12 results on '"Cesur, Müberra Fatma"'
Search Results
2. Computational Systems Biology of Metabolism in Infection
- Author
-
Cesur, Müberra Fatma, Abdik, Ecehan, Güven-Gülhan, Ünzile, Durmuş, Saliha, Çakır, Tunahan, Silvestre, Ricardo, editor, and Torrado, Egídio, editor
- Published
- 2018
- Full Text
- View/download PDF
3. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease
- Author
-
Cesur, Müberra Fatma, Basile, Arianna, Patil, Kiran Raosaheb, Çakır, Tunahan, Basile, Arianna [0000-0003-2461-5221], Patil, Kiran Raosaheb [0000-0002-6166-8640], Çakır, Tunahan [0000-0001-8262-4420], and Apollo - University of Cambridge Repository
- Subjects
Drosophila melanogaster ,Genome ,Databases, Factual ,Animals ,Humans ,Parkinson Disease - Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.
- Published
- 2023
4. Systems Biology Modeling to Study Pathogen–Host Interactions
- Author
-
Cesur, Müberra Fatma, primary and Durmuş, Saliha, additional
- Published
- 2017
- Full Text
- View/download PDF
5. A genome-scale metabolic model of Drosophila melanogaster for integrative analysis of brain diseases
- Author
-
Cesur, Müberra Fatma, primary, Patil, Kiran Raosaheb, additional, and Çakır, Tunahan, additional
- Published
- 2022
- Full Text
- View/download PDF
6. Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data
- Author
-
Cesur, Müberra Fatma, primary, Çakır, Tunahan, additional, and Pir, Pınar, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Network-Based Metabolism-Centered Screening of Potential Drug Targets in Klebsiella pneumoniae at Genome Scale
- Author
-
Cesur, Müberra Fatma, primary, Siraj, Bushra, additional, Uddin, Reaz, additional, Durmuş, Saliha, additional, and Çakır, Tunahan, additional
- Published
- 2020
- Full Text
- View/download PDF
8. Constraint-based analysis of the genome-scale metabolic networks for Klebsiella pneumoniae to identify new putative drug targets
- Author
-
Cesur, Müberra Fatma, Durmuş, Saliha, Çakır, Tunahan, and Biyomühendislik Anabilim Dalı
- Subjects
Biyomühendislik ,Bioengineering ,Medical Biology ,Tıbbi Biyoloji - Abstract
Klebsiella pneumoniae yaşamı tehdit eden, ciddi hastane enfeksiyonlarına sebep olmaktadır. Klasik tedavi yaklaşımları Klebsiella aracılı enfeksiyonların kontrolünde yetersiz kalmaktadır. Bu yüzden bu patojenle başa çıkabilmek için daha farklı yaklaşımlara ihtiyaç vardır. Ağ-tabanlı analiz yöntemleri, hücresel metabolizmanın çözülebilmesi için kapsamlı çıktılar sunar. Genom-ölçekli metabolik ağ modelleri bir hücreye ait tüm metabolik ağının analizine izin veren önemli platformlardır. Açıkça bu yaklaşım yeni ilaç hedeflerinin belirlemesi için ümit vericidir. Günümüze kadar, K. pneumoniae için iki tane genom-ölçekli metabolik ağ modeli (MGH 78578 suşu için iYL1228 ve KPPR1 suşu için iKp1289) oluşturulmuştur. Bu çalışma kapsamında, iki farklı K. pneumoniae türünün metabolizmalarının karşılaştırılması ve enzim türevi ilaç hedeflerinin belirlenmesi amacıyla kısıt-tabanlı genom-ölçekli metabolik ağ analizine dayanan hesaplamalı sistem biyolojisi yaklaşımı kullanılmıştır. Böylece, konak ortamını taklit eden iki farklı besiyerinde büyütülen her bir suş için insanda homoloğu bulunmayan 30'un üzerinde hayati gen tespit edilmiştir. Toplamda homolog olmayan 31 gen ilaç molekülüne bağlanabilme özelliğine sahiptir. Bu genlerin virulanslıkla ilişkili olan ve bazı popüler patojen türleri arasında geniş bir yayılım 5 tanesi çalışmada ilaç hedefi olarak önerilmiştir. Güncel biyokütle oluşum denklemi kullanılarak bu olası hedef listesi genişletilmiştir. Ayrıca metabolit-odaklı bir yaklaşım kullanılarak belirlenen ve insanda homoloğu olmayan üç gen de olası ilaç hedefi olarak önerilmiştir. Bilgimiz dahilinde, K. pneumoniae için oluşturulan genom-ölçekli metabolik ağ modelleri ilk kez bu çalışmada olası ilaç hedeflerinin belirlenmesi amacıyla kullanılmıştır. Bu tez çalışmanın sonuçları, gelecek çalışmalara yönelik önemli bulgular sunmaktadır. Klebsiella pneumoniae is an etiological agent of serious life-threatening nosocomial infections. Conventional treatment approaches are not sufficient to control the Klebsiella-mediated infections. Therefore, different approaches must be employed to handle resistant species of this