10 results on '"Cernusak, L.A."'
Search Results
2. AusTraits, a curated plant trait database for the Australian flora
- Author
-
Falster, D., Gallagher, R., Wenk, E.H., Wright, I.J., Indiarto, D., Andrew, S.C., Baxter, C., Lawson, J., Allen, S., Fuchs, A., Monro, A., Kar, F., Adams, M.A., Ahrens, C.W., Alfonzetti, M., Angevin, T., Apgaua, D.M.G., Arndt, S., Atkin, O.K., Atkinson, J., Auld, T., Baker, A., von Balthazar, M., Bean, A., Blackman, C.J., Bloomfield, K., Bowman, D.M.J.S., Bragg, J., Brodribb, T. J., Buckton, G., Burrows, G., Caldwell, E., Camac, J., Carpenter, R., Catford, J.A., Cawthray, G.R., Cernusak, L.A., Chandler, G., Chapman, A.R., Cheal, D., Cheesman, A.W., Chen, S-C, Choat, B., Clinton, B., Clode, P.L., Coleman, H., Cornwell, W.K., Cosgrove, M., Crisp, M., Cross, E., Crous, K.Y., Cunningham, S., Curran, T., Curtis, E., Daws, M.I., DeGabriel, J.L., Denton, M.D., Dong, N., Du, P., Duan, H., Duncan, D.H., Duncan, R.P., Duretto, M., Dwyer, J.M., Edwards, C., Esperon-Rodriguez, M., Evans, J.R., Everingham, S.E., Farrell, C., Firn, J., Fonseca, C.R., French, B.J., Frood, D., Funk, J.L., Geange, S.R., Ghannoum, O., Gleason, S.M., Gosper, C.R., Gray, E., Groom, P.K., Grootemaat, S., Gross, C., Guerin, G., Guja, L., Hahs, A.K., Harrison, M.T., Hayes, P.E., Henery, M., Hochuli, D., Howell, J., Huang, G., Hughes, L., Huisman, J., Ilic, J., Jagdish, A., Jin, D., Jordan, G., Jurado, E., Kanowski, J., Kasel, S., Kellermann, J., Kenny, B., Kohout, M., Kooyman, R.M., Kotowska, M.M., Lai, H.R., Laliberté, E., Lambers, H., Lamont, B.B., Lanfear, R., van Langevelde, F., Laughlin, D.C., Laugier-Kitchener, B-A, Laurance, S., Lehmann, C.E.R., Leigh, A., Leishman, M.R., Lenz, T., Lepschi, B., Lewis, J.D., Lim, F., Liu, U., Lord, J., Lusk, C.H., Macinnis-Ng, C., McPherson, H., Magallón, S., Manea, A., López-Martinez, A., Mayfield, M., McCarthy, J.K., Meers, T., van der Merwe, M., Metcalfe, D.J., Milberg, P., Mokany, K., Moles, A.T., Moore, B.D., Moore, N., Morgan, J.W., Morris, W., Muir, A., Munroe, S., Nicholson, Á., Nicolle, D., Nicotra, A.B., Niinemets, Ü., North, T., O’Reilly-Nugent, A., O’Sullivan, O.S., Oberle, B., Onoda, Y., Ooi, M.K.J., Osborne, C.P., Paczkowska, G., Pekin, B., Guilherme Pereira, C., Pickering, C., Pickup, M., Pollock, L.J., Poot, P., Powell, J.R., Power, S.A., Prentice, I.C., Prior, L., Prober, S.M., Read, J., Reynolds, V., Richards, A.E., Richardson, B., Roderick, M.L., Rosell, J.A., Rossetto, M., Rye, B., Rymer, P.D., Sams, M.A., Sanson, G., Sauquet, H., Schmidt, S., Schönenberger, J., Schulze, E-D, Sendall, K., Sinclair, S., Smith, B., Smith, R., Soper, F., Sparrow, B., Standish, R.J., Staples, T.L., Stephens, R., Szota, C., Taseski, G., Tasker, E., Thomas, F., Tissue, D.T., Tjoelker, M.G., Tng, D.Y.P., de