the dry summer season, the short-term interactions measured by the experimental method (removal method) were negative whereas the long-term interactions, measured by the combination of the observational and experimental methods were positive, thus, supporting our hypotheses and the literature. However, after the dry summer season, the short-term interactions turned to positive, whereas the long-term interactions collapsed due to vanishing the buffering effect of the vegetated soil on humidity.These results are crucial because they showed that in this arid and saline system, the collapse of facilitation is the major process explaining the structure, diversity and functioning of ecosystems, both along salinity gradients and when water stress increases. On the other hand, the combination of the observational and experimental methods was crucial to show that the increase in facilitation predicted by SGH with increasing water stress is only a response of plants to the increasing negative effect of abiotic environment (environmental-severity effect). This contrasts with the increased competition in unstressed environments and increased facilitation from highly stressed to intermediate environments, both being neighbor-trait effects., L’objectif de ce travail de thèse est de clarifier le débat de la littérature d’écologie des communautés sur les variations d’interactions plante-plante le long de gradients de stress hydrique. Nous nous sommes focalisés sur l’importance du type de stress (ressources vs. non-ressources) et la méthode utilisée (observationnelle vs. expérimentale) pour quantifier les interactions biotiques. Les dépressions salines continentales (Sebkhas) de Tunisie se caractérisant par l’existence d’un gradient marqué de salinité dans des contextes climatiques contrastés est un excellent système modèle pour clarifier ce débat notamment en séparant les effets de la salinité de ceux du stress hydrique.Dans une première étape, nous avons effectué une étude observationnelle à l’échelle de la zone aride tunisienne afin d’identifier les conséquences des interactions possibles existant entre la topographie et le climat et déterminant les variations de stress salin et hydrique et donc la structure, la composition des communautés végétales et le fonctionnement des écosystèmes. Nous avons mis en place un dispositif de terrain croisant un traitement de position topographique (avec quatre habitats) et un traitement de stress hydrique (avec deux situations climatiques, le climat faiblement aride et le climat fortement aride) avec quatre répétitions à l’échelle régionale. Nous avons également effectué deux expérimentations, une première sur les l’effet des voisins par la méthode observationnelle avec transplantation de trois espèces dominantes dans l’ensemble des traitements et une sur l’effet de la méthode (observationnelle vs. expérimentale) avec transplantation de trois Poaceae dans les deux habitats les moins salés.L’étude observationnelle a clairement montré que la salinité est le facteur direct majeur déterminant la composition, la diversité et la structure des communautés, ainsi que la productivité des écosystèmes et leur fertilité. L’aridité a des effets moindres plus subtiles et son effet ne peut être comparé spatialement que dans l’habitat le moins salé entre les zones très et faiblement arides.La première étude expérimentale a montré que le stress salin (facteur direct non de ressource) entrainait un collapse de la facilitation et que ce collapse s’accentuait avec l’aridité croissante, aussi bien temporellement que spatialement. Nous n’avons pas trouvé de retour de la compétition en situation d’aridité extrême comme le prédit la littérature. Ceci est sans doute due à la stratégie faiblement compétitrice des Chaméphytes dominants les habitats les plus salés. La seconde étude expérimentale a montré qu’avant la saison sèche estivale les interactions de court-terme mesurées par la méthode expérimentale (removal method) sont négatives alors que les interactions de long-terme, mesurées par combinaison des méthodes observationnelle et expérimentale sont positives, confirmant nos hypothèses et la littérature. Cependant, après la saison sèche estivale les interactions de court-terme deviennent positives, alors que les interactions de long-terme collapsent par disparition de l’effet tampon du sol végétalisé sur l’humidité.Ces résultats sont cruciaux car ils montrent que dans ce système aride et à important stress salin le collapse de la facilitation est le processus majeur expliquant la structure, la diversité et le fonctionnement des écosystèmes et ce aussi bien le long des gradients de salinité que lorsque que le stress hydrique augmente. D’autre part la combinaison des méthodes observationnelle et expérimentale nous a permis de démontrer que l’augmentation de la facilitation prédite par le SGH lors d’une augmentation modérée de stress hydrique n’est qu’une réponse des plantes à l’effet négatif croissant de l’environnement abiotique, contrairement à l’augmentation de la compétition dans les environnements non stressés et celui de la facilitation des environnements très à moyennement stressés, qui sont des processus d’origine biotique.
- Published
- 2020
5. Shift from short‐term competition to facilitation with drought stress is due to a decrease in long‐term facilitation
- Author
-
Chaieb, Ghassen, primary, Wang, Xiangtai, additional, Abdelly, Chedly, additional, and Michalet, Richard, additional
- Published
- 2020
- Full Text
- View/download PDF
6. A Regional Assessment of Changes in Plant–Plant Interactions Along Topography Gradients in Tunisian Sebkhas
- Author
-
Chaieb, Ghassen, primary, Abdelly, Chedly, additional, and Michalet, Richard, additional
- Published
- 2020
- Full Text
- View/download PDF
7. The consistency of home-field advantage effects with varying climate conditions
- Author
-
Wang, Xiangtai, primary, Gossart, Maud, additional, Guinet, Yann, additional, Fau, Hugo, additional, Lavignasse-Scaglia, Charles-Dominique, additional, Chaieb, Ghassen, additional, and Michalet, Richard, additional
- Published
- 2020
- Full Text
- View/download PDF
8. Interactive effects of climate and topography on soil salinity and vegetation zonation in North‐African continental saline depressions
- Author
-
Chaieb, Ghassen, primary, Abdelly, Chedly, additional, and Michalet, Richard, additional
