168 results on '"Castander F.J."'
Search Results
2. CosmoHub: Interactive exploration and distribution of astronomical data on Hadoop
- Author
-
Tallada, P., Carretero, J., Casals, J., Acosta-Silva, C., Serrano, S., Caubet, M., Castander, F.J., César, E., Crocce, M., Delfino, M., Eriksen, M., Fosalba, P., Gaztañaga, E., Merino, G., Neissner, C., and Tonello, N.
- Published
- 2020
- Full Text
- View/download PDF
3. The PAU Survey: Operation and orchestration of multi-band survey data
- Author
-
Tonello, N., Tallada, P., Serrano, S., Carretero, J., Eriksen, M., Folger, M., Neissner, C., Sevilla-Noarbe, I., Castander, F.J., Delfino, M., De Vicente, J., Fernandez, E., Garcia-Bellido, J., Gaztanaga, E., Padilla, C., Sanchez, E., and Tortorelli, L.
- Published
- 2019
- Full Text
- View/download PDF
4. DES science portal: Computing photometric redshifts
- Author
-
Gschwend, J., Rossel, A.C., Ogando, R.L.C., Neto, A.F., Maia, M.A.G., da Costa, L.N., Lima, M., Pellegrini, P., Campisano, R., Singulani, C., Adean, C., Benoist, C., Aguena, M., Carrasco Kind, M., Davis, T.M., de Vicente, J., Hartley, W.G., Hoyle, B., Palmese, A., Sadeh, I., Abbott, T.M.C., Abdalla, F.B., Allam, S., Annis, J., Asorey, J., Brooks, D., Calcino, J., Carollo, D., Castander, F.J., D’Andrea, C.B., Desai, S., Evrard, A.E., Fosalba, P., Frieman, J., García-Bellido, J., Glazebrook, K., Gerdes, D.W., Gruendl, R.A., Gutierrez, G., Hinton, S., Hollowood, D.L., Honscheid, K., Hoormann, J.K., James, D.J., Kuehn, K., Kuropatkin, N., Lahav, O., Lewis, G., Lidman, C., Lin, H., Macaulay, E., Marshall, J., Melchior, P., Miquel, R., Möller, A., Plazas, A.A., Sanchez, E., Santiago, B., Scarpine, V., Schindler, R.H., Sevilla-Noarbe, I., Smith, M., Sobreira, F., Sommer, N.E., Suchyta, E., Swanson, M.E.C., Tarle, G., Tucker, B.E., Tucker, D.L., Uddin, S., and Walker, A.R.
- Published
- 2018
- Full Text
- View/download PDF
5. Dark Energy Survey Year 3 Results: Three-Point Shear Correlations and Mass Aperture Moments
- Author
-
Secco, Lucas F., Jarvis, M., Jain, B., Chang, C., Gatti, M., Frieman, J., Adhikari, S., Alarcon, A., Amon, A., Bechtol, K., Becker, M.R., Bernstein, G.M., Blazek, J., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Choi, A., Cordero, J., DeRose, J., Dodelson, S., Doux, C., Drlica-Wagner, A., Everett, S., Giannini, G., Gruen, D., Gruendl, R.A., Harrison, I., Hartley, W.G., Herner, K., Krause, E., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Prat, J., Rollins, R.P., Samuroff, S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Troxel, M.A., Zeurcher, D., Aguena, M., Andrade-Oliveira, F., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D.L., Carretero, J., Castander, F.J., Crocce, M., da Costa, L.N., Pereira, M.E.S., De Vicente, J., Diehl, H.T., Doel, P., Eckert, K., Ferrero, Ismael, Flaugher, B., Friedel, D., García-Bellido, J., Gutierrez, G., Hinton, S.R., Hollowood, D.L., Honscheid, K., Huterer, D., Kuehn, K., Kuropatkin, N., Maia, M.A.G., Marshall, J.L., Menanteau, F., Miquel, R., Mohr, J.J., Morgan, R., Muir, J., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A.A., Rodriguez-Monroy, M., Roodman, A., Sanchez, E., Serrano, S., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., To, C., Weller, J., National Science Foundation (US), Department of Energy (US), Ministerio de Educación y Ciencia (España), Agencia Estatal de Investigación (España), Science and Technology Facilities Council (UK), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), European Research Council, European Commission, Generalitat de Catalunya, and UAM. Departamento de Física Teórica
- Subjects
Gravitational Lensing ,Quantum Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Física ,Molecular ,FOS: Physical sciences ,prospects ,Astrophysics::Cosmology and Extragalactic Astrophysics ,calibration ,Dark Energy ,Atomic ,Nuclear & Particles Physics ,weak-lensing surveys ,Particle and Plasma Physics ,cosmological constraints ,cfhtlens ,model predictions ,Nuclear ,Weak ,higher-order statistics ,cosmic shear ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: L. F. Secco et al., We present high signal-to-noise measurements of three-point shear correlations and the third moment of the mass aperture statistic using the first 3 years of data from the Dark Energy Survey. We additionally obtain the first measurements of the configuration and scale dependence of the four three-point shear correlations which carry cosmological information. With the third-order mass aperture statistic, we present tomographic measurements over angular scales of 4 to 60 arcminutes with a combined statistical significance of 15.0σ. Using the tomographic information and measuring also the second-order mass aperture, we additionally obtain a skewness parameter and its redshift evolution. We find that the amplitudes and scale-dependence of these shear 3pt functions are in qualitative agreement with measurements in a mock galaxy catalog based on N-body simulations, indicating promise for including them in future cosmological analyses. We validate our measurements by showing that B-modes, parity-violating contributions and PSF modeling uncertainties are negligible, and determine that the measured signals are likely to be of astrophysical and gravitational origin., M. J. is supported in part by National Science Foundation Grant No. 1907610. B. J. is supported in part by the U.S. Department of Energy Grant No. DE-SC0007901. C. C. is supported by DOE grant DE-SC0021949. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under Grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grants agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq Grant No. 465376/2014-2). We acknowledge support from the Australian Research Council Centre of Excellence for Allsky Astrophysics (CAASTRO), through Project No. CE110001020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2022
- Full Text
- View/download PDF
6. Dark Energy Survey Year 3 results: A 2.7% measurement of baryon acoustic oscillation distance scale at redshift 0.835
- Author
-
Abbott, T.M.C., Aguena, M., Allam, S., Amon, A., Andrade-Oliveira, F., Asorey, J., Avila, S., Bernstein, G.M., Bertin, E., Brandao-Souza, A., Brooks, D., Burke, D.L., Calcino, J., Camacho, H., Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Castander, F.J., Cawthon, R., Chan, K.C., Choi, A., Conselice, C., Costanzi, M., Crocce, M., da Costa, L.N., Pereira, M.E.S., Davis, T.M., De Vicente, J., Desai, S., Diehl, H.T., Doel, P., Eckert, K., Elvin-Poole, J., Everett, S., Evrard, A.E., Fang, X., Ferrero, Ismael, Ferté, A., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Glazebrook, K., Gomes, D., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Hinton, S.R., Hollowood, D.L., Honscheid, K., Huterer, D., Jain, B., James, D.J., Jeltema, T., Kokron, N., Krause, E., Kuehn, K., Lahav, O., Lewis, G.F., Lidman, C., Lima, M., Lin, H., Maia, M.A.G., Malik, U., Martini, P., Melchior, P., Mena-Fernández, J., Menanteau, F., Miquel, R., Mohr, J.J., Morgan, R., Muir, J., Myles, J., Möller, A., Palmese, A., Paz-Chinchón, F., Percival, W.J., Pieres, A., Plazas Malagón, A.A., Porredon, A., Prat, J., Reil, K., Rodriguez-Monroy, M., Romer, A.K., Roodman, A., Rosenfeld, R., Ross, A.J., Sanchez, E., Sanchez Cid, D., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., To, C., Troxel, M.A., Tucker, B.E., Tucker, D.L., Tutusaus, I., Uddin, S.A., Varga, T.N., Weller, J., Wilkinson, R.D., UAM. Departamento de Física Teórica, NSF's National Optical-Infrared Astronomy Research Laboratory, Laboratório Interinstitucional de E-Astronomia - LIneA, Fermi National Accelerator Laboratory, Stanford University, Universidade Estadual Paulista (UNESP), Medioambientales y Tecnológicas (CIEMAT), Universidad Autonoma de Madrid, University of Pennsylvania, Institut d'Astrophysique de Paris, Universidade Estadual de Campinas (UNICAMP), University College London, SLAC National Accelerator Laboratory, University of Queensland, Instituto de Astrofisica de Canarias, Dpto. Astrofísica, Astrophysical Observatory of Turin, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, The Barcelona Institute of Science and Technology, Institut d'Estudis Espacials de Catalunya (IEEC), Institute of Space Sciences (ICE CSIC), University of Wisconsin-Madison, Sun Yat-sen University, The Ohio State University, University of Manchester, School of Physics and Astronomy, University of Trieste, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatório Nacional, University of Michigan, IIT Hyderabad, Santa Cruz Institute for Particle Physics, University of Arizona, University of Oslo, California Institute of Technology, University of Cambridge, Swinburne University of Technology, Universidade de São Paulo (USP), Ludwig-Maximilians-Universität, Center for Astrophysics | Harvard and Smithsonian, 382 Via Pueblo Mall, Macquarie University, Lowell Observatory, The University of Sydney, The Australian National University, Australian National University, Harvard University, Peyton Hall, Institució Catalana de Recerca i Estudis Avançats, Max Planck Institute for Extraterrestrial Physics, LPC, University of Chicago, University of Waterloo, Perimeter Institute for Theoretical Physics, University of Sussex, Brookhaven National Laboratory, University of Southampton, Oak Ridge National Laboratory, University of Portsmouth, Duke University Durham, The University of Texas at Austin, Ludwig-Maximilians Universität München, Abbott, T. M. C., Aguena, M., Allam, S., Amon, A., Andrade-Oliveira, F., Asorey, J., Avila, S., Bernstein, G. M., Bertin, E., Brandao-Souza, A., Brooks, D., Burke, D. L., Calcino, J., Camacho, H., Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Chan, K. C., Choi, A., Conselice, C., Costanzi, M., Crocce, M., Da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Eckert, K., Elvin-Poole, J., Everett, S., Evrard, A. E., Fang, X., Ferrero, I., Ferte, A., Flaugher, B., Fosalba, P., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Glazebrook, K., Gomes, D., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., Jain, B., James, D. J., Jeltema, T., Kokron, N., Krause, E., Kuehn, K., Lahav, O., Lewis, G. F., Lidman, C., Lima, M., Lin, H., Maia, M. A. G., Malik, U., Martini, P., Melchior, P., Mena-Fernandez, J., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Muir, J., Myles, J., Moller, A., Palmese, A., Paz-Chinchon, F., Percival, W. J., Pieres, A., Plazas Malagon, A. A., Porredon, A., Prat, J., Reil, K., Rodriguez-Monroy, M., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Sanchez, E., Sanchez Cid, D., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Troxel, M. A., Tucker, B. E., Tucker, D. L., Tutusaus, I., Uddin, S. A., Varga, T. N., Weller, J., Wilkinson, R. D., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), DES, National Science Foundation (US), Department of Energy (US), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), European Commission, European Research Council, and Generalitat de Catalunya