Tombeur, F., Tomlinson, K., Turner, N.C., Veneklaas, E.J., Venn, S., Vesk, P., Vlasveld, C., Vorontsova, M.S., Warren, C.A., Warwick, N., Weerasinghe, L.K., Wells, J., Westoby, M., White, M., Williams, N.S.G., Wills, J., Wilson, P.G., Yates, C., Zanne, A.E., Zemunik, G., Ziemińska, K., Falster, D., Gallagher, R., Wenk, E.H., Wright, I.J., Indiarto, D., Andrew, S.C., Baxter, C., Lawson, J., Allen, S., Fuchs, A., Monro, A., Kar, F., Adams, M.A., Ahrens, C.W., Alfonzetti, M., Angevin, T., Apgaua, D.M.G., Arndt, S., Atkin, O.K., Atkinson, J., Auld, T., Baker, A., von Balthazar, M., Bean, A., Blackman, C.J., Bloomfield, K., Bowman, D.M.J.S., Bragg, J., Brodribb, T. J., Buckton, G., Burrows, G., Caldwell, E., Camac, J., Carpenter, R., Catford, J.A., Cawthray, G.R., Cernusak, L.A., Chandler, G., Chapman, A.R., Cheal, D., Cheesman, A.W., Chen, S-C, Choat, B., Clinton, B., Clode, P.L., Coleman, H., Cornwell, W.K., Cosgrove, M., Crisp, M., Cross, E., Crous, K.Y., Cunningham, S., Curran, T., Curtis, E., Daws, M.I., DeGabriel, J.L., Denton, M.D., Dong, N., Du, P., Duan, H., Duncan, D.H., Duncan, R.P., Duretto, M., Dwyer, J.M., Edwards, C., Esperon-Rodriguez, M., Evans, J.R., Everingham, S.E., Farrell, C., Firn, J., Fonseca, C.R., French, B.J., Frood, D., Funk, J.L., Geange, S.R., Ghannoum, O., Gleason, S.M., Gosper, C.R., Gray, E., Groom, P.K., Grootemaat, S., Gross, C., Guerin, G., Guja, L., Hahs, A.K., Harrison, M.T., Hayes, P.E., Henery, M., Hochuli, D., Howell, J., Huang, G., Hughes, L., Huisman, J., Ilic, J., Jagdish, A., Jin, D., Jordan, G., Jurado, E., Kanowski, J., Kasel, S., Kellermann, J., Kenny, B., Kohout, M., Kooyman, R.M., Kotowska, M.M., Lai, H.R., Laliberté, E., Lambers, H., Lamont, B.B., Lanfear, R., van Langevelde, F., Laughlin, D.C., Laugier-Kitchener, B-A, Laurance, S., Lehmann, C.E.R., Leigh, A., Leishman, M.R., Lenz, T., Lepschi, B., Lewis, J.D., Lim, F., Liu, U., Lord, J., Lusk, C.H., Macinnis-Ng, C., McPherson, H., Magallón, S., Manea, A., López-Martinez, A., Mayfield, M., McCarthy, J.K., Meers, T., van der Merwe, M., Metcalfe, D.J., Milberg, P., Mokany, K., Moles, A.T., Moore, B.D., Moore, N., Morgan, J.W., Morris, W., Muir, A., Munroe, S., Nicholson, Á., Nicolle, D., Nicotra, A.B., Niinemets, Ü., North, T., O’Reilly-Nugent, A., O’Sullivan, O.S., Oberle, B., Onoda, Y., Ooi, M.K.J., Osborne, C.P., Paczkowska, G., Pekin, B., Guilherme Pereira, C., Pickering, C., Pickup, M., Pollock, L.J., Poot, P., Powell, J.R., Power, S.A., Prentice, I.C., Prior, L., Prober, S.M., Read, J., Reynolds, V., Richards, A.E., Richardson, B., Roderick, M.L., Rosell, J.A., Rossetto, M., Rye, B., Rymer, P.D., Sams, M.A., Sanson, G., Sauquet, H., Schmidt, S., Schönenberger, J., Schulze, E-D, Sendall, K., Sinclair, S., Smith, B., Smith, R., Soper, F., Sparrow, B., Standish, R.J., Staples, T.L., Stephens, R., Szota, C., Taseski, G., Tasker, E., Thomas, F., Tissue, D.T., Tjoelker, M.G., Tng, D.Y.P., de Tombeur, F., Tomlinson, K., Turner, N.C., Veneklaas, E.J., Venn, S., Vesk, P., Vlasveld, C., Vorontsova, M.S., Warren, C.A., Warwick, N., Weerasinghe, L.K., Wells, J., Westoby, M., White, M., Williams, N.S.G., Wills, J., Wilson, P.G., Yates, C., Zanne, A.E., Zemunik, G., and Ziemińska, K.
