17 results on '"Casazza, Daniele"'
Search Results
2. On the Artin formalism for $p$-adic Garrett--Rankin $L$-functions
- Author
-
Büyükboduk, Kâzım, Casazza, Daniele, and Sakamoto, Ryotaro
- Subjects
Mathematics - Number Theory - Abstract
Our main objective in the present article is to study the factorization problem for triple-product $p$-adic $L$-functions, particularly in the scenarios when the defining properties of the $p$-adic $L$-functions involved have no bearing on this problem, although Artin formalism would suggest such a factorization. Our analysis is guided by the ETNC philosophy and it involves a comparison of diagonal cycles, Beilinson--Flach elements, and Beilinson--Kato elements, much in the spirit of the work of Gross (that is based on a comparison of elliptic units and cyclotomic units) and Dasgupta (that dwells on a comparison of Beilinson--Flach elements and cyclotomic units) for smaller-rank motives., Comment: 92 pages
- Published
- 2023
3. On $p$-adic $L$-functions for $\operatorname{GL}(2)\times\operatorname{GL}(3)$ via pullbacks of Saito--Kurokawa lifts
- Author
-
Casazza, Daniele and de Vera-Piquero, Carlos
- Subjects
Mathematics - Number Theory ,11F33, 11F67, 11F27 - Abstract
We build a one-variable $p$-adic $L$-function attached to two Hida families of ordinary $p$-stabilised newforms $\mathbf{f}$, $\mathbf{g}$, interpolating the algebraic part of the central values of the complex $L$-series $L(f \otimes \textrm{Ad}(g), s)$ when $f$ and $g$ range over the classical specialisations of $\mathbf{f}$, $\mathbf{g}$ on a suitable line of the weight space. The construction rests on two major results: an explicit formula for the relevant complex central $L$-values, and the existence of non-trivial $\Lambda$-adic Shintani liftings and Saito--Kurokawa liftings studied in a previous work by the authors. We also illustrate that, under an appropriate sign assumption, this $p$-adic $L$-function arises as a factor of a triple product $p$-adic $L$-function attached to $\mathbf{f}$, $\mathbf{g}$, and $\mathbf{g}$.
- Published
- 2022
4. p-adic families of d-th Shintani liftings
- Author
-
Casazza, Daniele and de Vera-Piquero, Carlos
- Subjects
Mathematics - Number Theory ,11F03, 11F27, 11F30, 11F33, 11F37 - Abstract
In this note we give a detailed construction of a $\Lambda$-adic $\mathfrak{d}$-th Shintani lifting. We derive a $\Lambda$-adic version of Kohnen's formula relating Fourier coefficients of half-integral weight modular forms and special values of twisted L-series. As a by-product, we derive a mild generalization of such classical formulae, and also point out a relation between Fourier coefficients of $\Lambda$-adic $\d$-th Shintani liftings and Stark--Heegner points., Comment: 32 pages
- Published
- 2019
5. On p-adic L-functions for GL(2)×GL(3) via pullbacks of Saito–Kurokawa lifts
- Author
-
Casazza, Daniele and de Vera-Piquero, Carlos
- Published
- 2023
- Full Text
- View/download PDF
6. The inverse problem for arboreal Galois representations of index two
- Author
-
Ferraguti, Andrea, Pagano, Carlo, and Casazza, Daniele
- Subjects
Mathematics - Number Theory - Abstract
This paper introduces a systematic approach towards the inverse problem for arboreal Galois representations of finite index attached to quadratic polynomials. Let $F$ be a field of characteristic $\neq 2$, $f\in F[x]$ be monic and quadratic and $\rho_f$ be the arboreal Galois representation associated to $f$, taking values in the group $\Omega_{\infty}$ of automorphisms of the infinite binary tree. We give a complete description of the maximal closed subgroups of each closed subgroup of index at most two of $\Omega_{\infty}$ in terms of linear relations modulo squares among certain universal functions evaluated in elements of the critical orbit of $f$. We use such description in order to derive necessary and sufficient criteria for the image of $\rho_f$ to be a given subgroup of index two of $\Omega_\infty$. These depend exclusively on the arithmetic of the critical orbit of $f$. Afterwards, we prove that if $\phi=x^2+t\in\mathbb Q(t)[x]$, then there exist exactly five distinct subgroups of index two of $\Omega_{\infty}$ that can appear as images of $\rho_{\phi_{t_0}}$ for infinitely many $t_0\in\mathbb Q$, where $\phi_{t_0}$ is the specialized polynomial. We show that two of them appear infinitely often, and if Vojta's conjecture over $\mathbb Q$ holds true, then so do the remaining ones. Finally, we give an explicit description of the derived series of each subgroup of index two. Using this, we introduce a sequence of combinatorial invariants for subgroups of index two of $\Omega_\infty$. With a delicate use of these invariants we are able to establish that such subgroups are pairwise non-isomorphic as topological groups, a result of independent interest. This implies, in particular, that the five aforementioned groups are pairwise distinct topological groups, and therefore yield five genuinely different instances of the infinite inverse Galois problem over $\mathbb Q$., Comment: Comments are welcome!