- Subjects
Astrophysic ,Halo ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics ,Cosmology and Nongalactic Astrophysics ,FOS: Physical sciences ,Red Shift ,Física ,Astrophysics::Cosmology and Extragalactic Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
T. M.C. Abbott et al., We present angular diameter measurements obtained by measuring the position of baryon acoustic oscillations (BAO) in an optimized sample of galaxies from the first three years of Dark Energy Survey data (DES Y3). The sample consists of 7 million galaxies distributed over a footprint of 4100 deg2 with 0.60.75. When combined with DES 3x2pt+SNIa, they lead to improvements in H0 and Ωm constraints by∼20%., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University,the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under Grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV2016-0588, No. SEV-2016-0597, and No. MDM-20150509, some of which include ERDF funds from the European Union. I.F.A.E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq Grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2022
- Full Text
- View/download PDF
7. Euclid preparation: I. The Euclid Wide Survey
- Author
-
Scaramella, R., Amiaux, J., Mellier, Y., Burigana, C., Carvalho, C.S., Cuillandre, J.-C., Da Silva, A., Derosa, A., Dinis, J., Maiorano, E., Maris, M., Tereno, I., Laureijs, R., Boenke, T., Buenadicha, G., Dupac, X., Gaspar Venancio, L.M., Gómez-Álvarez, P., Hoar, J., Lorenzo Alvarez, J., Racca, G.D., Saavedra-Criado, G., Schwartz, J., Vavrek, R., Schirmer, M., Aussel, H., Azzollini, R., Cardone, V.F., Cropper, M., Ealet, A., Garilli, B., Gillard, W., Granett, B.R., Guzzo, L., Hoekstra, H., Jahnke, K., Kitching, T., Maciaszek, T., Meneghetti, M., Miller, L., Nakajima, R., Niemi, S.M., Pasian, F., Percival, W.J., Pottinger, S., Sauvage, M., Scodeggio, M., Wachter, S., Zacchei, A., Aghanim, N., Amara, A., Auphan, T., Auricchio, N., Awan, S., Balestra, A., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brau-Nogue, S., Brescia, M., Candini, G.P., Capobianco, V., Carbone, C., Carlberg, R.G., Carretero, J., Casas, R., Castander, F.J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conselice, C.J., Conversi, L., Copin, Y., Corcione, L., Costille, A., Courbin, F., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C.A.J., Dusini, S., Farrens, S., Ferriol, S., Fosalba, P., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S.V.H., Holmes, W., Hormuth, F., Hudelot, P., Kermiche, S., Kiessling, A., Kilbinger, M., Kohley, R., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Lahav, O., Ligori, S., Lilje, P.B., Lloro, I., Mansutti, O., Marggraf, O., Markovic, K., Marulli, F., Massey, R., Maurogordato, S., Melchior, M., Merlin, E., Meylan, G., Mohr, J.J., Moresco, M., Morin, B., Moscardini, L., Munari, E., Nichol, R.C., Padilla, C., Paltani, S., Peacock, J., Pedersen, K., Pettorino, V., Pires, S., Poncet, M., Popa, L., Pozzetti, L., Raison, F., Rebolo, R., Rhodes, J., Rix, H.-W., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Starck, J.L., Tallada-Crespí, P., Tavagnacco, D., Taylor, A.N., Teplitz, H.I., Toledo-Moreo, R., Torradeflot, F., Trifoglio, M., Valentijn, E.A., Valenziano, L., Verdoes Kleijn, G.A., Wang, Y., Welikala, N., Weller, J., Wetzstein, M., Zamorani, G., Zoubian, J., Andreon, S., Baldi, M., Bardelli, S., Boucaud, A., Camera, S., Di Ferdinando, D., Fabbian, G., Farinelli, R., Galeotta, S., Graciá-Carpio, J., Maino, D., Medinaceli, E., Mei, S., Neissner, C., Polenta, G., Renzi, A., Romelli, E., Rosset, C., Sureau, F., Tenti, M., Vassallo, T., Zucca, E., Baccigalupi, C., Balaguera-Antolínez, A., Battaglia, P., Biviano, A., Borgani, S., Bozzo, E., Cabanac, R., Cappi, A., Casas, S., Castignani, G., Colodro-Conde, C., Coupon, J., Courtois, H.M., Cuby, J., de la Torre, S., Desai, S., Dole, H., Fabricius, M., Farina, M., Ferreira, P.G., Finelli, F., Flose-Reimberg, P., Fotopoulou, S., Ganga, K., Gozaliasl, G., Hook, I.M., Keihanen, E., Kirkpatrick, C.C., Liebing, P., Lindholm, V., Mainetti, G., Martinelli, M., Martinet, N., Maturi, M., McCracken, H.J., Metcalf, R.B., Morgante, G., Nightingale, J., Nucita, A., Patrizii, L., Potter, D., Riccio, G., Sánchez, A.G., Sapone, D., Schewtschenko, J.A., Schultheis, M., Scottez, V., Teyssier, R., Tutusaus, I., Valiviita, J., Viel, M., Vriend, W., Whittaker, L., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Istituto di Astrofisica Spaziale e Fisica cosmica - Bologna (IASF-Bo), Istituto Nazionale di Astrofisica (INAF), Université de Lisbonne, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre de Calcul de l'IN2P3 (CC-IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), AUTRES, Département d'Astrophysique (ex SAP) (DAP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Dipartimento di Fisica e Scienze della Terra [Ferrara], Università degli Studi di Ferrara (UniFE), University of California [Merced], University of California, Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Scaramella, R., Amiaux, J., Mellier, Y., Burigana, C., Carvalho, C. S., Cuillandre, J. -C., Da Silva, A., Derosa, A., Dinis, J., Maiorano, E., Maris, M., Tereno, I., Laureijs, R., Boenke, T., Buenadicha, G., Dupac, X., Gaspar Venancio, L. M., G??mez-??lvarez, P., Hoar, J., Lorenzo Alvarez, J., Racca, G. D., Saavedra-Criado, G., Schwartz, J., Vavrek, R., Schirmer, M., Aussel, H., Azzollini, R., Cardone, V. F., Cropper, M., Ealet, A., Garilli, B., Gillard, W., Granett, B. R., Guzzo, L., Hoekstra, H., Jahnke, K., Kitching, T., Maciaszek, T., Meneghetti, M., Miller, L., Nakajima, R., Niemi, S. M., Pasian, F., Percival, W. J., Pottinger, S., Sauvage, M., Scodeggio, M., Wachter, S., Zacchei, A., Aghanim, N., Amara, A., Auphan, T., Auricchio, N., Awan, S., Balestra, A., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brau-Nogue, S., Brescia, M., Candini, G. P., Capobianco, V., Carbone, C., Carlberg, R. G., Carretero, J., Casas, R., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Costille, A., Courbin, F., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C. A. J., Dusini, S., Farrens, S., Ferriol, S., Fosalba, P., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hormuth, F., Hudelot, P., Kermiche, S., Kiessling, A., Kilbinger, M., Kohley, R., Kubik, B., K??mmel, M., Kunz, M., Kurki-Suonio, H., Lahav, O., Ligori, S., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Markovic, K., Marulli, F., Massey, R., Maurogordato, S., Melchior, M., Merlin, E., Meylan, G., Mohr, J. J., Moresco, M., Morin, B., Moscardini, L., Munari, E., Nichol, R. C., Padilla, C., Paltani, S., Peacock, J., Pedersen, K., Pettorino, V., Pires, S., Poncet, M., Popa, L., Pozzetti, L., Raison, F., Rebolo, R., Rhodes, J., Rix, H. -W., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Starck, J. L., Tallada-Cresp??, P., Tavagnacco, D., Taylor, A. N., Teplitz, H. I., Toledo-Moreo, R., Torradeflot, F., Trifoglio, M., Valentijn, E. A., Valenziano, L., Verdoes Kleijn, G. A., Wang, Y., Welikala, N., Weller, J., Wetzstein, M., Zamorani, G., Zoubian, J., Andreon, S., Baldi, M., Bardelli, S., Boucaud, A., Camera, S., Di Ferdinando, D., Fabbian, G., Farinelli, R., Galeotta, S., Graci??-Carpio, J., Maino, D., Medinaceli, E., Mei, S., Neissner, C., Polenta, G., Renzi, A., Romelli, E., Rosset, C., Sureau, F., Tenti, M., Vassallo, T., Zucca, E., Baccigalupi, C., Balaguera-Antol??nez, A., Battaglia, P., Biviano, A., Borgani, S., Bozzo, E., Cabanac, R., Cappi, A., Casas, S., Castignani, G., Colodro-Conde, C., Coupon, J., Courtois, H. M., Cuby, J., de la Torre, S., Desai, S., Dole, H., Fabricius, M., Farina, M., Ferreira, P. G., Finelli, F., Flose-Reimberg, P., Fotopoulou, S., Ganga, K., Gozaliasl, G., Hook, I. M., Keihanen, E., Kirkpatrick, C. C., Liebing, P., Lindholm, V., Mainetti, G., Martinelli, M., Martinet, N., Maturi, M., Mccracken, H. J., Metcalf, R. B., Morgante, G., Nightingale, J., Nucita, A., Patrizii, L., Potter, D., Riccio, G., S??nchez, A. G., Sapone, D., Schewtschenko, J. A., Schultheis, M., Scottez, V., Teyssier, R., Tutusaus, I., Valiviita, J., Viel, M., Vriend, W., Whittaker, L., Department of Physics, Research Program in Systems Oncology, Helsinki Institute of Physics, Gomez-Alvarez, P., Kummel, M., Tallada-Crespi, P., Gracia-Carpio, J., Balaguera-Antolinez, A., De La Torre, S., and Sanchez, A. G.