- Abstract
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
- Published
- 2021
3. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data
- Author
-
Aguirre-Gutiérrez, J., Rifai, S., Shenkin, A., Oliveras, I., Bentley, L.P., Svátek, M., Girardin, C.A.J., Both, S., Riutta, T., Berenguer, E., Kissling, W.D., Bauman, D., Raab, N., Moore, S., Farfan-Rios, W., Figueiredo, A.E.S., Reis, S.M., Ndong, J.E., Ondo, F.E., N'ssi Bengone, N., Mihindou, V., Moraes de Seixas, M.M., Adu-Bredu, S., Abernethy, K., Asner, G.P., Barlow, J., Burslem, D.F.R.P., Coomes, D.A., Cernusak, L.A., Dargie, G.C., Enquist, B.J., Ewers, R.M., Ferreira, J., Jeffery, K.J., Joly, C.A., Lewis, S.L., Marimon-Junior, B.H., Martin, R.E., Morandi, P.S., Phillips, O.L., Quesada, C.A., Salinas, N., Schwantes Marimon, B., Silman, M., Teh, Y.A., White, L.J.T., Malhi, Y., Aguirre-Gutiérrez, J., Rifai, S., Shenkin, A., Oliveras, I., Bentley, L.P., Svátek, M., Girardin, C.A.J., Both, S., Riutta, T., Berenguer, E., Kissling, W.D., Bauman, D., Raab, N., Moore, S., Farfan-Rios, W., Figueiredo, A.E.S., Reis, S.M., Ndong, J.E., Ondo, F.E., N'ssi Bengone, N., Mihindou, V., Moraes de Seixas, M.M., Adu-Bredu, S., Abernethy, K., Asner, G.P., Barlow, J., Burslem, D.F.R.P., Coomes, D.A., Cernusak, L.A., Dargie, G.C., Enquist, B.J., Ewers, R.M., Ferreira, J., Jeffery, K.J., Joly, C.A., Lewis, S.L., Marimon-Junior, B.H., Martin, R.E., Morandi, P.S., Phillips, O.L., Quesada, C.A., Salinas, N., Schwantes Marimon, B., Silman, M., Teh, Y.A., White, L.J.T., and Malhi, Y.
- Abstract
Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem responses to environmental changes without capturing the high diversity of plant functional characteristics in the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to environmental disturbances. Innovative methods and data products are needed to track changes in functional trait composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of canopy functional traits collected from 2434 individual trees across the tropics using a standardised methodology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial positions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2 imagery in conjunction with climatic and soil information. Image textural parameters were found to be key components of remote sensing information for predicting functional traits across tropical forests and woody savannas. Leaf thickness (R2 = 0.52) obtained the highest prediction accuracy among the morphological and structural traits and leaf carb
- Published
- 2021
4. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)
- Author
-
Halbritter, A.H., De, Boeck, H.J., Eycott, A.E., Reinsch, S., Robinson, D.A., Vicca, S., Berauer, B., Christiansen, C.T., Estiarte, M., Grünzweig, J.M., Gya, R., Hansen, K., Jentsch, A., Lee, H., Linder, S., Marshall, J., Peñuelas, J., Kappel, Schmidt, I., Stuart-Haëntjens, E., Wilfahrt, P., Vandvik, V., Abrantes, N., Almagro, M., Althuizen, I.H.J., Barrio, I.C., Te, Beest, M., Beier, C., Beil, I., Carter, Berry, Z., Birkemoe, T., Bjerke, J.W., Blonder, B., Blume-Werry, G., Bohrer, G., Campos, I., Cernusak, L.A., Chojnicki, B.H., Cosby, B.J., Dickman, L.T., Djukic, I., Filella, I., Fuchslueger, L., Gargallo-Garriga, A., Gillespie, M.A.K., Goldsmith, G.R., Gough, C., Halliday, F.W., Hegland, S.J., Hoch, G., Holub, P., Jaroszynska, F., Johnson, D.M., Jones, S.B., Kardol, P., Keizer, J.J., Klem, K., Konestabo, H.S., Kreyling, J., Kröel-Dulay, G., Landhäusser, S.M., Larsen, K.S., Leblans, N., Lebron, I., Lehmann, M.M., Lembrechts, J.J., Lenz, A., Linstädter, A., Llusià, J., Macias-Fauria, M., Malyshev, A.V., Mänd, P., Marshall, M., Matheny, A.M., McDowell, N., Meier, I.C., Meinzer, F.C., Michaletz, S.T., Miller, M.L., Muffler, L., Oravec, M., Ostonen, I., Porcar