1. Effect of extreme mechanical densification on the electrical properties of carbon nanotube micro-yarns
- Author
-
Cassandre Miralaei, Sylvie Le Floch, Regis Debord, Hung V Nguyen, Julio C Da Silva, Alfonso San-Miguel, Hélène Le Poche, Stephane Pailhès, Vittoria Pischedda, Transport, Nanomagnétisme et Matériaux pour l'Énergie (ENERGIE), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), European Synchrotron Radiation Facility (ESRF), Spectroscopies optiques des matériaux verres, amorphes et à nanoparticules (SOPRANO), Laboratoire des Composants pour la Récupération d'Énergies (LCRE), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[PHYS]Physics [physics] ,[SPI]Engineering Sciences [physics] ,Mechanics of Materials ,Mechanical Engineering ,[CHIM]Chemical Sciences ,General Materials Science ,Bioengineering ,General Chemistry ,Electrical and Electronic Engineering - Abstract
We have explored the effect of high pressure post-treatment in optimizing the properties of carbon nanotube yarns and found that the application of dry hydrostatic pressure reduces porosity and enhances electrical properties. The CNT yarns were prepared by the dry-spinning method directly from CNT arrays made by the hot filament chemical vapour deposition (HF-CVD) process. Mechanical hydrostatic pressure up to 360 MPa induces a decrease in yarn resistivity between 3% and 35%, associated with the sample’s permanent densification, with CNT yarn diameter reduction of 10%–25%. However, when increasing the pressure in the 1–3 GPa domain in non-hydrostatic conditions, the recovered samples show lower electrical conductivity. This might be due to concomitant macroscopic effects such as increased twists and damage to the yarn shown by SEM imaging (caused by strong shear stresses and friction) or by the collapse of the CNTs indicated by in situ high pressure Raman spectroscopy data.
- Published
- 2022
- Full Text
- View/download PDF