- Subjects
Space vehicle ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,space vehicle ,space vehicles ,surveys ,methods ,numerical ,dark energy ,dark matter ,brightness ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,power spectrum ,space mission ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,numerical , dark energy, dark matter [space vehicles, surveys, methods] ,Dark energy ,magnitudes ,Dark matter ,survey ,sky ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,numerical [Methods] ,model ,Methods: numerical ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Space vehicles ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,115 Astronomy, Space science ,universe ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,lsst ,astro-ph.CO ,method ,Surveys, Methods: numerical ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Euclid is an ESA mission designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering. It will carry out a wide area imaging and spectroscopy survey (EWS) in visible and near-infrared, covering roughly 15,000 square degrees of extragalactic sky on six years. The wide-field telescope and instruments are optimized for pristine PSF and reduced straylight, producing very crisp images. This paper presents the building of the Euclid reference survey: the sequence of pointings of EWS, Deep fields, Auxiliary fields for calibrations, and spacecraft movements followed by Euclid as it operates in a step-and-stare mode from its orbit around the Lagrange point L2. Each EWS pointing has four dithered frames; we simulate the dither pattern at pixel level to analyse the effective coverage. We use up-to-date models for the sky background to define the Euclid region-of-interest (RoI). The building of the reference survey is highly constrained from calibration cadences, spacecraft constraints and background levels; synergies with ground-based coverage are also considered. Via purposely-built software optimized to prioritize best sky areas, produce a compact coverage, and ensure thermal stability, we generate a schedule for the Auxiliary and Deep fields observations and schedule the RoI with EWS transit observations. The resulting reference survey RSD_2021A fulfills all constraints and is a good proxy for the final solution. Its wide survey covers 14,500 square degrees. The limiting AB magnitudes ($5\sigma$ point-like source) achieved in its footprint are estimated to be 26.2 (visible) and 24.5 (near-infrared); for spectroscopy, the H$_\alpha$ line flux limit is $2\times 10^{-16}$ erg cm$^{-2}$ s$^{-1}$ at 1600 nm; and for diffuse emission the surface brightness limits are 29.8 (visible) and 28.4 (near-infrared) mag arcsec$^{-2}$., Comment: 43 pages, 51 figures, submitted to A&A
- Published
- 2021
- Full Text
- View/download PDF
8. Skip Nav Destination The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample
- Author
-
Kelsey, L., Sullivan, M., Smith, M., Wiseman, P., Brout, D., Davis, T.M., Frohmaier, C., Galbany, L., Grayling, M., Gutiérrez, C.P., Hinton, S.R., Kessler, R., Lidman, C., Möller, A., Sako, M., Scolnic, D., Uddin, S.A., Vincenzi, M., Abbott, T.M.C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Brooks, D., Burke, D.L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Costanzi, M., Da Costa, L.N., Desai, S., Diehl, H.T., Doel, P., Everett, S., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., García-Bellido, J., Gerdes, D.W., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Hollowood, D.L., Honscheid, K., James, D.J., Kim, A.G., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J.L., Martini, P., Menanteau, F., Miquel, R., Morgan, R., Ogando, R.L.C., Palmese, A., Paz-Chinchón, F., Plazas, A.A., Romer, A.K., Sánchez, C., Sanchez, E., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Varga, T.N., Walker, A.R., Wilkinson, R.D., Laboratoire de Physique de Clermont (LPC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
surveys ,supernovae: general ,cosmology: observations ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,distance scale ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics::Galaxy Astrophysics - Abstract
International audience; Analyses of Type Ia supernovae (SNe Ia) have found puzzling correlations between their standardized luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey 3-yr spectroscopically confirmed cosmological sample, obtaining photometry in a series of ‘local’ apertures centred on the SN, and for the global host galaxy. We study the differences in these host galaxy properties, such as stellar mass and rest-frame U − R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ∼0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U − R steps are small, both ∼0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light-curve parameters: stretch (x_1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U − R, for both local and global measurements, of ∼0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U − R rms scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U − R environments.
- Published
- 2021
- Full Text
- View/download PDF
9. Erratum. Euclid preparation. VI. Verifying the performance of cosmic shear experiments
- Author
-
Paykari, P., Kitching, T., Hoekstra, H., Azzollini, R., Cardone, V.F., Cropper, M., Duncan, C.A.J., Kannawadi Jayaraman, A., Miller, L., Aussel, H., Conti, I.F., Auricchio, N., Baldi, M., Bardelli, S., Biviano, A., Bonino, D., Borsato, E., Bozzo, E., Branchini, E., Brau-Nogue, S., Brescia, M., Brinchmann, J., Burigana, C., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F.J., Castellano, M., Cavuoti, S., Charles, Y., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C., Conversi, L., Copin, Y., Coupon, J., Courtois, H.M., Da Silva, A., Dupac, X., Fabbian, G., Farrens, S., Ferreira, P.G., Fosalba, P., Fourmanoit, N., Frailis, M., Fumana, M., Galeotta, S., Garilli, B., Gillard, W., Gillis, B.R., Giocoli, C., Graciá-Carpio, J., Grupp, F., Hormuth, F., Ilić, S., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kilbinger, M., Kirkpatrick, C.C., Kubik, B., Kunz, M., Kurki-Suonio, H., Lacasa, F., Laureijs, R., Le Mignant, D., Ligori, S., Lilje, P.B., Lloro, I., Maciaszek, T., Maiorano, E., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Mauri, N., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Metcalf, R.B., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Nichol, R.C., Niemi, S., Nutma, T., Padilla, C., Paltani, S., Pasian, F., Pettorino, V., Pires, S., Polenta, G., Pourtsidou, A., Raison, F., Renzi, A., Rhodes, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A.G., Sapone, D., Scaramella, R., Schneider, P., Schrabback, T., Scottez, V., Secroun, A., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J.-L., Sureau, F., Tallada-Crespí, P., Taylor, A., Tenti, M., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vannier, M., Vassallo, T., Zoubian, J., and Zucca, E.
- Abstract
This article is an erratum for:[https://doi.org/10.1051/0004-6361/201936980]
- Published
- 2020
10. Euclid: the selection of quiescent and star-forming galaxies using observed colours
- Author
-
Bisigello, L., Kuchner, U., Conselice, C.J., Andreon, S., Bolzonella, M., Duc, P-A, Garilli, B., Humphrey, A., Maraston, C., Moresco, M., Pozzetti, L., Tortora, C., Zamorani, G., Auricchio, N., Brinchmann, J., Capobianco, V., Carretero, J., Castander, F.J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Corcione, L., Cropper, M.S., Dusini, S., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Hormuth, F., Israel, H., Jahnke, K., Kermiche, S., Kitching, T., Kohley, R., Kubik, B., Kunz, M., Ligori, S., Lilje, P.B., Lloro, I., Maiorano, E., Marggraf, O., Massey, R., Masters, D.C., Mei, S., Mellier, Y., Meylan, G., Padilla, C., Paltani, S., Pasian, F., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Raison, F., Rhodes, J., Roncarelli, M., Rossetti, E., Saglia, R., Sauvage, M., Schneider, P., Secroun, A., Serrano, S., Sureau, F., Taylor, A.N., Tereno, I., Toledo-Moreo, R., Valenziano, L., Wang, Y, Wetzstein, M., and Zoubian, J.
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
The Euclid mission will observe well over a billion galaxies out to z ∼ 6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well-known colour techniques such as the ‘UVJ’ diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u − VIS) and (VIS − J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above ∼70 per cent and with less than 15 per cent contamination at redshifts in the range 0.75 < z < 1. For galaxies at high-z or without the u-band complementary observations, the (VIS − Y) and (J − H) colours represent a valid alternative, with >65 per cent completeness level and contamination below 20 per cent at 1 < z < 2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only ∼20 per cent complete at z < 3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available.
- Published
- 2020
11. Euclid preparation
- Author
-
Paykari, P., Kitching, T., Hoekstra, H., Azzollini, R., Cardone, V.F., Cropper, M., Duncan, C.A.J., Kannawadi Jayaraman, A., Miller, L., Aussel, H., Conti, I.F., Auricchio, N., Baldi, M., Bardelli, S., Biviano, A., Bonino, D., Borsato, E., Bozzo, E., Branchini, E., Brau-Nogue, S., Brescia, M., Brinchmann, J., Burigana, C., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F.J., Castellano, M., Cavuoti, S., Charles, Y., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C., Conversi, L., Copin, Y., Coupon, J., Courtois, H.M., Da Silva, A., Dupac, X., Fabbian, G., Farrens, S., Ferreira, P.G., Fosalba, P., Fourmanoit, N., Frailis, M., Fumana, M., Galeotta, S., Garilli, B., Gillard, W., Gillis, B.R., Giocoli, C., Graciá-Carpio, J., Grupp, F., Hormuth, F., Ilić, S., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kilbinger, M., Kirkpatrick, C.C., Kubik, B., Kunz, M., Kurki-Suonio, H., Lacasa, F., Laureijs, R., Le Mignant, D., Ligori, S., Lilje, P.B., Lloro, I., Maciaszek, T., Maiorano, E., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Mauri, N., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Metcalf, R.B., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Nichol, R.C., Niemi, S., Nutma, T., Padilla, C., Paltani, S., Pasian, F., Pettorino, V., Pires, S., Polenta, G., Pourtsidou, A., Raison, F., Renzi, A., Rhodes, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A.G., Sapone, D., Scaramella, R., Schneider, P., Schrabback, T., Scottez, V., Secroun, A., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J.-L., Sureau, F., Tallada-Crespí, P., Taylor, A., Tenti, M., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vannier, M., Vassallo, T., Zoubian, J., Zucca, E., Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Euclid, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), INAF - Osservatorio Astronomico di Trieste (OAT), Istituto Nazionale di Astrofisica (INAF), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Astronomy Centre, University of Sussex, Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, Max-Planck-Institut für Astronomie (MPIA), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Euclid Collaboration, European Project: 617656,EC:FP7:ERC,ERC-2013-CoG,THEMODS(2014), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), University of Helsinki, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Astronomy, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Institut national de recherches archéologiques préventives (Inrap), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-CY Cergy Paris Université (CY)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Particle Physics and Astrophysics, Department of Physics, Helsinki Institute of Physics, Science and Technology Facilities Council (UK), Royal Society (UK), Dutch Research Council, Netherlands Organization for Scientific Research, UK Space Agency, Swiss National Science Foundation, European Commission, Paykari, P., Kitching, T., Hoekstra, H., Azzollini, R., Cardone, V. F., Cropper, M., Duncan, C. A. J., Kannawadi, A., Miller, L., Aussel, H., Conti, I. F., Auricchio, N., Baldi, M., Bardelli, S., Biviano, A., Bonino, D., Borsato, E., Bozzo, E., Branchini, E., Brau-Nogue, S., Brescia, M., Brinchmann, J., Burigana, C., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Castander, F. J., Castellano, M., Cavuoti, S., Charles, Y., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C., Conversi, L., Copin, Y., Coupon, J., Courtois, H. M., da Silva, A., Dupac, X., Fabbian, G., Farrens, S., Ferreira, P. G., Fosalba, P., Fourmanoit, N., Frailis, M., Fumana, M., Galeotta, S., Garilli, B., Gillard, W., Gillis, B. R., Giocoli, C., Gracia-Carpio, J., Grupp, F., Hormuth, F., Ilic, S., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kilbinger, M., Kirkpatrick, C. C., Kubik, B., Kunz, M., Kurki-Suonio, H., Laureijs, R., Le Mignant, D., Ligori, S., Lilje, P. B., Lloro, I., Maciaszek, T., Maiorano, E., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Mauri, N., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Metcalf, R. B., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Nichol, R. C., Niemi, S., Nutma, T., Padilla, C., Paltani, S., Pasian, F., Pettorino, V., Pires, S., Polenta, G., Raison, F., Renzi, A., Rhodes, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sanchez, A. G., Sapone, D., Scaramella, R., Schneider, P., Schrabback, T., Scottez, V., Secroun, A., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Sureau, F., Tallada-Crespi, P., Taylor, A., Tenti, M., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vannier, M., Vassallo, T., Zoubian, J., Zucca, E., Da Silva, A., Graciá-Carpio, J., Ilić, S., Sánchez, A. G., Starck, J.-L., and Tallada-Crespí, P.