Castell, Albert, Preece, C., Prentice, I.C., Radujkovic, D., Ravolainen, V., Ribbons, R., Ruppert, J.C., Sack, L., Sardans, J., Schindlbacher, A., Scoffoni, C., Sigurdsson, B.D., Smart, S., Smith, S.W., Soper, F., Speed, J.D.M., Sverdrup-Thygeson, A., Sydenham, M.A.K., Taghizadeh-Toosi, A., Telford, R.J., Tielbörger, K., Töpper, J.P., Urban, O., Van der, Ploeg, M., Van Langenhove, L., Vecerová, K., Ven, A., Verbruggen, E., Vik, U., Weigel, R., Wohlgemuth, T., Wood, L.K., Zinnert, J., Zurba, K., the, ClimMani, Working, Group, Halbritter, A.H., De, Boeck, H.J., Eycott, A.E., Reinsch, S., Robinson, D.A., Vicca, S., Berauer, B., Christiansen, C.T., Estiarte, M., Grünzweig, J.M., Gya, R., Hansen, K., Jentsch, A., Lee, H., Linder, S., Marshall, J., Peñuelas, J., Kappel, Schmidt, I., Stuart-Haëntjens, E., Wilfahrt, P., Vandvik, V., Abrantes, N., Almagro, M., Althuizen, I.H.J., Barrio, I.C., Te, Beest, M., Beier, C., Beil, I., Carter, Berry, Z., Birkemoe, T., Bjerke, J.W., Blonder, B., Blume-Werry, G., Bohrer, G., Campos, I., Cernusak, L.A., Chojnicki, B.H., Cosby, B.J., Dickman, L.T., Djukic, I., Filella, I., Fuchslueger, L., Gargallo-Garriga, A., Gillespie, M.A.K., Goldsmith, G.R., Gough, C., Halliday, F.W., Hegland, S.J., Hoch, G., Holub, P., Jaroszynska, F., Johnson, D.M., Jones, S.B., Kardol, P., Keizer, J.J., Klem, K., Konestabo, H.S., Kreyling, J., Kröel-Dulay, G., Landhäusser, S.M., Larsen, K.S., Leblans, N., Lebron, I., Lehmann, M.M., Lembrechts, J.J., Lenz, A., Linstädter, A., Llusià, J., Macias-Fauria, M., Malyshev, A.V., Mänd, P., Marshall, M., Matheny, A.M., McDowell, N., Meier, I.C., Meinzer, F.C., Michaletz, S.T., Miller, M.L., Muffler, L., Oravec, M., Ostonen, I., Porcar Castell, Albert, Preece, C., Prentice, I.C., Radujkovic, D., Ravolainen, V., Ribbons, R., Ruppert, J.C., Sack, L., Sardans, J., Schindlbacher, A., Scoffoni, C., Sigurdsson, B.D., Smart, S., Smith, S.W., Soper, F., Speed, J.D.M., Sverdrup-Thygeson, A., Sydenham, M.A.K., Taghizadeh-Toosi, A., Telford, R.J., Tielbörger, K., Töpper, J.P., Urban, O., Van der, Ploeg, M., Van Langenhove, L., Vecerová, K., Ven, A., Verbruggen, E., Vik, U., Weigel, R., Wohlgemuth, T., Wood, L.K., Zinnert, J., Zurba, K., and the, ClimMani, Working, Group
- Abstract
Climate change is a world-wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil plant atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high-quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re-use, synthesis and upscaling. Many of these challenges relate to a lack of an established best practice for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. To overcome these challenges, we collected best-practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re-use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re-use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second-order research outputs and create opportunities for collaboration across scientific
- Published
- 2020
5. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass
- Author
-
Terrer, C., Jackson, R.B., Prentice, I.C., Keenan, T.F., Kaiser, C., Vicca, S., Fisher, J.B., Reich, P. B., Stocker, B.D., Hungate, B.A., Peñuelas, J., McCallum, I., Soudzilovskaia, N.A., Cernusak, L.A., Talhelm, A.F., Van Sundert, K., Piao, S., Newton, P.C.D., Hovenden, M.J., Blumenthal, D.M., Liu, Y.Y., Müller, C., Winter, K., Field, C.B., Viechtbauer, W., Van Lissa, C.J., Hoosbeek, M.R., Watanabe, M., Koike, T., Leshyk, V.O., Polley, H.W., Franklin, O., Terrer, C., Jackson, R.B., Prentice, I.C., Keenan, T.F., Kaiser, C., Vicca, S., Fisher, J.B., Reich, P. B., Stocker, B.D., Hungate, B.A., Peñuelas, J., McCallum, I., Soudzilovskaia, N.A., Cernusak, L.A., Talhelm, A.F., Van Sundert, K., Piao, S., Newton, P.C.D., Hovenden, M.J., Blumenthal, D.M., Liu, Y.Y., Müller, C., Winter, K., Field, C.B., Viechtbauer, W., Van Lissa, C.J., Hoosbeek, M.R., Watanabe, M., Koike, T., Leshyk, V.O., Polley, H.W., and Franklin, O.