- Published
- 2019
- Full Text
- View/download PDF
9. Shift from short‐term competition to facilitation with drought stress is due to a decrease in long‐term facilitation.
- Author
-
Chaieb, Ghassen, Wang, Xiangtai, Abdelly, Chedly, and Michalet, Richard
- Subjects
- *
SOIL moisture measurement , *DROUGHTS , *MEDITERRANEAN climate , *SUMMER , *DROUGHT management - Abstract
Disentangling short‐ and long‐term neighbour effects, using both removal and observational methods within a single experiment, has strongly improved our understanding of the driving mechanisms of plant–plant interactions. However, there has been no attempt to assess two important underlying processes of their changes along gradients, either environmental‐severity (changes in target performance without neighbours) or neighbour‐traits (changes in performance with neighbours) effects, the former previously shown in alpine communities to be involved in competition and the latter in facilitation. We addressed this goal in an experiment conducted in continental saline depressions (sebkhas) from the Mediterranean arid climate of central Tunisia. We quantified short‐ and long‐term effects of dominant shrubs, transplanting three target grass species in open, nurse and removed‐nurse microhabitats of two habitats of different salinity levels in height sebkhas. The design extended greographically from central Tunisia to the Libyan border, 500 km southeastward. We used the relative interaction index to calculate short‐ and long‐term effects before and after the dry summer seasons and environmental‐severity and neighbour‐trait effects. Short‐term effects were slightly negative and long‐term effects strongly positive before the dry summer season in the two habitats. Short‐term effects switched to positive with increasing drought stress, due to an environmental‐severity effect, whereas long‐term effects decreased due to a neighbour‐trait effect. Salinity did not affect neither short‐ nor long‐term shrub effects. Soil moisture measurements showed that both changes were due to vanishing shrub soil engineering‐effects during the summer drought. We conclude that an increase in short‐term facilitation with increasing drought stress through time, apparently supporting the stress gradient hypothesis, might be due to a decrease in long‐term facilitation. Thus, we recommend using, as much as possible, both the removal and observational methods in experiments assessing changes in plant–plant interactions along stress gradients to avoid wrong conclusions. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. Variation de l’intensité de la facilitation avec la salinité et l’aridité dans les dépressions salines continentales de Tunisie
- Author
-
CHAIEB, Ghassen, Michalet, Richard, Abdelly, Chedly, Forey, Estelle, Krouma, Abdelmajid, Bejaoui, Zoubeir, and Touzard, Blaise
- Subjects
Collapse de la facilitation ,Interactions biotiques ,Ecosystèmes salins ,Stress hydrique ,Climat méditerranéen aride
11. RecruitNet: A global database of plant recruitment networks.
- Author
-
Verdú M, Garrido JL, Alcántara JM, Montesinos-Navarro A, Aguilar S, Aizen MA, Al-Namazi AA, Alifriqui M, Allen D, Anderson-Teixeira KJ, Armas C, Bastida JM, Bellido T, Bonanomi G, Paterno GB, Briceño H, de Oliveira RAC, Campoy JG, Chaieb G, Chu C, Collins SE, Condit R, Constantinou E, Degirmenci CÜ, Delalandre L, Duarte M, Faife M, Fazlioglu F, Fernando ES, Flores J, Flores-Olvera H, Fodor E, Ganade G, Garcia MB, García-Fayos P, Gavini SS, Goberna M, Gómez-Aparicio L, González-Pendás E, González-Robles A, Hubbell SP, İpekdal K, Jorquera MJ, Kikvidze Z, Kütküt P, Ledo A, Lendínez S, Li B, Liu H, Lloret F, López RP, López-García Á, Lortie CJ, Losapio G, Lutz JA, Luzuriaga AL, Máliš F, Manrique E, Manzaneda AJ, Marcilio-Silva V, Michalet R, Molina-Venegas R, Navarro-Cano JA, Novotny V, Olesen JM, Ortiz-Brunel JP, Pajares-Murgó M, Parissis N, Parker G, Perea AJ, Pérez-Hernández V, Pérez-Navarro MÁ, Pistón N, Pizarro-Carbonell E, Prieto I, Prieto-Rubio J, Pugnaire FI, Ramírez N, Retuerto R, Rey PJ, Rodriguez Ginart DA, Rodríguez-Sánchez M, Sánchez-Martín R, Schöb C, Tavşanoğlu Ç, Tedoradze G, Tercero-Araque A, Tielbörger K, Touzard B, Tüfekcioğlu İ, Turkis S, Usero FM, Usta N, Valiente-Banuet A, Vargas-Colin A, Vogiatzakis I, and Zamora R
- Subjects
- Humans, Plants, Biological Evolution, Ecosystem, Tracheophyta
- Abstract
Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications., (© 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.