- Subjects
Point spread function ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,ComputerSystemsOrganization_COMPUTERSYSTEMIMPLEMENTATION ,Pipeline (computing) ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Residual ,7. Clean energy ,01 natural sciences ,gravitational lensing: weak ,0103 physical sciences ,Statistical physics ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Physics ,CALIBRATION ,CHARGE-TRANSFER INEFFICIENCY ,COSMIC cancer database ,010308 nuclear & particles physics ,Computer Science::Information Retrieval ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Galaxy ,Shear (sheet metal) ,CHALLENGE LIGHTCONE SIMULATION ,BIAS ,Space and Planetary Science ,astro-ph.CO ,Dark energy ,DARK ENERGY ,SENSITIVITY ,weak [Gravitational lensing] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,REQUIREMENTS ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Aims. Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. Methods. We present an "end-to-end" approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. We propagated residual biases through a pipeline from galaxy properties at one end to cosmic shear power spectra and cosmological parameter estimates at the other end. We did this to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. Results. We quantify the impact of an imperfect correction for charge transfer inefficiency and modelling uncertainties of the point spread function for Euclid, and find that the biases introduced can be corrected to acceptable levels., PP is supported by an STFC consolidated grant. CW is supported by an STFC urgency grant. TDK is supported by a Royal Society University Research Fellowship. HH acknowledges support from Vici grant 639.043.512 and an NWO-G grant financed by the Netherlands Organization for Scientific Research. LM and CD are supported by UK Space Agency grant ST/N001796/1. VFC is funded by Italian Space Agency (ASI) through contract Euclid – IC (I/031/10/0) and acknowledges financial contribution from the agreement ASI/INAF/I/023/12/0. We would like to thank Jérome Amiaux, Koryo Okumura, Samuel Ronayette for running the ZEMAX simulations. AP is a UK Research and Innovation Future Leaders Fellow, grant MR/S016066/1, and also acknowledges support from the UK Science & Technology Facilities Council through grant ST/S000437/1. MK and FL acknowledge financial support from the Swiss National Science Foundation. SI acknowledges financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement No. 617656 “Theories and Models of the Dark Sector: Dark Matter, Dark Energy and Gravity”.
- Published
- 2020
- Full Text
- View/download PDF
12. The Future Landscape of High-Redshift Galaxy Cluster Science
- Author
-
Mantz, A., Allen, S.W., Battaglia, N., Benson, B., Canning, R., Ettori, S., Evrard, A., Linden, A., McDonald, M., Abidi, M., Ahmed, Z., Amin, Mustafa.A., Ansarinejad, B., Armstrong, R., Avestruz, C., Baccigalupi, C., Bandura, K., Barkhouse, W., Basu, K., Bavdhankar, C., Bender, A.N., Bernardis, P., Bischoff, C., Biviano, A., Bleem, L., Bocquet, S., Bond, J., Borgani, S., Borrill, J., Boutigny, D., Frye, B., Bruggen, M., Cai, Z., Carlstrom, J.E., Castander, F.J., Challinor, A., Clowe, D., Cohn, J.D., Comparat, J., Cooray, A., Coulton, W., Cyr-Racine, F., Daddi, E., Delabrouille, J., Dell'antonio, I., Demarteau, M., Donahue, M., Dunkley, J., Escoffier, S., Essinger-Hileman, T., Fabbian, G., Fabjan, D., Farahi, A., Foreman, S., Fraisse, A.A., Garcia, L., Gaspari, M., Gerbino, M., Gitti, M., Gluscevic, V., Gonzalez, A., Górski, K.M., Gruen, D., Gudmundsson, J.E., Gupta, N., Haan, T., Hernquist, L., Hirata, C.M., Hlozek, R., Jeltema, T., Cohen-Tanugi, J., Johnson, B., Kadota, K., Kamionkowski, M., Khatri, R., Kisner, T., Kneib, J., Knox, L., Kovetz, E.D., Krause, E., Lattanzi, M., Lau, Erwin.T., Liguori, M., Lovisari, L., Macorra, A., Masi, S., Masui, K., Maughan, B., Maurogordato, S., McMahon, J., McNamara, B., Melchior, P., Mertens, J., Meyers, J., Mirbabayi, M., More, S., Motloch, P., Moustakas, J., Mroczkowski, T., Mukherjee, S., Nagai, D., Nagy, J., Naselsky, P., Nati, F., Newburgh, L., Niemack, M.D., Nomerotski, A., Noordeh, E., Ntampaka, M., Ota, N., Page, L., Palmese, A., Penna-Lima, M., Piacentni, F., Pierpaoli, E., Plazas, A.A., Pogosian, L., Pointecouteau, E., Prakash, A., Pratt, G., Prescod-Weinstein, C., Pryke, C., Puglisi, G., Rapetti, D., Raveri, M., Reichardt, C.L., Reiprich, Thomas.H., Remazeilles, M., Rhodes, J., Ricci, M., Rocha, G., Rose, B., Rozo, E., Ruhl, J., Sadun, A., Saliwanchik, B., Schaan, E., Schmidt, R., Fromenteau, S., Sehgal, N., Senatore, L., Seo, H., Sereno, M., Shafieloo, A., Shan, H., Shandera, S., Sherwin, B.D., Simon, S., Sridhar, S., Staggs, S., Stern, D., Suzuki, A., Tsai, Y., Turriziani, S., Umilta, C., Vazza, F., Vieregg, A., Vikhlinin, A., Walker, S.A., Watson, S., Weeren, R.J. van, Weller, J., Werner, N., Whitehorn, N., Wong, K., Wright, A., Wu, W.L.K., Xu, Z., Yasini, S., Zemcov, M., Zhang, Y., Zhao, G., Zheng, Y., Zhu, N., Zhuravleva, I., Zuntz, J., Hickox, R., Churazov, E., Nulsen, P., Jones, W.C., Wang, L., and Desai, S.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We describe the opportunities for galaxy cluster science in the high- redshift regime where massive, virialized halos first formed and where star formation and AGN activity peaked. New observing facilities from radio to X-ray wavelengths, combining high spatial/spectral resolution with large collecting areas, are poised to uncover this population.
- Published
- 2019
13. Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope +Planck CMB weak lensing
- Author
-
Omori, Y., Baxter, E.J., Kirk, D., Alarcon, A., Bernstein, G.M., Bleem, L.E., Cawthon, R., Choi, A., Chown, R., Crawford, T.M., Davis, C., De Vicente, J., DeRose, J., Dodelson, S., Eifler, T.F., Fosalba, P., Friedrich, O., Gatti, M., Gaztanaga, E., Giannantonio, T., Gruen, D., Hartley, W.G., Holder, G.P., Hoyle, B., Huterer, D., Jain, B., Jarvis, M., Krause, E., MacCrann, N., Miquel, R., Prat, J., Rau, M.M., Reichardt, C.L., ROZO, E., Samuroff, S., Sánchez, C., Secco, L.F., Sheldon, E., Simard, G., Troxel, M.A., Vielzeuf, P., Wechsler, R.H., Zuntz, J., Abbott, T.M.C., Abdalla, F.B., Allam, S., Annis, J., Avila, S., Aylor, K., Benson, B.A., Bertin, E., Bridle, S.L., Brooks, D., Burke, D.L., Carlstrom, J.E., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Chang, C.L., Cho, H-M., Crites, A.T., Crocce, M., Cunha, C.E., Da Costa, L.N., De Haan, T., Desai, S., Diehl, H.T., Dietrich, J.P., Dobbs, M.A., Everett, W.B., Fernandez, E., Flaugher, B., Frieman, J., García-Bellido, J., George, E.M., Gruendl, R.A., Gutierrez, G., Halverson, N.W., Harrington, N.L., Hollowood, D.L., Honscheid, K., Holzapfel, W.L., Hou, Z., Hrubes, J.D., James, D.J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lima, M., Lin, H., Lee, A.T., Leitch, E.M., Luong-Van, D., Maia, M.A.G., Manzotti, A., Marrone, D.P., Marshall, J.L., Martini, P., McMahon, J.J., Melchior, P., Menanteau, F., Meyer, S.S., Mocanu, L.M., Mohr, J.J., Natoli, T., Ogando, R.L.C., Padin, S., Plazas, A.A., Pryke, C., Romer, A.K., Roodman, A., Ruhl, J.E., Rykoff, E.S., Sanchez, E., Scarpine, V., Schaffer, K.K., Schindler, R., Sevilla-Noarbe, I., Shirokoff, E., Smith, M., Smith, R.C., Soares-Santos, M., Sobreira, F., Staniszewski, Z., Stark, A.A., Story, K.T., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Vanderlinde, K., Vieira, J.D., Vikram, V., Walker, A.R., Weller, J., Williamson, R., Wu, W.L.K., Zahn, O., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, and SPT
- Subjects
Astrophysics::Cosmology and Extragalactic Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Cosmology - Abstract
International audience; We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289 deg2. With the combined measurements from four source galaxy redshift bins, we obtain a detection significance of 5.8σ. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial ΛCDM model, finding A=0.99±0.17. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the ΛCDM model, we obtain the marginalized constraints of Ωm=0.261-0.051+0.070 and S8≡σ8Ωm/0.3=0.660-0.100+0.085. These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT, and Planck data.