- Published
- 2019
7. p-adic families of dth Shintani liftings
- Author
-
Casazza, Daniele and Vera-Piquero, Carlos de
- Published
- 2022
- Full Text
- View/download PDF
8. Stark points and Hida-Rankin p-adic L-function
- Author
-
Casazza, Daniele and Rotger, Victor
- Subjects
Mathematics - Number Theory - Abstract
This article is devoted to the elliptic Stark conjecture formulated by Darmon, Lauder and Rotger [DLR], which proposes a formula for the transcendental part of a $p$-adic avatar of the leading term at $s=1$ of the Hasse-Weil-Artin $L$-series $L(E,\varrho_1\otimes \varrho_2,s)$ of an elliptic curve $E$ twisted by the tensor product $\varrho_1\otimes \varrho_2$ of two odd $2$-dimensional Artin representations, when the order of vanishing is two. The main ingredient of this formula is a $2\times 2$ $p$-adic regulator involving the $p$-adic formal group logarithm of suitable Stark points on $E$. This conjecture was proved in [DLR] in the setting where $\varrho_1$ and $\varrho_2$ are induced from characters of the same imaginary quadratic field $K$. In this note we prove a refinement of this result, that was discovered experimentally in Remark 3.4 of [DLR] in a few examples. Namely, we are able to determine the algebraic constant up to which the main theorem of [DLR] holds in a particular setting where the Hida-Rankin $p$-adic $L$-function associated to a pair of Hida families can be exploited to provide an alternative proof of the same result. This constant encodes local and global invariants of both $E$ and $K$.
- Published
- 2018
- Full Text
- View/download PDF
9. On the Elliptic Stark Conjecture at Primes of Multiplicative Reduction
- Author
-
Casazza, Daniele and Rotger, Victor
- Published
- 2019
10. Stark points and the Hida–Rankin p-adic L-function
- Author
-
Casazza, Daniele and Rotger, Victor
- Published
- 2016
- Full Text
- View/download PDF
11. p-adic families of $$\mathfrak d$$th Shintani liftings
- Author
-
Casazza, Daniele, primary and Vera-Piquero, Carlos de, additional
- Published
- 2021
- Full Text
- View/download PDF
12. On the elliptic Stark conjecture at primes of multiplicative reduction
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres, Casazza, Daniele, Rotger Cerdà, Víctor, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres, Casazza, Daniele, and Rotger Cerdà, Víctor
- Abstract
In [DLR], Darmon, Lauder, and Rotger formulated a p-adic elliptic Stark conjecture for the twist of an elliptic curve E/Q by the self-dual tensor product ¿ ¿ of two odd and two-dimensional Artin representations. These authors provided abundant numerical evidence and proved the conjecture in the special setting where p is a prime of good reduction for E and ¿ and ¿2 are induced from finite-order characters ¿, ¿ of the same imaginary quadratic field. The key step in their proof is a factorization of one-variable p-adic L-functions, where ¿ varies in a p-adic family of Hecke characters. The main goal of this article is to prove a new case of the conjecture, placing ourselves in the setting where p is a prime of multiplicative reduction for E. In order to achieve our theorem, we need to work with two-variable p-adic L-functions, where the weight 2 cusp form associated with E also moves independently along a Hida family. Our main result then follows from a factorization of p-adic L-series extending to two variables the one obtained in [DLR]. On the way we also generalize to our setting the results obtained in [CR]., Peer Reviewed, Postprint (author's final draft)
- Published
- 2019
13. p-adic families of d-th Shintani liftings
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Casazza, Daniele, Vera Piquero, Carlos de, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Casazza, Daniele, and Vera Piquero, Carlos de
- Abstract
Preprint sotmès a publicació., In this note we give a detailed construction of a Lambda-adic d-th Shintani lifting. We derive a p-adic version of Kohnen's formula relating Fourier coefficients of half-integral weight modular forms and special values of twisted L-series. As a by-product we obtain a mild generalization of such classical formula., Preprint
- Published
- 2019
14. Stark points and the Hida-Rankin p-adic L-function