- Abstract
Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation1,2,3,4,5,6. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass1,3,5, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO27,8. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness9 and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.
- Published
- 2019
6. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
- Author
-
Atkin, O.K. Bloomfield, K.J. Reich, P.B. Tjoelker, M.G. Asner, G.P. Bonal, D. Bönisch, G. Bradford, M.G. Cernusak, L.A. Cosio, E.G. Creek, D. Crous, K.Y. Domingues, T.F. Dukes, J.S. Egerton, J.J.G. Evans, J.R. Farquhar, G.D. Fyllas, N.M. Gauthier, P.P.G. Gloor, E. Gimeno, T.E. Griffin, K.L. Guerrieri, R. Heskel, M.A. Huntingford, C. Ishida, F.Y. Kattge, J. Lambers, H. Liddell, M.J. Lloyd, J. Lusk, C.H. Martin, R.E. Maksimov, A.P. Maximov, T.C. Malhi, Y. Medlyn, B.E. Meir, P. Mercado, L.M. Mirotchnick, N. Ng, D. Niinemets, U. O'Sullivan, O.S. Phillips, O.L. Poorter, L. Poot, P. Prentice, I.C. Salinas, N. Rowland, L.M. Ryan, M.G. Sitch, S. Slot, M. Smith, N.G. Turnbull, M.H. Vanderwel, M.C. Valladares, F. Veneklaas, E.J. Weerasinghe, L.K. Wirth, C. Wright, I.J. Wythers, K.R. Xiang, J. Xiang, S. Zaragoza-Castells, J.
- Abstract
Summary: Leaf dark respiration (R dark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of R dark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in R dark . Area-based R dark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, R dark at a standard T (25°C, R dark 25 ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher R dark 25 at a given photosynthetic capacity (V cmax 25 ) or leaf nitrogen concentration ([N]) than species at warmer sites. R dark 25 values at any given V cmax 25 or [N] were higher in herbs than in woody plants. The results highlight variation in R dark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of R dark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs). © 2015 New Phytologist Trust.
- Published
- 2015
7. The relationship of leaf photosynthetic traits - V-cmax and J(max) - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study
- Author
-
Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., Cernusak, L.A., Domingues, T.F., Scales, J.C., Wohlfahrt, G., Wullschleger, S.D., and Woodward, F.I.
- Abstract
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm−2), increasing leaf P from 0.05 to 0.22 gm−2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.
- Published
- 2014
8. Podocarpaceae in tropical forests: A synthesis
- Author
-
Cernusak, L.A., Adie, H., Bellingham, P.J., Biffin, E., Brodribb, T.J., Coomes, D.A., Dalling, J.W., Dickie, I.A., Enright, N.J., Kitayama, K., Ladd, P.G., Lambers, H., Lawes, M.J., Lusk, C.H., Morley, R.J., Turner, B.L., Cernusak, L.A., Adie, H., Bellingham, P.J., Biffin, E., Brodribb, T.J., Coomes, D.A., Dalling, J.W., Dickie, I.A., Enright, N.J., Kitayama, K., Ladd, P.G., Lambers, H., Lawes, M.J., Lusk, C.H., Morley, R.J., and Turner, B.L.
