20 results on '"Carsten Kegler"'
Search Results
2. Evolution Inspired Engineering of Megasynthetases
- Author
-
Kenan A. J. Bozhüyük, Leonard Präve, Carsten Kegler, Sebastian Kaiser, Yan-Ni Shi, Wolfgang Kuttenlochner, Leonie Schenk, T. M. Mohiuddin, Michael Groll, Georg K. A. Hochberg, and Helge B. Bode
- Abstract
Many clinically used drugs are derived from or inspired by bacterial natural products that often are biosynthesised via non-ribosomal peptide synthetases (NRPS), giant megasynthases that activate and join individual amino acids in an assembly line fashion. Since NRPS are not limited to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would allow the biotechnological generation of complex peptides including linear, cyclic and further modified natural product analogues, e.g. to optimise natural product leads. Here we describe a detailed phylogenetic analysis of several bacterial NRPS that led to the identification of a new recombination breakpoint within the thiolation (T) domain that is important for natural NRPS evolution. From this, an evolution-inspired eXchange Unit between T domains (XUT) approach was developed which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.
- Published
- 2022
3. Artificial Splitting of a Non-Ribosomal Peptide Synthetase by Inserting Natural Docking Domains
- Author
-
Helge B. Bode and Carsten Kegler
- Subjects
Peptide Biosynthesis ,xefoampeptides ,Stereochemistry ,Peptide Synthetases ,Peptide ,010402 general chemistry ,Protein Engineering ,01 natural sciences ,Catalysis ,Xenorhabdus ,Biosynthesis | Very Important Paper ,chemistry.chemical_compound ,Biosynthesis ,Bacterial Proteins ,Protein Domains ,Peptide synthesis ,Peptide Synthases ,chemistry.chemical_classification ,non-ribosomal peptide synthetases ,010405 organic chemistry ,Communication ,heterologous expression ,General Medicine ,General Chemistry ,Ribosomal RNA ,Communications ,0104 chemical sciences ,Enzyme ,chemistry ,Docking (molecular) ,combinatorial biosynthesis ,docking domains ,Heterologous expression - Abstract
The interaction in multisubunit non‐ribosomal peptide synthetases (NRPSs) is mediated by docking domains that ensure the correct subunit‐to‐subunit interaction. We introduced natural docking domains into the three‐module xefoampeptide synthetase (XfpS) to create two to three artificial NRPS XfpS subunits. The enzymatic performance of the split biosynthesis was measured by absolute quantification of the products by HPLC‐ESI‐MS. The connecting role of the docking domains was probed by deleting integral parts of them. The peptide production data was compared to soluble protein amounts of the NRPS using SDS‐PAGE. Reduced peptide synthesis was not a result of reduced soluble NRPS concentration but a consequence of the deletion of vital docking domain parts. Splitting the xefoampeptide biosynthesis polypeptide by introducing docking domains was feasible and resulted in higher amounts of product in one of the two tested split‐module cases compared to the full‐length wild‐type enzyme., A breed apart: The non‐ribosomal peptide synthetase (NRPS) XfpS, which produces the peptides xefoampeptides A and B, can be artificially split without loss of biosynthetic activity by introducing docking domains into XfpS. In fact, in this case, the production of both peptides from the split system increased compared to product levels from the full‐length XfpS. Splitting XfpS into three subunits also led to a functional NRPS system.
- Published
- 2019
4. Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS
- Author
-
Lei Zhao, Carolin Hacker, Carsten Kegler, Jens Woehnert, Xiaofeng Cai, Katharina Weickhmann, and Helge B. Bode
- Subjects
chemistry.chemical_classification ,010405 organic chemistry ,Stereochemistry ,Chemistry ,Docking (molecular) ,Peptide Synthetases ,Structure based ,Peptide ,Amino acid residue ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences - Abstract
Several peptides in clinical use are derived from non-ribosomal peptide synthetases (NRPS). In these systems multiple NRPS subunits interact with each other in a specific linear order mediated by docking domains (DDs) to synthesize well-defined peptide products. In contrast to these classical NRPSs, the subunits of rhabdopeptide/xenortide producing NRPSs can act iteratively and in different order resulting in libraries of peptide products. In order to define the structural and thermodynamic basis for their unusual interaction patterns, we determined the structures of all N-terminal DDs (NDDs) as well as of an NDD-CDD complex and characterized all putative DD interactions thermodynamically for one such system. Key amino acid residues for DD interactions were identified that upon their exchange not only changed the DD affinity but also resulted in rationally predictable changes in peptide production. A simple set of ‘recognition rules’ for DD interactions was identified that also operates in other megasynthase complexes.