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres, Casazza, Daniele, Rotger Cerdà, Víctor, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres, Casazza, Daniele, and Rotger Cerdà, Víctor
- Abstract
The final publication is available at Springer via http://dx.doi.org/10.1007/s11139-016-9824-y, This article is devoted to the elliptic Stark conjecture formulated by Darmon (Forum Math Pi 3:e8, 2015), which proposes a formula for the transcendental part of a p-adic avatar of the leading term at s=1 of the Hasse–Weil–Artin L-series L(E,¿1¿¿2,s) of an elliptic curve E/Q twisted by the tensor product ¿1¿¿2 of two odd 2-dimensional Artin representations, when the order of vanishing is two. The main ingredient of this formula is a 2×2 p-adic regulator involving the p-adic formal group logarithm of suitable Stark points on E. This conjecture was proved by Darmon (Forum Math Pi 3:e8, 2015) in the setting where ¿1 and ¿2 are induced from characters of the same imaginary quadratic field K. In this note, we prove a refinement of this result that was discovered experimentally by Darmon (Forum Math Pi 3:e8, 2015, [Remark 3.4]) in a few examples. Namely, we are able to determine the algebraic constant up to which the main theorem of Darmon (Forum Math Pi 3:e8, 2015) holds in a particular setting where the Hida–Rankin p-adic L-function associated to a pair of Hida families can be exploited to provide an alternative proof of the same result. This constant encodes local and global invariants of both E and K., Peer Reviewed, Postprint (author's final draft)
- Published
- 2018
15. Points de Stark-Heegner et fonctions L p-adiques
- Author
-
CASAZZA, Daniele, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Universitat politécnica de Catalunya, Jean Gillibert, Victor Rotger, Jordi QUER BOSOR [Président], Alan Lauder [Rapporteur], Stephano Vigni [Rapporteur], Christian Wuthrich [Rapporteur], and Pierre Parent
- Subjects
Hida families ,Valeurs spéciales ,Unités elliptiques ,Intégrales p-adiques iterées ,P-adic interpolation ,Courbes elliptiques ,Interpolation p-adique ,Stark units ,Points de Heegner ,Unités de Stark ,P-adic L-functions ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Heegner points ,P-adic iterated integrals ,Fonctions L p-adiques ,Elliptic curves ,Familles d’Hida ,Elliptic units ,Special values - Abstract
Let K|Q be a number field and let ζK(s) be its associated complex L-function. The analytic class number formula relates special values of ζK(s) with algebraic invariants of the field K itself. It admits a Galois equivariant refinement known as Stark conjectures. We have a very similar picture in the case of elliptic curves. Let E/Q be an elliptic curve and let L(E/Q, s) be its associated complex L-function. The conjecture of Birch and Swinnerton-Dyer relates the behaviour of L(E/Q, s) at s = 1 to the structure of rational solutions of the equation defined by E. The equivariant Birch and Swinnerton- Dyer conjecture is obtained including in the picture the action of Galois groups. The elliptic Stark conjecture formulated by H. Darmon, A. Lauder and V. Rotger purposes a p-adic analogue of the equivariant Birch and Swinnerton-Dyer conjecture, under several assumption. In their paper, the authors formulate the conjecture and prove it in some cases of good reduction of E at p using Garrett-Hida method and performing a factorization of p-adic L-functions. In this dissertation we focus on the elliptic Stark conjecture and we show how it is possible to extend the result of Darmon, Lauder and Rotger. In the case of good reduction of E at p we can slightly extend the result using Hida- Rankin method. This method also gives us a better control of the constants appearing in the result, thus yielding an explicit formula which contains invariants associated with the elliptic curve. To achieve the proof we mimic the main result of Darmon, Lauder and Rotger in our setting and we make use of a p-adic Gross-Zagier formula which relates special values of the Bertolini-Darmon-Prasanna p-adic L-function to Heegner points. In a second moment we extend both our result and Darmon-Lauder-Rotger result to the case of multi- plicative reduction of E at p. In this setting we cannot use Bertolini- Darmon Prasanna p-adic L-function due to some