- Abstract
The Podocarpaceae comprises 18 genera and about 173 species of evergreen, coniferous trees and shrubs. It is the most successful gymnosperm family in angiosperm-dominated tropical forests (Brodribb, this volume). Podocarps are distributed mainly in the Southern Hemisphere, with populations also extending as far north as China and Japan and to Mexico and the Caribbean in the neotropics (Dalling et al., this volume; Enright and Jaffré, this volume; Adie and Lawes, this volume).
- Published
- 2011
9. Ecology of the Podocarpaceae in Tropical Forests
- Author
-
Enright, N.J., Jaffré, Tanguy, Turner, B.L. (ed.), and Cernusak, L.A. (ed.)
- Subjects
RICHESSE SPECIFIQUE ,FORET ,ESPECE RARE ,PHYTOECOLOGIE ,REPARTITION GEOGRAPHIQUE - Abstract
Podocarp species and genus richness is higher in the Malesian region than anywhere else on earth, with maximum genus richness in New Guinea and New Caledonia and maximum species richness in New Guinea and Borneo. Members of the Podocarpaceae occur across the whole geographic and altitudinal range occupied by forests and shrublands in the region. There is a strong tendency for podocarp dominance of vegetation to be restricted either to high-altitude sites close to the limit of tree growth or to other sites that might restrict plant growth in terms of water relations and nutrient supply (e.g., skeletal soils on steep slopes and ridges, heath forests, ultramafic parent material). Although some species are widespread in lowland forests, they are generally present at very low density, raising questions concerning their regeneration ecology and competitive ability relative to co-occurring angiosperm tree species. A number of species in the region are narrowly distributed, being restricted to single islands or mountain tops, and are of conservation concern. Our current understanding of the distribution and ecology of Malesian podocarps is reviewed in this chapter, and areas for further research are identified. (résumé d'auteur)
- Published
- 2011
10. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
- Author
-
Shuang Xiang, Trofim C. Maximov, Lucy Rowland, Stephen Sitch, Keith J. Bloomfield, Emanuel Gloor, Christopher H. Lusk, Danielle Creek, Nicholas Mirotchnick, Ülo Niinemets, Michael G. Ryan, Peter B. Reich, Jon Lloyd, Fernando Valladares, Joana Zaragoza-Castells, Mary A. Heskel, John J. G. Egerton, Matthew H. Turnbull, Erik J. Veneklaas, John R. Evans, Roberta E. Martin, Jens Kattge, Françoise Yoko Ishida, Kevin L. Griffin, Gerhard Bönisch, Norma Salinas, Michael J. Liddell, Desmond Ng, Jeffrey S. Dukes, Martijn Slot, Hans Lambers, Lina M. Mercado, Pieter Poot, Mark C. Vanderwel, Kirk R. Wythers, Ian J. Wright, Nicholas G. Smith, Lasantha K. Weerasinghe, Rossella Guerrieri, Chris Huntingford, Jen Xiang, Teresa E. Gimeno, Yadvinder Malhi, Paul P. G. Gauthier, Patrick Meir, Eric G. Cosio, Odhran S. O'Sullivan, Gregory P. Asner, Mark G. Tjoelker, Damien Bonal, Lucas A. Cernusak, Graham D. Farquhar, Christian Wirth, Lourens Poorter, Matt Bradford, I. Colin Prentice, Oliver L. Phillips, Tomas F. Domingues, Belinda E. Medlyn, Nikolaos M. Fyllas, Owen K. Atkin, Kristine Y. Crous, Ayal P. Maksimov, Atkin O.K., Bloomfield K.J., Reich P.B., Tjoelker M.G., Asner G.P., Bonal D., Bonisch G., Bradford M.G., Cernusak L.A., Cosio E.G., Creek D., Crous K.Y., Domingues T.F., Dukes J.S., Egerton J.J.G., Evans J.R., Farquhar G.D., Fyllas N.M., Gauthier P.P.G., Gloor E., Gimeno T.E., Griffin K.L., Guerrieri R., Heskel M.A., Huntingford C., Ishida F.Y., Kattge J., Lambers H., Liddell M.J., Lloyd J., Lusk C.H., Martin R.E., Maksimov A.P., Maximov T.C., Malhi Y., Medlyn B.E., Meir P., Mercado L.M., Mirotchnick N., Ng D., Niinemets U., O'Sullivan O.S., Phillips O.L., Poorter L., Poot P., Prentice I.C., Salinas N., Rowland L.M., Ryan M.G., Sitch S., Slot M., Smith N.G., Turnbull M.H., Vanderwel M.C., Valladares F., Veneklaas E.J., Weerasinghe L.K., Wirth C., Wright I.J., Wythers K.R., Xiang J., Xiang S., Zaragoza-Castells J., Australian