pathogen. Network-based analysis methods provide a comprehensive view to decipher cellular metabolism. Genome-scale metabolic network models (GEMs) are promising platforms that allow analysis of whole metabolic network of a cell. Notably, they are useful to identify novel metabolic drug targets. To date, two metabolic models of K. pneumoniae (iYL1228 for MGH 78578 strain and iKp1289 for highly strain KPPR1 strain) have been reconstructed. In the scope of this work, computational systems biology approach based on constraint-based genome-scale metabolic network analysis was used to comparatively analyze the metabolisms of two Klebsiella strains and to discover new enzyme-based drug targets. Over 30 essential gene without human homologs were identified through growth simulations of each strain in different host-mimicking conditions. A total of 31 non-homologous genes are found to be druggable. Five of them associated with virulence and show a broad distribution among some popular pathogen species were suggested as drug targets in the study. This putative target list was extended using an updated biomass reaction. Furthermore, three non-homologous genes were also predicted as drug target via a metabolite-centric approach. To our knowledge, this is the first comprehensive effort to elucidate putative drug targets of K. pneumoniae strains through the analysis of their GEMs. These findings provide crucial insight for further research. 141
- Published
- 2018
9. Sınırlandırılmış cevaptan sorumlu relA geninin Streptomyces coelicolor suşunda antibiyotik üretimine etkisi
- Author
-
Cesur, Müberra Fatma, Tunca Gedik, Sedef, and Moleküler Biyoloji ve Genetik Anabilim Dalı
- Subjects
Genetics ,Genetik ,Biyoteknoloji ,Biotechnology - Abstract
Antibiyotik direnci sorunu hızla popülerlik kazanmasına rağmen, antibiyotiklerin medikal ve biyoteknolojik önemi tartışılamaz. Ticari ve medikal amaçlı kullanılan antibiyotiklerin yaklaşık %75'ini üretebilme kapasitesine sahip olan Streptomycetes'ler, bu yetenekleri sayesinde en dikkat çeken mikroorganizmalar arasındadır. Bir Streptomyces türü olan Streptomyces coelicolor en az 5 farklı antibiyotiği sentezleyebilme yeteneğine sahip olup genetik çalışmalarda sıklıkla model organizma olarak kullanılmaktadır. Antibiyotik ve diğer ikincil metabolitlerin üretimi, besin kıtlığı gibi stres faktörleriyle aktive olan `sınırlandırılmış cevap` mekanizması üzerinden artırılabilir. Sınırlandırılmış cevap, ortamda yeterli besin bulunmaması durumunda, mikroorganizmaların alarmon (ppGpp ve pppGpp) üreterek metabolik durumlarının yeni koşullara adaptasyonu sağlayacak şekilde yeniden düzenlenmesini tetikler. RelA, hücresel (p)ppGpp seviyesinin artırılmasında görev alan faktörlerden birisidir. Bu çalışma kapsamında, ilgili gen çok kopyalı ve gliserolle uyarılabilir bir E. coli – Streptomyces mekik vektörüne (pSPG) klonlanarak yaban tip S. coelicolor A(3)2 hücresine aktarılmış ve rekombinant suşta antibiyotik üretimi ölçülerek relA'nın yüksek düzeyde ifadesinin ikincil metabolizma üzerindeki etkisi araştırılmıştır. Bilgimiz dahilinde bugüne kadar yapılmış relA genine ait ekpresyon çalışmaları bu genden yoksun mutant suşun komplementasyonunu baz alan çalışmalardır. Bu çalışmada elde edilen rekombinant suş, zengin besiyerinde yüksek düzeyde relA ifade edebilen ilk suş olması bakımından bilimsel literatür için değerli olacaktır. Aynı zamanda, RelA'nın ikincil metabolizmaya etkisinin daha detaylı çalışılacağı diğer araştırmalar için de materyal ve ön bulgular sağlaması çalışmanın önemini artırmaktadır. The medical and biotechnological importance of antibiotics is indisputable despite of the rapid rice in popularity of antibiotic resistance crisis. Approximately 75% of commercially and medically useful antibiotics are sourced from the genus Streptomyces and they are among the most prominent microorganisms with their antibiotic-producing capacities. Streptomyces coelicolor, a member of the genus Streptomyces, can synthesize 5 or more different antibiotics and it is frequently used as the model organism in genetic researches. Production of seconder metabolites including antibiotics can be enhanced upon `stringent response` mechanism induced by stress factors like nutrient