technical reasons. In order to avoid the problem we consider Castellà’s two variables p-adic L-function. We use both Garrett-Hida method and Hida-Rankin method. In the two cases we obtain formulae which are similar to those of the good reduction setting.; Soit K|Q un corps de nombres et soit ζK(s) sa fonction L complexe associée. La formule analytique du nombre de classes fournit un lien entre les valeurs spéciales de ζK(s) et les invariants du corps K. Elle admet une version Galois-équivariante. On a un schema similaire pour les courbes elliptiques. Soit E/Q une courbe elliptique et soit L(E/Q, s) sa fonction L complexe associée. La conjecture de Birch et Swinnerton-Dyer prédit un lien entre le comportement de L(E/Q, s) au point s = 1 et la structure des solutions rationnelles de l’équation definie par E. Comme la formule analytique du nombre de classes, la conjecture de Birch et Swinnerton-Dyer admet une version équivariante. La conjecture de Stark elliptique formulée par H. Darmon, A. Lauder et V. Rotger propose un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer équivariante, qui nécessite certaines hypothèses. Dans leur article, les auteurs formulent la conjecture et donnent une démonstration dans certains cas où E a bonne réduction en p. Pour cela, ils utilisent la méthode de Garrett-Hida qui conduit à une factorisation de fonctions L p-adiques. Dans cette thèse on se concentre sur la conjecture de Stark elliptique et l’on montre comme il est possible d’étendre le résultat de Darmon, Lauder et Rotger. Dans le cas où E a bonne réduction en p on peut étendre le résultat en utilisant la méthode de Hida- Rankin. Cette méthode nous donne un contrôle meilleur sur les constantes apparaissant dans les formules et nous amène à une formule explicite contenant les invariants de la courbe elliptique. Pour obtenir le résultat on adapte la preuve du théorème principal de Darmon, Lauder et Rotger à notre cas et on utilise une formule p-adique de Gross et Zagier qui relie les valeurs spéciales de la fonction L padique de Bertolini-Darmon-Prasanna et les points de Heegner. Ensuite on voit comment étendre notre résultat et celui de Darmon-Lauder-Rotger au cas où E a réduction multiplicative en p. Dans ce cadre, on ne peut pas utiliser la fonction L p-adique de Bertolini-Darmon-Prasanna en raison de problèmes techniques. Pour éliminer cette difficulté on consid`ere la fonction L p-adique de Castellà. On utilise aussi la méthode de Garrett-Hida ainsi que la méthode d’Hida-Rankin et l’on obtient des résultats similaires aux cas de bonne réduction.
- Published
- 2016
16. Stark-Heegner points and p-adic L-functions
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Université de Bordeaux, Rotger Cerdà, Víctor, Gillibert, Jean, Casazza, Daniele, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Université de Bordeaux, Rotger Cerdà, Víctor, Gillibert, Jean, and Casazza, Daniele
- Abstract
Cotutela Universitat Politècnica de Catalunya i Université de Bordeaux, Let K|Q be a number field and let Z(K,s) be its associated complex L-function. The analytic class number formula relates special values of Z(K,s) with algebraic invariants of the field K itself. It admits a Galois equivariant refinement known as Stark conjectures. We have a very similar picture in the case of elliptic curves. Let E/Q be an elliptic curve and let L(E/Q,s) be its associated complex L-function. The conjecture of Birch and Swinnerton-Dyer relates the behaviour of L(E/Q,s) at s=1 to the structure of rational solutions of the equation defined by E. The equivariant Birch and Swinnerton-Dyer conjecture is obtained including in the picture the action of Galois groups. The elliptic Stark conjecture formulated by H. Darmon, A. Lauder and V. Rotger purposes a p-adic analogue of the equivariant Birch and Swinnerton-Dyer conjecture, under several assumption. In their paper, the authors formulate the conjecture and prove it in some cases of good reduction of E at p using Garrett-Hida method and performing a factorization of p-adic L-functions. In this dissertation we focus on the elliptic Stark conjecture and we show how it is possible to extend the result of Darmon, Lauder and Rotger. In the case of good reduction of E at p we can slightly extend the