National University (ANU), Hawkesbury Institute for the Environment [Richmond] (HIE), Western Sydney University, University of Minnesota [Twin Cities] (UMN), University of Minnesota System, Carnegie Institution for Science [Washington], Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Max-Planck-Institut für Biogeochemie (MPI-BGC), CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), James Cook University (JCU), Pontificia Universidad Católica del Perú (PUCP), Universidade de São Paulo (USP), Purdue University [West Lafayette], National and Kapodistrian University of Athens (NKUA), Department of Geosciences [Princeton], Princeton University, School of Geography [Leeds], University of Leeds, Lamont-Doherty Earth Observatory (LDEO), Columbia University [New York], School of Geosciences [Edinburgh], University of Edinburgh, University of New Hampshire (UNH), Centre for Ecology and Hydrology [Wallingford] (CEH), Natural Environment Research Council (NERC), School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, The University of Western Australia (UWA), Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK, University of Waikato [Hamilton], Institute of Biological Problems of the Cryolithozone, Russian Academy of Sciences [Moscow] (RAS), School of Geography and the Environment [Oxford] (SoGE), University of Oxford [Oxford], Macquarie University, College of Life and Environmental Sciences, University of Exeter, Department of Ecology and Evolutionary Biology [University of Toronto] (EEB), University of Toronto, Wageningen University and Research [Wageningen] (WUR), School of Biological Sciences, University of Canterbury, Colorado State University [Fort Collins] (CSU), Department of Biology [Gainesville] (UF|Biology), University of Florida [Gainesville] (UF), Smithsonian Tropical Research Institute, University of Regina (UR), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Peradeniya, Universität Leipzig [Leipzig], Chinese Academy of Sciences [Beijing] (CAS), Western Sydney University (UWS), University of Minnesota [Twin Cities], National and Kapodistrian University of Athens = University of Athens (NKUA | UoA), School of Geography and the Environment [Oxford], Estonian University of Life Sciences, Wageningen University and Research Centre [Wageningen] (WUR), Department of Biology (University of Florida), University of Florida [Gainesville], Smithsonian Tropical Research Institute, Panama City, Republic of Panama., Consejo Superior de Investigaciones Científicas [Spain] (CSIC), and AXA Research Fund
- Subjects
temperature sensitivity ,Physiology ,[SDV]Life Sciences [q-bio] ,Acclimatization ,Climate ,Plant Science ,Photosynthesis ,Aridity ,Temperatures ,Ecology ,Respiration ,Temperature ,Biosphere ,Plants ,PE&RC ,Phenotype ,nitrogen concentration ,Leaf nitrogen (N) ,Plant Leave ,Life Sciences & Biomedicine ,Woody plant ,terrestrial carbon-cycle ,thermal-acclimation ,Nitrogen ,Plant Biology & Botany ,Cell Respiration ,Climate change ,Biology ,FOTOSSÍNTESE ,Climate model ,Ecology and Environment ,tropical rain-forests ,Carbon cycle ,Climate models ,Carbon Cycle ,Photosynthesi ,07 Agricultural and Veterinary Sciences ,Bosecologie en Bosbeheer ,Plant functional types (PFTs) ,elevated atmospheric co2 ,photosynthetic capacity ,Science & Technology ,Plant Sciences ,Tropics ,scaling relationships ,Plant ,15. Life on land ,Herbaceous plant ,06 Biological Sciences ,Carbon Dioxide ,Models, Theoretical ,vegetation models ,Photosynthetic capacity ,Arid ,Forest Ecology and Forest Management ,Plant Leaves ,Biology and Microbiology ,13. Climate action ,dark respiration ,Acclimation - Abstract
Owen K. Atkin [et al.].- Received: 8 July 2014, Accepted: 29 November 2014, Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits., Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark., Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8–28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants., The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.