deprivation. With the lack of enough nutrient in the environment, stringent response prompts microorganisms to rearrange the cellular metabolic status by alormone (ppGpp ve pppGpp) production for adaption into this new condition. relA is one of the main factors responsible for alarmone accumulation. This gene was cloned into a multicopy, glycerol-inducible E. coli – Streptomyces shuttle vector (pSPG) and introduced into wild-type S. coelicolor A(3)2. Then the effect of relA overexpression on secondary metabolism was investigated by measuring antibiotic production in recombinant strain. To our knowledge, researches have focused on complementation of the mutant strain lacking relA gene so far. The recombinant strain obtained in this study will be valuable for scientific literature since it is the first example that overexpress relA gene in rich medium. Moreover, by providing materials and preliminary findings for the future studies regarding the effect of RelA on secondary metabolism increases the importance of this study. 91
- Published
- 2017
10. Comparative Proteomics Highlights that GenX Exposure Leads to Metabolic Defects and Inflammation in Astrocytes
- Author
-
Abu-Salah, Abdulla, Cesur, Müberra Fatma, Anchan, Aiesha, Ay, Muhammet, Langley, Monica R., Shah, Ahmed, Reina-Gonzalez, Pablo, Strazdins, Rachel, Çakır, Tunahan, and Sarkar, Souvarish
- Abstract
Exposure to PFAS such as GenX (HFPO dimer acid) has become increasingly common due to the replacement of older generation PFAS in manufacturing processes. While neurodegenerative and developmental effects of legacy PFAS exposure have been studied in depth, there is a limited understanding specific to the effects of GenX exposure. To investigate the effects of GenX exposure, we exposed Drosophila melanogasterto GenX and assessed the motor behavior and performed quantitative proteomics of fly brains to identify molecular changes in the brain. Additionally, metabolic network-based analysis using the iDrosophila1 model unveiled a potential link between GenX exposure and neurodegeneration. Since legacy PFAS exposure has been linked to Parkinson’s disease (PD), we compared the proteome data sets between GenX-exposed flies and a fly model of PD expressing human α-synuclein. Considering the proteomic data- and network-based analyses that revealed GenX may be regulating GABA-associated pathways and the immune system, we next explored the effects of GenX on astrocytes, as astrocytes in the brain can regulate GABA. An array of assays demonstrated GenX exposure may lead to mitochondrial dysfunction and neuroinflammatory response in astrocytes, possibly linking non-cell autonomous neurodegeneration to the motor deficits associated with GenX exposure.
- Published
- 2024
- Full Text
- View/download PDF
11. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease.
- Author
-
Cesur MF, Basile A, Patil KR, and Çakır T
- Subjects
- Animals, Humans, Databases, Factual, Genome, Drosophila melanogaster genetics, Parkinson Disease genetics
- Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila -specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations., (© 2023 Cesur et al.)
- Published
- 2023
- Full Text
- View/download PDF
12. Systems Biology Modeling to Study Pathogen-Host Interactions.
- Author
-
Cesur MF and Durmuş S
- Subjects
- Gene Ontology, Humans, Protein Interaction Mapping, Protein Interaction Maps, Signal Transduction, Web Browser, Computational Biology methods, Host-Pathogen Interactions, Systems Biology methods
- Abstract
Pathogen-host interactions (PHIs) underlie the process of infection. The systems biology view of the whole PHI system is superior to the investigation of the pathogen or host separately in understanding the infection mechanisms. Especially, the identification of host-oriented drug targets for the next-generation anti-infection therapeutics requires the properties of the host factors targeted by pathogens. Here, we provide an outline of computational analysis of PHI networks, focusing on the properties of the pathogen-targeted host proteins. We also provide information about the available PHI data and the related Web-based resources.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.