result using Hida-Rankin method. This method also gives us a better control of the constants appearing in the result, thus yielding an explicit formula which contains invariants associated with the elliptic curve. To achieve the proof we mimic the main result of Darmon, Lauder and Rotger in our setting and we make use of a p-adic Gross-Zagier formula which relates special values of the Bertolini-Darmon-Prasanna p-adic L-function to Heegner points. In a second moment we extend both our result and Darmon-Lauder-Rotger result to the case of multiplicative reduction of E at p. In this setting we cannot use Bertolini-Darmon-Prasanna p-adic L-function due to some technical reasons. To avoid the problem we consider Castella, Sigui K/Q un cos de nombres i sigui L(K,s) la funció L de Dedekind associada. La fórmula analítica del nombre de classes relaciona els valors especials de L(K,s) amb invariants algebraics del cos K. Aquesta formula admet un refinament Galois equivariant conegut com les conjectures de Stark. En el cas de les corbes el·líptiques ens trobem amb un escenari similar. Sigui E/Q una corba el·líptica i sigui L(E/Q,s) la seva L-sèrie complexa. La conjectura de Birch i Swinnerton-Dyer relaciona el comportament de L(E/Q,s) en el punt central crític s=1 amb l'estructura del conjunt de punts racionals de l'equació definida per E. La versió Galois-equivariant proporciona un refinament d'aquesta conjectura per al canvi de base d'E a un cos de nombres K qualsevol. La conjectura el·líptica de Stark formulada per H. Darmon, A. Lauder i V. Rotger proposa un anàleg p-àdic de la conjectura Galois-equivariant de Birch i Swinnerton-Dyer, sota vàries hipòtesis. En el seu article, els autors formulen la conjectura i la demostren en alguns casos on el primer p és un primer de bona reducció per E, usant el mètode de Garrett-Hida i demostrant pel camí una factorització de funcions L p-àdiques. En aquesta tesi doctoral estudiem i demostrem nous resultats sobre la conjectura el¿líptica de Darmon-Lauder-Rotger En el cas on p és un primer de bona reducció per E, refinem el resultat principal de Darmon-Lauder-Rotger mitjançant el mètode de Rankin-Hida, que ens dóna un millor control de les constants que apareixen en les demostracions i ens permet demostrar una fórmula explícita que involucra invariants globals associats a la corba el¿líptica. Per aconseguir-ho generalitzem la estratègia de Darmon, Lauder and Rotger, tot utilitzant la p-adic Gross-Zagier formula que relaciona els valors especials de la funció L p-àdica de Bertolini-Darmon-Prasanna amb punts de Heegner. L'altre resultat principal d'aquesta tesi és la demostració de la conjectura el·líptica de Stark en un cas on E té reducció multipli, Postprint (published version)
- Published
- 2016
17. Stark points and the Hida-Rankin p-adic L-function.
- Author
-
Casazza, Daniele and Rotger, Victor
- Abstract
This article is devoted to the elliptic Stark conjecture formulated by Darmon (Forum Math Pi 3:e8, 2015), which proposes a formula for the transcendental part of a p-adic avatar of the leading term at $$s=1$$ of the Hasse-Weil-Artin L-series $$L(E,\varrho _1\otimes \varrho _2,s)$$ of an elliptic curve $$E/\mathbb {Q}$$ twisted by the tensor product $$\varrho _1\otimes \varrho _2$$ of two odd 2-dimensional Artin representations, when the order of vanishing is two. The main ingredient of this formula is a $$2\times 2$$ p-adic regulator involving the p-adic formal group logarithm of suitable Stark points on E. This conjecture was proved by Darmon (Forum Math Pi 3:e8, 2015) in the setting where $$\varrho _1$$ and $$\varrho _2$$ are induced from characters of the same imaginary quadratic field K. In this note, we prove a refinement of this result that was discovered experimentally by Darmon (Forum Math Pi 3:e8, 2015, [Remark 3.4]) in a few examples. Namely, we are able to determine the algebraic constant up to which the main theorem of Darmon (Forum Math Pi 3:e8, 2015) holds in a particular setting where the Hida-Rankin p-adic L-function associated to a pair of Hida families can be exploited to provide an alternative proof of the same result. This constant encodes local and global invariants of both E and K. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.