1. Farsighted Coalitional Stability in TU-games
- Author
-
Jacques Durieu, Sylvain Béal, Philippe Solal, Centre de Recherche Economique de l'Université de Saint Etienne (CREUSET), Université Jean Monnet [Saint-Étienne] (UJM), Groupe d'analyse et de théorie économique (GATE Lyon Saint-Étienne), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Beudon, Soledad, Centre de Recherche Economique de l'Université de Saint-Etienne (CREUSET), Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Alfred Weber Institut, Universität Heidelberg [Heidelberg], Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne (GATE Lyon Saint-Étienne), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Superadditivity ,Computer Science::Computer Science and Game Theory ,Sociology and Political Science ,Clan Games ,Stability (learning theory) ,Context (language use) ,Characterization (mathematics) ,Set (abstract data type) ,Farsighted stable set ,Cooperative games ,0502 economics and business ,C70 ,C71 ,C72 ,Economics ,Shapley value ,050207 economics ,[SHS.ECO] Humanities and Social Sciences/Economics and Finance ,General Psychology ,ComputingMilieux_MISCELLANEOUS ,050205 econometrics ,Consistent set ,[INFO.INFO-GT]Computer Science [cs]/Computer Science and Game Theory [cs.GT] ,330 Wirtschaft ,05 social sciences ,General Social Sciences ,Farsighted core ,[SHS.ECO]Humanities and Social Sciences/Economics and Finance ,Shapley value Cooperative games ,von Neumann–Morgenstern farsighted stable set ,Core (game theory) ,Independent set ,[INFO.INFO-GT] Computer Science [cs]/Computer Science and Game Theory [cs.GT] ,Statistics, Probability and Uncertainty ,Mathematical economics - Abstract
We study farsighted coalitional stability in the context of TU-games. Chwe (1994, p.318) notes that, in this context, it is difficult to prove nonemptiness of the largest consistent. We show that every TU-game has a nonempty largest consistent set. Moreover, the proof of this result allows to conclude that each TU-game has a farsighted stable set. We go further by providing a characterization of the collection of farsighted stable sets in TU-games. We also show that the farsighted core of a TU-game is empty or equal to the set of imputations of the game. Next, we study the relationships between the core and the largest consistent set in superadditive TU-games and in clan games. In the last section, we explore the stability of the Shapley value in superadditive TU-games. We show that the Shapley value is always a stable imputation. More precisely, if the Shapley value does not belong to the core, then it constitutes a farsighted stable set. We provide a necessary and sufficient condition for a superadditive TU-game to have the Shapley value in the largest consistent set.
- Published
- 2008
- Full Text
- View/download PDF