- Published
- 2019
- Full Text
- View/download PDF
14. Three new VHS–DES quasars at 6.7 < z < 6.9 and emission line properties at z > 6.5
- Author
-
Reed, S.L., Banerji, M., Becker, G.D., Hewett, P.C., Martini, P., Mcmahon, R.G., Pons, E., Rauch, M., Abbott, T.M.C., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Cunha, C.E., D'Andrea, C.B., Da Costa, L.N., De Vicente, J., Desai, S., Diehl, H.T., Doel, P., Evrard, A.E., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gruen, D., Gschwend, J., Gutierrez, G., Hollowood, D.L., Honscheid, K., Hoyle, B., James, D.J., Kuehn, K., Lahav, O., Lima, M., Maia, M.A.G., Marshall, J.L., Miquel, R., Ogando, R.L.C., Plazas, A.A., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Tucker, D.L., Vikram, V., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
galaxies: high-redshift ,quasars: individual: VDES J0224−4711 ,quasars: individual: VDES J0244−5008 ,first stars ,galaxies: active ,quasars: individual: VDES J0020−3653 ,reionization ,galaxies: formation ,quasars: individual: VDES J0246−5219 ,dark ages ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report the results from a search for z > 6.5 quasars using the Dark Energy Survey (DES) Year 3 dataset combined with the VISTA Hemisphere Survey (VHS) and WISE All-Sky Survey. Our photometric selection method is shown to be highly efficient in identifying clean samples of high-redshift quasars leading to spectroscopic confirmation of three new quasars - VDESJ 0244-5008 (z=6.724), VDESJ 0020-3653 (z=6.834) and VDESJ 0246-5219 (z=6.90) - which were selected as the highest priority candidates in the survey data without any need for additional follow-up observations. The new quasars span the full range in luminosity covered by other z>6.5 quasar samples (J AB = 20.2 to 21.3; M1450 = -25.6 to -26.6). We have obtained spectroscopic observations in the near infrared for VDESJ 0244-5008 and VDESJ 0020-3653 as well as our previously identified quasar, VDESJ 0224-4711 at z=6.50 from Reed et al. (2017). We use the near infrared spectra to derive virial black-hole masses from the full-width-half-maximum of the MgII line. These black-hole masses are ~ 1 - 2 x 10$^9$M$_\odot$. Combining with the bolometric luminosities of these quasars of L$_{\rm{bol}}\simeq$ 1 - 3 x 10$^{47}$implies that the Eddington ratios are high - $\simeq$0.6-1.1. We consider the C\textrm{\textsc{IV}} emission line properties of the sample and demonstrate that our high-redshift quasars do not have unusual C\textrm{\textsc{IV}} line properties when compared to carefully matched low-redshift samples. Our new DES+VHS $z>6.5$ quasars now add to the growing census of luminous, rapidly accreting supermassive black-holes seen well into the epoch of reionisation., Comment: 12 pages, 9 figures
- Published
- 2019
- Full Text
- View/download PDF
15. Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck
- Author
-
Omori, Y., Giannantonio, T., Porredon, A., Baxter, E.J., Crocce, M., Fosalba, P., Alarcon, A., Banik, N., Blazek, J., Bleem, L.E., Bridle, S.L., Cawthon, R., Choi, A., Chown, R., Crawford, T., Dodelson, S., Drlica-Wagner, A., Eifler, T.F., Elvin-Poole, J., Friedrich, O., Gruen, D., Holder, G.P., Huterer, D., Jain, B., Jarvis, M., Kirk, D., Kokron, N., Krause, E., MacCrann, N., Muir, J., Prat, J., Reichardt, C.L., Ross, A.J., ROZO, E., Rykoff, E.S., Sánchez, C., Secco, L.F., Simard, G., Wechsler, R.H., Zuntz, J., Abbott, T.M.C., Abdalla, F.B., Allam, S., Avila, S., Aylor, K., Benson, B.A., Bernstein, G.M., Bertin, E., Bianchini, F., Brooks, D., Buckley-Geer, E., Burke, D.L., Carlstrom, J.E., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Chang, C.L., Cho, H-M., Crites, A.T., Cunha, C.E., Da Costa, L.N., De Haan, T., Davis, C., De Vicente, J., Desai, S., Diehl, H.T., Dietrich, J.P., Dobbs, M.A., Everett, W.B., Doel, P., Estrada, J., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., George, E.M., Gruendl, R.A., Gschwend, J., Gutierrez, G., Halverson, N.W., Harrington, N.L., Hartley, W.G., Hollowood, D.L., Holzapfel, W.L., Honscheid, K., Hou, Z., Hoyle, B., Hrubes, J.D., James, D.J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lee, A.T., Leitch, E.M., Lima, M., Luong-Van, D., Manzotti, A., Marrone, D.P., Marshall, J.L., McMahon, J.J., Melchior, P., Menanteau, F., Meyer, S.S., Miller, C.J., Miquel, R., Mocanu, L.M., Mohr, J.J., Natoli, T., Padin, S., Plazas, A.A., Pryke, C., Romer, A.K., Roodman, A., Ruhl, J.E., Sanchez, E., Scarpine, V., Schaffer, K.K., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Shirokoff, E., Smith, M., Soares-Santos, M., Sobreira, F., Staniszewski, Z., Stark, A.A., Story, K.T., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Troxel, M.A., Vanderlinde, K., Vieira, J.D., Walker, A.R., Wu, W.L.K., Zahn, O., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, SPT, and UAM. Departamento de Física Teórica
- Subjects
Library science ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,0103 physical sciences ,media_common.cataloged_instance ,European union ,010306 general physics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,STFC ,ComputingMilieux_MISCELLANEOUS ,QC ,media_common ,Physics ,010308 nuclear & particles physics ,European research ,Astrophysics::Instrumentation and Methods for Astrophysics ,RCUK ,Física ,GALÁXIAS ,Cosmology ,South Pole Telescope ,13. Climate action ,Research council ,Fundamental physics ,Christian ministry ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Kavli Foundation; Natural Sciences and Engineering Research Council of Canada; Canadian Institute for Advanced Research; Canada Research Chairs program; U.S. Department of Energy [DE-SC0007901]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-1125897]; Australian Research Council Future Fellowship [FT150100074]; Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy; National Science Foundation [OCI-0725070, ACI-1238993]; NSF Physics Frontier Center [PHY-0114422]; Kavli Institute of Cosmological Physics at the University of Chicago; Gordon and Betty Moore Foundation; GBMF [947]; National Aeronautics and Space Administration; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; University of California at Santa Cruz; University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Ludwig-Maximilians Universitat Munchen; University of Portsmouth; OzDES Membership Consortium; Association of Universities for Research in Astronomy (AURA); MINECO [AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-2016-0597, MDM-2015-0509]; ERDF; European Union - CERCA program of the Generalitat de Catalunya; European Research Council under the European Union [240672, 291329, 306478]; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; Brazilian Instituto Nacional de Ciencia e Tecnologia (INCT) e-Universe (CNPq) [De-AC02-07CH11359, 465376/2014-2]; U.S. Department of Energy, Office of Science, Office of High Energy Physics - Canada Foundation for Innovation (CFI); ministere de l'Economie, de la science et de l'innovation du Quebec (MESI); Fonds de recherche du Quebec-Nature et technologies (FRQ-NT); state of Illinois; University of Illinois at Urbana-Champaign [49,70, MATPLOTLIB [75], 76,77]
- Published
- 2019
- Full Text
- View/download PDF
16. Mass variance from archival X-ray properties of Dark Energy Survey Year-1 galaxy clusters
- Author
-
Farahi, A., Chen, X., Evrard, A.E., Hollowood, D.L., Wilkinson, R., Bhargava, S., Giles, P., Romer, A.K., Jeltema, T., Hilton, M., Bermeo, A., Mayers, J., Vergara Cervantes, C., Rozo, E., Rykoff, E.S., Collins, C., Costanzi, M., Everett, S., Liddle, A.R., Mann, R.G., Mantz, A., Rooney, P., Sahlen, M., Stott, J., Viana, P.T.P., Zhang, Y., Annis, J., Avila, S., Brooks, D., Buckley-Geer, E., Burke, D.L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., da Costa, L.N., de Vicente, J., Desai, S., Diehl, H.T., Dietrich, J.P., Doel, P., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D.J., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M.A.G., Marshall, J.L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R.L.C., Plazas, A.A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Tucker, D.L., Vikram, V., Walker, A.R., Weller, J., Farahi, A., Chen, X., Evrard, A.E., Hollowood, D.L., Wilkinson, R., Bhargava, S., Giles, P., Romer, A.K., Jeltema, T., Hilton, M., Bermeo, A., Mayers, J., Vergara Cervantes, C., Rozo, E., Rykoff, E.S., Collins, C., Costanzi, M., Everett, S., Liddle, A.R., Mann, R.G., Mantz, A., Rooney, P., Sahlen, M., Stott, J., Viana, P.T.P., Zhang, Y., Annis, J., Avila, S., Brooks, D., Buckley-Geer, E., Burke, D.L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., da Costa, L.N., de Vicente, J., Desai, S., Diehl, H.T., Dietrich, J.P., Doel, P., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D.W., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D.J., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M.A.G., Marshall, J.L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R.L.C., Plazas, A.A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Tucker, D.L., Vikram, V., Walker, A.R., and Weller, J.
- Abstract
Using archival X-ray observations and a lognormal population model, we estimate constraints on the intrinsic scatter in halo mass at fixed optical richness for a galaxy cluster sample identified in Dark Energy Survey Year-One (DES-Y1) data with the redMaPPer algorithm. We examine the scaling behaviour of X-ray temperatures, T-X, with optical richness, lambda(RM), for clusters in the redshift range 0.2
50 per cent complete for clusters with lambda(RM) > 130. Regression analysis on the two samples produces consistent posterior scaling parameters, from which we derive a combined constraint on the residual scatter, sigma(ln) (T) (vertical bar) (lambda) = 0.275 +/- 0.019. Joined with constraints for T-X scaling with halo mass from the Weighing the Giants program and richness-temperature covariance estimates from the LoCuSS sample, we derive the richness-conditioned scatter in mass, sigma(ln) (M) (vertical bar) (lambda) = 0.30 +/- 0.04((stat)) +/- 0.09((sys)), at an optical richness of approximately 100. Uncertainties in external parameters, particularly the slope and variance of the T-X-mass relation and the covariance of T-X and lambda(RM) at fixed mass, dominate the systematic error. The 95 per cent confidence region from joint sample analysis is relatively broad, sigma(ln) (M) (vertical bar) (lambda) is an element of [0.14, 0.55], or a factor 10 in variance. - Published
- 2019
17. Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV
- Author
-
Jeffrey, N., Abdalla, F.B., Lahav, O., Lanusse, F., Starck, J.-L., Leonard, A., Kirk, D., Chang, C., Baxter, E., Kacprzak, T., Seitz, S., Vikram, V., Whiteway, L., Abbott, T.M.C., Allam, S., Avila, S., Bertin, E., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D'Andrea, C.B., Da Costa, L.N., Davis, C., De Vicente, J., Desai, S., Doel, P., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D.W., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Hartley, W.G., Honscheid, K., Hoyle, B., James, D.J., Jarvis, M., Kuehn, K., Lima, M., Lin, H., March, M., Melchior, P., Menanteau, F., Miquel, R., Plazas, A.A., Reil, K., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Walker, A.R., Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire AIM, Université Paris Diderot - Paris 7 ( UPD7 ) -Centre d'Etudes de Saclay, Institut d'Astrophysique de Paris ( IAP ), and Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
methods: statistical ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,gravitational lensing: weak ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,large-scale structure of Universe ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. GLIMPSE uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and GLIMPSE offer substantial improvements over smoothed KS with a range of metrics. Both the Wiener filter and GLIMPSE convergence reconstructions show a 12 per cent improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated {\Lambda}CDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for GLIMPSE. With simulations we measure the reconstruction of the harmonic phases; the phase residuals' concentration is improved 17 per cent by GLIMPSE and 18 per cent by the Wiener filter. The correlation between reconstructions from data and foreground redMaPPer clusters is increased 18 per cent by the Wiener filter and 32 per cent by GLIMPSE., Comment: 19 pages, 10 figures, MNRAS published: 15 May 2018
- Published
- 2018
- Full Text
- View/download PDF
18. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
- Author
-
Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,galaxies: structure – gravitational waves ,galaxies: individual (NGC 4993) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,galaxies: evolution ,Astrophysics::Galaxy Astrophysics - Abstract
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as ${R}_{\mathrm{NSM}}^{\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\times {10}^{-6}{\mathrm{yr}}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is ${0.038}_{-0.022}^{+0.004}$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer lesssim 200 Myr prior to the BNS coalescence.
- Published
- 2017
19. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera
- Author
-
Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., and Weller, J.
- Subjects
binaries: close— catalogs— gravitational waves — stars: neutron— surveys - Abstract
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.
- Published
- 2017
20. HOST GALAXY IDENTIFICATION for SUPERNOVA SURVEYS
- Author
-
Gupta, Ravi R., Kuhlmann, Steve, Castander, F.J, Finley, D.A, Tucker , Bradley, Yuan, Fang, Flaugher, Brenna, Fosalba, P, James, David, Kuehn, Kyler, Maia, M.A.G, Walker, Alistair R, Gupta, Ravi R., Kuhlmann, Steve, Castander, F.J, Finley, D.A, Tucker , Bradley, Yuan, Fang, Flaugher, Brenna, Fosalba, P, James, David, Kuehn, Kyler, Maia, M.A.G, and Walker, Alistair R
- Abstract
Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.
- Published
- 2016
21. Optical and near-infrared observations of the afterglow of GRB 980329 from 15 hours to 10 days
- Author
-
Quashnock, J.M., Castander, F.J., Lamb, D.Q., Cooray, A.R., Rhoads, J.E., Reichart, D.E., Cole, D.M., Fruchter, A.S., Klose, S., Metzger, M.R., and Vanden Berk, D.E.
- Abstract
We report I-band observations of the GRB 980329 field made on 1998 March 29 with the 1.34 m Tautenberg Schmidt telescope, R-, J- and K-band observations made on 1998 April 1 with the APO 3.5 m telescope, R- and I-band observations made on 1998 April 3 with the Mayall 4 m telescope at KPNO, and J- and K-band observations made 1998 April 6-8 with the Keck-I 10 m telescope. We show that these and other reported measurements are consistent with a power-law fading of the optical/near-infrared source that is coincident with the variable radio source VLA J0702+3850. This firmly establishes that this source is the afterglow of GRB 980329.
