1. Reliable, Routable, and Reproducible: Collection of Pedestrian Pathways at Statewide Scale
- Author
-
Zhang, Yuxiang, Howe, Bill, and Caspi, Anat
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
While advances in mobility technology including autonomous vehicles and multi-modal navigation systems can improve mobility equity for people with disabilities, these technologies depend crucially on accurate, standardized, and complete pedestrian path networks. Ad hoc collection efforts lead to a data record that is sparse, unreliable, and non-interoperable. This paper presents a sociotechnical methodology to collect, manage, serve, and maintain pedestrian path data at a statewide scale. Combining the automation afforded by computer-vision approaches applied to aerial imagery and existing road network data with the quality control afforded by interactive tools, we aim to produce routable pedestrian pathways for the entire State of Washington within approximately two years. We extract paths, crossings, and curb ramps at scale from aerial imagery, integrating multi-input segmentation methods with road topology data to ensure connected, routable networks. We then organize the predictions into project regions selected for their value to the public interest, where each project region is divided into intersection-scale tasks. These tasks are assigned and tracked through an interactive tool that manages concurrency, progress, feedback, and data management. We demonstrate that our automated systems outperform state-of-the-art methods in producing routable pathway networks, which then significantly reduces the time required for human vetting. Our results demonstrate the feasibility of yielding accurate, robust pedestrian pathway networks at the scale of an entire state. This paper intends to inform procedures for national-scale ADA compliance by providing pedestrian equity, safety, and accessibility, and improving urban environments for all users., Comment: arXiv admin note: text overlap with arXiv:2303.02323
- Published
- 2024