- Published
- 1999
- Full Text
- View/download PDF
22. A deficit of high-redshift, high-luminosity X-ray clusters: Evidence for a high value of Ωm?
- Author
-
Nichol, R.C., Reichart, D.E., Castander, F.J., Collins, C.A., Romer, A.K., Ulmer, M.P., Burke, D.J., and Holden, B.P.
- Abstract
From the Press-Schechter mass function and the empirical X-ray cluster luminosity-temperature (L-T) relation, we construct an X-ray cluster luminosity function that can be applied to the growing number of high-redshift, X-ray cluster luminosity catalogs to constrain cosmological parameters. In this paper, we apply this luminosity function to the Einstein Medium Sensitivity Survey (EMSS) and the ROSAT Brightest Cluster Sample (BCS) luminosity function to constrain the value of Ωm. In the case of the EMSS, we find a factor of 4-5 fewer X-ray clusters at redshifts above z = 0.4 than below this redshift at luminosities above LX = 7 × 1044 ergs s-1 (0.3-3.5 keV), which suggests that the X-ray cluster luminosity function has evolved above L(Black star). At lower luminosities, this luminosity function evolves only minimally, if at all. Using Bayesian inference, we find that the degree of evolution at high luminosities suggests that Ωm = 0.96+0.36-0.32, given the best-fit L-T relation of Reichart, Castander, & Nichol. When we account for the uncertainty in how the empirical L-T relation evolves with redshift, we find that Ωm ≈ 1.0 ± 0.4. However, it is unclear to what degree systematic effects may affect this and similarly obtained results.
- Published
- 1999
- Full Text
- View/download PDF
23. The CYDER survey: first results
- Author
-
Castander, F.J., primary, Treister, E., additional, Maza, J., additional, Coppi, P.S., additional, Maccarone, T.J., additional, Zepf, S.E., additional, Guzmán, R., additional, and Ruiz, M.T., additional
- Published
- 2003
- Full Text
- View/download PDF
24. Exploring the selection of galaxy clusters and groups: an optical survey for X-ray dark clusters.
- Author
-
Gilbank, David G., Bower, Richard G., Castander, F.J., and Ziegler, B.L.
- Subjects
STAR clusters ,GALAXIES ,METAPHYSICAL cosmology ,SUPERCLUSTERS ,ASTROPHYSICS ,ASTRONOMY - Abstract
Data from a new, wide-field, coincident optical and X-ray survey, the X-ray Dark Cluster Survey (XDCS), are presented. This survey comprises simultaneous and independent searches for clusters of galaxies in the optical and X-ray passbands. Optical cluster detection algorithms implemented on the data are detailed. Two distinct optically selected catalogues are constructed, one based on I-band overdensity, the other on overdensities of colour-selected galaxies. The superior accuracy of the colour-selection technique over that of the single-passband method is demonstrated, via internal consistency checks and comparison with external spectroscopic redshift information. This is compared with an X-ray-selected cluster catalogue. In terms of gross numbers, the survey yields 185 I-band-selected, 290 colour-selected and 15 X-ray-selected systems, residing in ∼11 deg
2 of optical + X-ray imaging. The relationship between optical richness/luminosity and X-ray luminosity is examined, by measuring X-ray luminosities at the positions of our 290 colour-selected systems. Power-law correlations between the optical richness/luminosity and X-ray luminosity are fitted, both exhibiting approximately 0.2 dex of intrinsic scatter. Interesting outliers in these correlations are discussed in greater detail. Spectroscopic follow-up of a subsample of X-ray underluminous systems confirms their reality. [ABSTRACT FROM AUTHOR]- Published
- 2004
- Full Text
- View/download PDF
25. The PAU Survey and Euclid: Improving broadband photometric redshifts with multi-task learning.
- Author
-
Cabayol, L., Eriksen, M., Carretero, J., Casas, R., Castander, F. J., Fernández, E., Garcia-Bellido, J., Gaztanaga, E., Hildebrandt, H., Hoekstra, H., Joachimi, B., Miquel, R., Padilla, C., Pocino, A., Sanchez, E., Serrano, S., Sevilla, I., Siudek, M., Tallada-Crespí, P., and Aghanim, N.
- Subjects
EXPANDING universe ,GALACTIC redshift ,PHOTOMETRY ,UNIVERSE ,REDSHIFT ,GALAXIES - Abstract
Current and future imaging surveys require photometric redshifts (photo-zs) to be estimated for millions of galaxies. Improving the photo-z quality is a major challenge but is needed to advance our understanding of cosmology. In this paper we explore how the synergies between narrow-band photometric data and large imaging surveys can be exploited to improve broadband photometric redshifts. We used a multi-task learning (MTL) network to improve broadband photo-z estimates by simultaneously predicting the broadband photo-z and the narrow-band photometry from the broadband photometry. The narrow-band photometry is only required in the training field, which also enables better photo-z predictions for the galaxies without narrow-band photometry in the wide field. This technique was tested with data from the Physics of the Accelerating Universe Survey (PAUS) in the COSMOS field. We find that the method predicts photo-zs that are 13% more precise down to magnitude i
AB < 23; the outlier rate is also 40% lower when compared to the baseline network. Furthermore, MTL reduces the photo-z bias for high-redshift galaxies, improving the redshift distributions for tomographic bins with z > 1. Applying this technique to deeper samples is crucial for future surveys such as Euclid or LSST. For simulated data, training on a sample with iAB < 23, the method reduces the photo-z scatter by 16% for all galaxies with iAB < 25. We also studied the effects of extending the training sample with photometric galaxies using PAUS high-precision photo-zs, which reduces the photo-z scatter by 20% in the COSMOS field. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
26. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera
- Author
-
Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., Weller, J., Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., and Weller, J.
- Abstract
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.
- Full Text
- View/download PDF
27. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera
- Author
-
Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., Weller, J., Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., and Weller, J.
- Abstract
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.
- Full Text
- View/download PDF
28. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera
- Author
-
Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., Weller, J., Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., and Weller, J.
- Abstract
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.
- Full Text
- View/download PDF
29. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera
- Author
-
Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., Weller, J., Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., and Weller, J.
- Abstract
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.
- Full Text
- View/download PDF
30. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera
- Author
-
Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., Weller, J., Soares-Santos, M., Holz, D.E., Annis, J., Chornock, R., Herner, K., Berger, E., Brout, D., Chen, H.-Y., Kessler, R., Sako, M., Allam, S., Tucker, DL., Butler, R. E., Palmese, A., Doctor, Z., Diehl, H.T., Frieman, J., Yanny, B., Lin, H., Scolnic, D., Cowperthwaite, P., Neilsen, E., Marriner, J., Kuropatkin, N., Hartley, W.G., Paz-Chinchón, F., Alexander, K.D., Balbinot, E., Blanchard, P., Brown, D.A., Carlin, J.L., Conselice, Christopher J., Cook, E.R., Drlica-Wagner, A., Drout, M.R., Durret, F., Eftekhari, T., Farr, B., Finley, D.A., Foley, R.J., Fong, W., Fryer, C.L., García-Bellido, J., Gill, M.S.S., Gruendl, R.A., Hanna, C., Kasen, D., Li, T.S., Lopes, P.A.A., Lourenço, A.C.C., Margutti, R., Marshall, J.L., Matheson, T., Medina, G.E., Metzger, B.D., Muñoz, R.R., Muir, J., Nicholl, M., Quataert, E., Rest, A., Sauseda, M., Schlegel, D.J., Secco, L.F., Sobreira, F., Stebbins, A., Villar, V.A., Vivas, K., Walker, A.R., Wester, W., Williams, P.K.G., Zenteno, A., Zhang, Y., Abbott, T.M.C., Abdalla, F.B., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D.L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Crocce, M., Cunha, C.E., D’Andrea, C.B., Costa, L.N. da, Davis, C., Desai, S., Dietrich, J.P., Doel, P., Eifler, T.F., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Goldstein, D.A., Gruen, D., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Kent, S., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Lahav, O., Lima, M., Maia, M.A.G., March, M., McMahon, R.G., Menanteau, F., Miquel, R., Mohr, J.J., Nichol, R.C., Nord, B., Ogando, R.L C., Petravick, D., Plazas, A.A., Romer, A.K., Roodman, A., Rykoff, E.S., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R.C., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Troxel, M.A., Vikram, V., Wechsler, R.H., and Weller, J.
- Abstract
We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.
- Full Text
- View/download PDF
31. Evidence for dynamically driven formation of the GW170817 neutron star binary in NGC 4993
- Author
-
Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., Zuntz, J., Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., and Zuntz, J.
- Abstract
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as ${R}_{\mathrm{NSM}}^{\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\times {10}^{-6}{\mathrm{yr}}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is ${0.038}_{-0.022}^{+0.004}$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer lesssim 200 Myr prior to the BNS coalescence.
- Full Text
- View/download PDF
32. Evidence for dynamically driven formation of the GW170817 neutron star binary in NGC 4993
- Author
-
Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., Zuntz, J., Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., and Zuntz, J.
- Abstract
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as ${R}_{\mathrm{NSM}}^{\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\times {10}^{-6}{\mathrm{yr}}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is ${0.038}_{-0.022}^{+0.004}$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer lesssim 200 Myr prior to the BNS coalescence.
- Full Text
- View/download PDF
33. Evidence for dynamically driven formation of the GW170817 neutron star binary in NGC 4993
- Author
-
Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., Zuntz, J., Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., and Zuntz, J.
- Abstract
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as ${R}_{\mathrm{NSM}}^{\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\times {10}^{-6}{\mathrm{yr}}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is ${0.038}_{-0.022}^{+0.004}$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer lesssim 200 Myr prior to the BNS coalescence.
- Full Text
- View/download PDF
34. Evidence for dynamically driven formation of the GW170817 neutron star binary in NGC 4993
- Author
-
Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., Zuntz, J., Palmese, A., Hartley, W., Tarsitano, F., Conselice, Christopher J., Lahav, O., Allam, S., Annis, J., Lin, H., Soares-Santos, M., Tucker, D., Brout, D., Banerji, M., Bechtol, K., Diehl, H.T., Fruchter, A., García-Bellido, J., Herner, K., Levan, A.J., Li, T.S., Lidman, C., Misra, K., Sako, M., Scolnic, D., Smith, M., Abbott, T.M.C., Abdalla, F.B., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F.J., Cunha, C.E., D’Andrea, C.B., da Costa, L.N., Davis, C., DePoy, D.L., Desai, S., Dietrich, J.P., Doel, P., Drlica-Wagner, A., Eifler, T.F., Evrard, A.E., Flaugher, B., Fosalba, P., Frieman, J., Gaztanaga, E., Gerdes, D.W., Giannantonio, T., Gruen, D., Gruendl, R.A., Gschwend, J., Gutierrez, G., Honscheid, K., Jain, B., James, D.J., Jeltema, T., Johnson, M.W.G., Johnson, M.D., Krause, E., Kron, R., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lima, M., Maia, M.A.G., March, M., Marshall, J.L., McMahon, R.G., Menanteau, F., Miller, C.J., Miquel, R., Neilsen, E., Ogando, R.L.C., Plazas, A.A., Reil, K., Romer, A.K., Sanchez, E., Schindler, R., Smith, R.C., Sobreira, F., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., Thomas, R.C., Walker, A.R., Weller, J., Zhang, Y., and Zuntz, J.
- Abstract
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as ${R}_{\mathrm{NSM}}^{\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\times {10}^{-6}{\mathrm{yr}}^{-1}$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is ${0.038}_{-0.022}^{+0.004}$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer lesssim 200 Myr prior to the BNS coalescence.
- Full Text
- View/download PDF
35. The Purport of Space Telescopes in Supernova Research.
- Author
-
Vinkó, József, Szalai, Tamás, and Könyves-Tóth, Réka
- Subjects
SPACE telescopes ,COSMIC dust ,STELLAR evolution ,ASTROPHYSICS ,SCIENTIFIC community - Abstract
The violent stellar explosions known as supernovae have received especially strong attention in both the research community and the general public recently. With the advent of space telescopes, the study of these extraordinary events has switched gears and it has become one of the leading fields in modern astrophysics. In this paper, we review some of the recent developments, focusing mainly on studies related to space-based observations. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
36. The scientific performance of the microchannel X-ray telescope on board the SVOM mission.
- Author
-
Götz, D., Boutelier, M., Burwitz, V., Chipaux, R., Cordier, B., Feldman, C., Ferrando, P., Fort, A., Gonzalez, F., Gros, A., Hussein, S., Le Duigou, J.-M., Meidinger, N., Mercier, K., Meuris, A., Pearson, J., Renault-Tinacci, N., Robinet, F., Schneider, B., and Willingale, R.
- Subjects
X-ray telescopes ,FOCAL length ,ASTROPHYSICS ,SPACE telescopes ,OPTICS - Abstract
The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a narrow field "Lobster-Eye" optical design to be flown on a satellite, namely the Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length ∼ 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2–10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 μ m pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
37. CATCH: chasing all transients constellation hunters space mission.
- Author
-
Li, Panping, Yin, Qian-Qing, Li, Zhengwei, Tao, Lian, Wen, Xiangyang, Zhang, Shuang-Nan, Qi, Liqiang, Zhang, Juan, Zhao, Donghua, Li, Dalin, Yu, Xizheng, Bu, Qingcui, Chen, Wen, Chen, Yupeng, Huang, Yiming, Huang, Yue, Jin, Ge, Li, Gang, Liu, Hongbang, and Liu, Xiaojing
- Subjects
MICROSPACECRAFT ,INTELLIGENT control systems ,FOCAL length ,ARTIFICIAL satellites - Abstract
In time-domain astronomy, a substantial number of transients will be discovered by multi-wavelength and multi-messenger observatories, posing a great challenge for follow-up capabilities. We have thus proposed an intelligent X-ray constellation, the Chasing All Transients Constellation Hunters (CATCH) space mission. Consisting of 126 micro-satellites in three types, CATCH will have the capability to perform follow-up observations for a large number of different types of transients simultaneously. Each satellite in the constellation will carry lightweight X-ray optics and use a deployable mast to increase the focal length. The combination of different optics and detector systems enables different types of satellites to have multiform observation capabilities, including timing, spectroscopy, imaging, and polarization. Controlled by the intelligent system, different satellites can cooperate to perform uninterrupted monitoring, all-sky follow-up observations, and scanning observations with a flexible field of view (FOV) and multi-dimensional observations. Therefore, CATCH will be a powerful mission to study the dynamic universe. Here, we present the current design of the spacecraft, optics, detector system, constellation configuration and observing modes, as well as the development plan. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
38. Quasar Identification Using Multivariate Probability Density Estimated from Nonparametric Conditional Probabilities.
- Author
-
Farmer, Jenny, Allen, Eve, and Jacobs, Donald J.
- Subjects
MAXIMUM entropy method ,NONPARAMETRIC estimation ,QUASARS ,CONDITIONAL probability ,ORDER statistics ,PROBABILITY theory ,DENSITY - Abstract
Nonparametric estimation for a probability density function that describes multivariate data has typically been addressed by kernel density estimation (KDE). A novel density estimator recently developed by Farmer and Jacobs offers an alternative high-throughput automated approach to univariate nonparametric density estimation based on maximum entropy and order statistics, improving accuracy over univariate KDE. This article presents an extension of the single variable case to multiple variables. The univariate estimator is used to recursively calculate a product array of one-dimensional conditional probabilities. In combination with interpolation methods, a complete joint probability density estimate is generated for multiple variables. Good accuracy and speed performance in synthetic data are demonstrated by a numerical study using known distributions over a range of sample sizes from 100 to 10 6 for two to six variables. Performance in terms of speed and accuracy is compared to KDE. The multivariate density estimate developed here tends to perform better as the number of samples and/or variables increases. As an example application, measurements are analyzed over five filters of photometric data from the Sloan Digital Sky Survey Data Release 17. The multivariate estimation is used to form the basis for a binary classifier that distinguishes quasars from galaxies and stars with up to 94% accuracy. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
39. Observational constraints on Tsallis holographic dark energy with Ricci horizon cutoff.
- Author
-
Feizi Mangoudehi, Zahra
- Subjects
DARK energy ,PHASE transitions ,COSMOLOGICAL constant ,EQUATIONS of state ,ACCELERATION (Mechanics) - Abstract
In this research, we are interested in constraining the nonlinear interacting and noninteracting Tsallis holographic dark energy (THDE) with Ricci horizon cutoff by employing three observational datasets. To this aim, the THDE with Ricci horizon considering the noninteraction and nonlinear interaction terms will be fitted by the SNe Ia, SNe Ia+H(z), and SNe Ia+H(z)+GRB samples to investigate the Hubble (H (z) ), dark-energy equation of state ( ω D E ), effective equation of state ( ω e f f ), and deceleration (q ) parameters. Investigating the H (z) parameter illustrates that our models are in good consistency with respect to observations. Also, it can reveal the turning point for both noninteracting and nonlinear interacting THDE with Ricci cutoff in the late-time era. Next, the analysis of the ω D E for our models displays that the dark energy can experience the phantom state at the current time. However, this lies in the quintessence regime in the early era and approaches the cosmological constant in the late-time epoch. Similar results will be given for the ω e f f parameter with the difference that the ω e f f will experience the quintessence region at the current redshift. In addition to the mentioned parameters, the study of the q parameter indicates that the models satisfy an acceptable transition phase from the matter- to the dark energy-dominated era. After that, the classical stability ( v s 2 ) will be analyzed for our models. The v s 2 shows that the noninteracting and nonlinear interacting THDE with Ricci cutoff will be stable in the past era but unstable in the present and progressive epochs. Then, we will employ the J e r k (J ) and O M parameters to distinguish between our models and the Λ C D M model. Finally, we will calculate the age of the Universe for the THDE and nonlinear interacting THDE with Ricci as the IR cutoff. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
40. The Diffraction-Limited Near-Infrared Spectropolarimeter (DL-NIRSP) of the Daniel K. Inouye Solar Telescope (DKIST).
- Author
-
Jaeggli, Sarah A., Lin, Haosheng, Onaka, Peter, Yamada, Hubert, Anan, Tetsu, Bonnet, Morgan, Ching, Gregory, Huang, Xiao-Pei, Kramar, Maxim, McGregor, Helen, Nitta, Garry, Rae, Craig, Robertson, Louis, Schad, Thomas A., Toyama, Paul, Young, Jessica, Berst, Chris, Harrington, David M., Liang, Mary, and Puentes, Myles
- Subjects
SOLAR telescopes ,SCIENTIFIC apparatus & instruments ,SPECTRAL lines ,OPTICS ,SPECTROGRAPHS ,WAVELENGTHS - Abstract
The Diffraction-Limited Near-Infrared Spectropolarimeter (DL-NIRSP) is one of the first-light instruments for the National Science Foundation's Daniel K. Inouye Solar Telescope (DKIST). DL-NIRSP is an integral-field, dual-beam spectropolarimeter intended for studying magnetically sensitive spectral lines in the Sun's photosphere, chromosphere, and corona with high spectral resolution and polarimetric accuracy. Two novel fiber-optic integral-field units (IFUs), paired with selectable feed optics and a field-scanning mirror provide great flexibility in spatial sampling ( 0.03 ″ , 0.08 ″ , and 0.5 ″ ) and field coverage ( 2 ′ × 2 ′ ). The IFUs allow DL-NIRSP to record all the spectra from a 2D field of view simultaneously, enabling the instrument to study the evolution of highly dynamic events. The spectrograph is an all-reflecting, near-Littrow design, which achieves a resolving power of approximately 125,000. Multiple wavelengths can be observed simultaneously using three spectral arms: one for visible wavelengths (500 – 900 nm) and two for infrared wavelengths (900 – 1350 nm and 1350 – 1800 nm). Each supporting camera sub-system is capable of a 30-Hz frame rate, making it possible to track dynamic phenomena on the Sun. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
41. The Role of Cross-Correlations in the Multi-Tracer Area.
- Author
-
Blanchard, Alain
- Subjects
NOISE ,PHYSICAL cosmology - Abstract
Mapping the same volume of space with different tracers allows us to obtain information through estimated quantities exploiting the multi-tracer technique. Indeed, the cross-correlation of different probes provides information that cannot be otherwise obtained. In addition, some estimated quantities are not sensitive to the noise produced by the sampling variance but are only limited by the shot (or Poisson) noise, an attractive perspective. A simple example is the ratio between the (cross)-correlations, measuring the ratio of the bias parameters. Multi-tracer approaches can thereby provide additional information that cannot be extracted from independent volumes. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
42. A Short Review on the Latest Neutrinos Mass and Number Constraints from Cosmological Observables.
- Author
-
Sakr, Ziad
- Subjects
HUBBLE constant ,NUMBERS of species ,NEUTRINO mass ,SPECIES distribution ,NEUTRINOS ,PHYSICAL cosmology - Abstract
We review the neutrino science, focusing on its impact on cosmology along with the latest constraints on its mass and number of species. We also discuss its status as a possible solution to some of the recent cosmological tensions, such as the Hubble constant or the matter fluctuation parameter. We end by showing forecasts from next-generation planned or candidate surveys, highlighting their constraining power, alone or in combination, but also the limitations in determining neutrino mass distribution among its species. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
43. How the Big Bang Ends Up Inside a Black Hole.
- Author
-
Gaztanaga, Enrique
- Subjects
BLACK holes ,DARK matter ,GRAVITATIONAL collapse ,PHYSICAL cosmology ,QUANTUM states ,INFLATIONARY universe ,DARK energy - Abstract
The standard model of cosmology assumes that our Universe began 14 Gyrs (billion years) ago from a singular Big Bang creation. This can explain a vast range of different astrophysical data from a handful of free cosmological parameters. However, we have no direct evidence or fundamental understanding of some key assumptions: Inflation, Dark Matter and Dark Energy. Here we review the idea that cosmic expansion originates instead from gravitational collapse and bounce. The collapse generates a Black Hole (BH) of mass M ≃ 5 × 10 22 M ⊙ that formed 25 Gyrs ago. As there is no pressure support, the cold collapse can continue inside in free fall until it reaches atomic nuclear saturation (GeV), when is halted by Quantum Mechanics, as two particles cannot occupy the same quantum state. The collapse then bounces like a core-collapse supernovae, producing the Big Bang expansion. Cosmic acceleration results from the BH event horizon. During collapse, perturbations exit the horizon to re-enter during expansion, giving rise to the observed universe without the need for Inflation or Dark Energy. Using Ockham's razor, this makes the BH Universe (BHU) model more compelling than the standard singular Big Bang creation. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
44. Astronomical big data processing using machine learning: A comprehensive review.
- Author
-
Sen, Snigdha, Agarwal, Sonali, Chakraborty, Pavan, and Singh, Krishna Pratap
- Subjects
MACHINE learning ,ELECTRONIC data processing ,BIG data ,ASTRONOMERS ,ASTRONOMY - Abstract
Astronomy, being one of the oldest observational sciences, has collected a lot of data over the ages. In recent times, it is experiencing a huge data surge due to advancements in telescopic technologies with automated digital outputs. The main driver behind this article is to present various relevant Machine Learning (ML) algorithms and big data frameworks or tools being applied and can be employed in large astronomical data-set analysis to assist astronomers in solving multiple vital intriguing problems. Throughout this survey, we attempt to review, evaluate and summarize diverse astronomical data sources, gain knowledge of structure, the complexity of the data, and challenges in the data processing. Additionally, we discuss ample technologies being developed to handle and process this voluminous data. We also look at numerous activities being carried out all over the world enriching this domain. While going through existing literature, we perceived a limited number of comprehensive studies reported so far analyzing astronomy data-sets from the viewpoint of parallel processing and machine learning collectively. This motivated us to pursue this extensive literature review task by outlining up-to-date contributions and opportunities available in this area. Besides, this article also discusses briefly a cloud-based machine learning approach to estimate the extra-galactic object redshifts considering photometric data as input features. As the intersection of big data, machine learning and astronomy is a quite new paradigm, this article will create a strong awareness among interested young scientists for future research and provide an appropriate insight on how these algorithms and tools are becoming inevitable to the astronomy community day by day. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
45. Confidence Limits of Evolutionary Synthesis Models.
- Author
-
Cerviño, Miguel and Luridiana, Valentina
- Abstract
The probabilistic nature of the IMF in stellar systems implies that clusters of the same mass and age do not present the same unique values of their observed parameters. Instead they follow a distribution. We address the study of such distributions in terms of their confidence limits that can be obtained by evolutionary synthesis models. These confidence limits can be understood as the inherent uncertainties of synthesis models. We will compare such confidence limits arising from the discreteness of the number of stars obtained with Monte Carlo simulations with the dispersion resulting from an analytical formalism. We give some examples of the effects on the kinetic energy, V–K, EW(Hβ) and multiwavelength continuum. [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
46. Gravitation and the Universe from large scale-structures: The GAUSS mission concept Mapping the cosmic web up to the reionization era.
- Author
-
Blanchard, Alain, Aubourg, Éric, Brax, Philippe, Castander, Francisco J., Codis, Sandrine, Escoffier, Stéphanie, Dournac, Fabien, Ferté, Agnès, Finelli, Fabio, Fosalba, Pablo, Gangler, Emmanuel, Gontcho, Satya Gontcho A, Hawken, Adam, Ilić, Stéphane, Kneib, Jean-Paul, Kunz, Martin, Lavaux, Guilhem, Le Fèvre, Olivier, Lesgourgues, Julien, and Mellier, Yannick
- Subjects
INFLATIONARY universe ,CONCEPT mapping ,DARK energy ,PROPERTIES of matter ,UNIVERSE ,GRAVITATION - Abstract
Today, thanks in particular to the results of the ESA Planck mission, the concordance cosmological model appears to be the most robust to describe the evolution and content of the Universe from its early to late times. It summarizes the evolution of matter, made mainly of dark matter, from the primordial fluctuations generated by inflation around 10
− 30 second after the Big Bang to galaxies and clusters of galaxies, 13.8 billion years later, and the evolution of the expansion of space, with a relative slowdown in the matter-dominated era and, since a few billion years, an acceleration powered by dark energy. But we are far from knowing the pillars of this model which are inflation, dark matter and dark energy. Comprehending these fundamental questions requires a detailed mapping of our observable Universe over the whole of cosmic time. The relic radiation provides the starting point and galaxies draw the cosmic web. JAXA's LiteBIRD mission will map the beginning of our Universe with a crucial test for inflation (its primordial gravity waves), and the ESA Euclid mission will map the most recent half part, crucial for dark energy. The mission concept GAUSS, described in this White Paper, aims at being a mission to fully map the cosmic web up to the reionization era, linking early and late evolution, to tackle and disentangle the crucial degeneracies persisting after the Euclid era between dark matter and inflation properties, dark energy, structure growth and gravitation at large scale. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
47. Optical-Ultraviolet Tidal Disruption Events.
- Author
-
van Velzen, Sjoert, Holoien, Thomas W.-S., Onori, Francesca, Hung, Tiara, and Arcavi, Iair
- Abstract
The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the growth of optical transient surveys has led to the identification of a new class of optical transients occurring exclusively in galaxy centers, many of which are considered to be TDEs. Here we review the observed properties of these events, identified based on a shared set of both photometric and spectroscopic properties. We present a homogeneous analysis of 33 sources that we classify as robust TDEs, and which we divide into classes. The criteria used here to classify TDEs will possibly get updated as new samples are collected and potential additional diversity of TDEs is revealed. We also summarize current measurements of the optical-ultraviolet TDE rate, as well as the mass function and luminosity function. Many open questions exist regarding the current sample of events. We anticipate that the search for answers will unlock new insights in a variety of fields, from accretion physics to galaxy evolution. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
48. Detection of short high-energy transients in the local universe with SVOM/ECLAIRs.
- Author
-
Arcier, B., Atteia, J. L., Godet, O., Mate, S., Guillot, S., Dagoneau, N., Rodriguez, J., Gotz, D., Schanne, S., and Bernardini, M. G.
- Abstract
The coincidental detection of the gravitational wave event GW 170817 and the gamma-ray burst GRB 170817A marked the advent of multi-messenger astronomy and represented a milestone in the study of GRBs. Significant progress in this field is expected in the coming years with the increased sensitivity of gravitational waves detectors and the launch of new facilities for the high-energy survey of the sky. In this context, the launch of SVOM in mid-2022, with its two wide-field high-energy instruments ECLAIRs and GRM, will foster the possibilities of coincidental transient detection with gravitational waves and gamma-rays events. The purpose of this paper is to assess the ability of SVOM/ECLAIRs to detect and quickly characterize high-energy transients in the local Universe (z ≤ 0.3), and to discuss the contribution of this instrument to multi-messenger astronomy and to gamma-ray burst (GRB) astrophysics in the 2020’s. A list of local HE transients, along with their main characteristics, is constructed through an extensive literature survey. This list includes 41 transients: 24 long GRBs, 10 short GRBs and 7 SGR Giant Flares. The detectability of these transients with ECLAIRs is assessed with detailed simulations using tools developed for the SVOM mission, including a GEANT4 simulation of the energy response and a simulated trigger algorithm representative of the onboard trigger algorithm. SVOM/ECLAIRs would have been able to detect 88% of the short high-energy transients in our list: 22 out of 24 long GRBs, 8 out of 10 short GRBs and 6 out of 7 SGR Giant Flares. The SNR for almost all detections will be sufficiently high to allow the on-board ECLAIRs trigger algorithm to derive the localisation of the transient, transmitting it to the SVOM satellite and ground-based instruments. Coupled with the anti-solar pointing strategy of SVOM, this will enable an optimal follow-up of the events, allowing the observation of their afterglows, supernovae/kilonovae counterparts, and host galaxies. We conclude the paper with a discussion of the unique contribution expected from SVOM and of the possibility of simultaneous GW detection for each type of transient in our sample. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
49. Characterizing some Gaia Alerts with LAMOST and SDSS.
- Author
-
Huo, Z., Dennefeld, M., Liu, X., Pursimo, T., and Zhang, T.
- Subjects
EMISSION-line galaxies ,SUPERNOVAE ,GALAXY spectra ,QUASARS ,GALAXIES - Abstract
The ESA-Gaia satellite is regularly producing Alerts on objects where photometric variability has been detected after several passages over the same region of the sky. The physical nature of these objects has often to be determined with the help of complementary observations from ground-based facilities. We have compared the list of Gaia Alerts (from the beginning in 2014 to Nov. 1st, 2018) with archival LAMOST and SDSS spectroscopic data. A search radius of 3″ has been adopted. In using survey data, the date of the ground-based observation rarely corresponds to the date of the Alert, but this allows at least the identification of the source if it is persistent, or the host galaxy if the object was only transient like a supernova (SN). Some of the objects have several LAMOST observations, and we complemented this search by adding also SDSS DR15 data in order to look for long-term variability. A list of Gaia Nuclear Transients (GNT) from Kostrzewa-Rutkowska et al. (Mon. Not. R. Astron. Soc. 481(1):307, 2018) has been included in this search also. We found 26 Gaia Alerts with spectra in LAMOST+SDSS labelled as stars, among which 12 have multi-epoch spectra. A majority of them are Cataclysmic Variables (CVs). Similarly, 206 Gaia Alerts have associated spectra labelled as galaxies, among which 49 have multi-epoch spectra. Those spectra were generally obtained on a date widely different from the Alert date, and are mostly emission-line galaxies with no particularity (except a few Seyferts), leading to the suspicion that most of the Alerts were due to a SN. As for the GNT list, we found 55 associated spectra labelled as galaxies, among them 13 with multi-epoch spectra. In these two galaxy samples, in only two cases, Gaia17aal and GNTJ170213+2543, was the date of the spectroscopic observation close enough to the Alert date: we find a trace of the SN itself in their LAMOST spectrum, both being now classified here as a type Ia SN. Compared to the galaxy sample from the Gaia alerts, the GNT sample has a higher proportion of AGNs, suggesting that some of the detected variations are also due to the AGN itself. Similarly for Quasars, we found only 30 Gaia Alerts but 68 GNT cases associated with single epoch quasar spectra in the databases. In addition to those, 12 plus 23 are quasars where multi-epoch spectra are available. For ten out of these 35, their multi-epoch spectra show appearance or disappearance of the broad Balmer lines and also variations in the continuum, qualifying them as "Changing Look Quasars" and therefore significantly increasing the available sample of such objects. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
50. The Host Galaxies of Tidal Disruption Events.
- Author
-
French, K. Decker, Wevers, Thomas, Law-Smith, Jamie, Graur, Or, and Zabludoff, Ann I.
- Subjects
STELLAR black holes ,GALAXIES ,STAR formation ,STELLAR populations ,BLACK holes - Abstract
Recent studies of Tidal Disruption Events (TDEs) have revealed unexpected correlations between the TDE rate and the large-scale properties of the host galaxies. In this review, we present the host galaxy properties of all TDE candidates known to date and quantify their distributions. We consider throughout the differences between observationally-identified types of TDEs and differences from spectroscopic control samples of galaxies. We focus here on the black hole and stellar masses of TDE host galaxies, their star formation histories and stellar populations, the concentration and morphology of the optical light, the presence of AGN activity, and the extra-galactic environment of the TDE hosts. We summarize the state of several possible explanations for the links between the TDE rate and host galaxy type. We present estimates of the TDE rate for different host galaxy types and quantify the degree to which rate enhancement in some types results in rate suppression in others. We discuss the possibilities for using TDE host galaxies to assist in identifying TDEs in upcoming large transient surveys and possibilities for TDE observations to be used to study their host galaxies. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.