- Published
- 2018
5. Minimum Information about a Biosynthetic Gene cluster
- Author
-
Patrick Caffrey, Renzo Kottmann, Eriko Takano, Sean Doyle, Axel A. Brakhage, Matthew Cummings, Juan Pablo Gomez-Escribano, Yvonne Mast, Ryan F. Seipke, Rob Lavigne, Markus Nett, Hans-Wilhelm Nützmann, Jan Claesen, David H. Sherman, Daniel Petras, Pablo Cruz-Morales, Carl J. Balibar, Anne Osbourn, Oscar P. Kuipers, Leonilde M. Moreira, Xinyu Liu, Marcia S. Osburne, Bohdan Ostash, David P. Fewer, Changsheng Zhang, Pelin Yilmaz, Mohamed S. Donia, Anja Greule, Hyun Uk Kim, Nicholas J. Tobias, Frank Oliver Glöckner, Christoph Geiger, Chia Y. Lee, William H. Gerwick, Philipp Wiemann, Bertolt Gust, Susan E. Jensen, Wilfred A. van der Donk, Jan Kormanec, Ben Shen, Christopher M. Thomas, Jason Micklefield, Srikanth Duddela, R. Cameron Coates, René De Mot, Anthony S. Haines, Neha Garg, Guohui Pan, Roderich D. Süssmuth, Hyung Jin Kwon, Jonathan D. Walton, Lena Gerwick, Jörn Piel, Monika Ehling-Schulz, Zhenhua Tian, Jonathan L. Klassen, Xiaohui Yan, Emily A. Monroe, Yunchang Xie, Russell J. Cox, Keishi Ishida, Grace Yim, Stefano Donadio, Nadine Ziemert, Yuta Tsunematsu, Matthew L. Hillwig, Miroslav Petricek, Sylvie Lautru, Tilmann Weber, Andrew W. Truman, Rainer Breitling, Peter Kötter, Nikos C. Kyrpides, Stephanie Düsterhus, Christian Hertweck, Hideaki Oikawa, Sean F. Brady, Christopher T. Walsh, Adam C. Jones, Marcus A. Moore, Bradley S. Moore, Barrie Wilkinson, Simone M. Mantovani, Nathan A. Moss, Elizabeth E. Wyckoff, Emily P. Balskus, Kapil Tahlan, Fengan Yu, Monica Höfte, Jos M. Raaijmakers, Taifo Mahmud, Yit-Heng Chooi, Yi Tang, Andreas Bechthold, Douglas A. Mitchell, Joanne M. Willey, Helge B. Bode, John B. Biggins, Margherita Sosio, Yi-Qiang Cheng, Carmen Méndez, Leonard Kaysser, Joleen Masschelein, Daniel Krug, Federico Rosconi, Marnix H. Medema, Kaarina Sivonen, Tomohisa Kuzuyama, Mikko Metsä-Ketelä, Esther K. Schmitt, Carsten Kegler, Andriy Luzhetskyy, Gilles P. van Wezel, Bai Linquan, Kai Blin, Jens Nielsen, Bertrand Aigle, Amrita Pati, Harald Gross, Muriel Viaud, Pieter C. Dorrestein, Carla S. Jones, Michael A. Fischbach, Shelley M. Payne, Zhe Rui, Gerard D. Wright, Wen Liu, Alexey V. Melnik, Barry Scott, Brett A. Neilan, Nancy P. Keller, Rainer Borriss, Katrin Jungmann, Michalis Hadjithomas, Evi Stegmann, Daniel J. Edwards, F. Jerry Reen, Alexander Kristian Apel, Wolfgang Wohlleben, Michael J. Smanski, Leonard Katz, Fergal O'Gara, Eric J. N. Helfrich, Sergey B. Zotchev, Olivier Ploux, Arnold J. M. Driessen, Rolf Müller, Jean-Luc Pernodet, K. D. Entian, José A. Salas, Irene de Bruijn, Francisco Barona-Gómez, Jianhua Ju, Jon Clardy, Molecular Microbiology, Molecular Genetics, Jacobs University [Bremen], Microbial genomics and bioinformatics research group, Max Planck Institute for Marine Microbiology, Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Max-Planck-Gesellschaft, Atmospheric Chemistry Observations and Modeling Laboratory (ACOML), National Center for Atmospheric Research [Boulder] (NCAR), Department of Food and Environmental Sciences, Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Collaborative Mass Spectrometry Innovation Center, University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), Heilongjiang Institute of Science and Technology, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Merck Stiftungsprofessur fûr Molekulare Biotechnologie Fachbereich Biowissenscharten, Goethe-University Frankfurt am Main, Department of Opto-Mechatronics Engineering and Cogno-Mechatronics Engineering, Pusan National University, University of Liverpool, College of Computer Science and Technology [Zhejiang] (Zhejiang University), University of Florida [Gainesville] (UF), School of Management, University of Science and Technology of China [Hefei] (USTC), State Key Laboratory of Nuclear Physics and Technology (SKL-NPT), Peking University [Beijing], Massachusetts Institute of Technology (MIT), Memorial Sloane Kettering Cancer Center [New York], South China Sea Institute of Oceanology, Chinese Academy of Sciences [Beijing] (CAS), Dynamique des Génomes et Adaptation Microbienne (DynAMic), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Institut für Biologie [Berlin] (IFB), Humboldt University Of Berlin, School of Biomolecular and Biomedical Science and Centre for Synthesis and Chemical Biology, University College Dublin [Dublin] (UCD), Parallélisme, Réseaux, Systèmes, Modélisation (PRISM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Skaggs School of Pharmacy and Pharmaceutical Sciences [San Diego], Grenoble Institut des Neurosciences (GIN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Pixyl Medical [Grenoble], Integrated Optical MicroSystems (IOMS), University of Twente-MESA+ Institute for Nanotechnology, 7Lehrstuhl für Mikrobielle Ökologie, Department für Grundlagen der Biowissenschaften, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Service Néphrologie Pédiatrique, CHU Strasbourg-Hôpital de Hautepierre [Strasbourg], Advanced Resources and Risk Technology, Laboratory of Phytopathology (K.C., H.S., B.A., M.H.), Universiteit Gent = Ghent University (UGENT), Trifork Aarhus C, Aalborg University [Denmark] (AAU), Centers for Disease Control and Prevention [Atlanta] (CDC), Centers for Disease Control and Prevention, Groupe d'Etude de la Matière Condensée (GEMAC), Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen [Groningen], DOE Joint Genome Institute [Walnut Creek], Microbiologie Moléculaire des Actinomycètes (ACTINO), Département Microbiologie (Dpt Microbio), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de génétique et microbiologie [Orsay] (IGM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratory of Gene Technology, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Joint Center for Structural Genomics (JCSG), Stanford University, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches et d'Applications Pédagogiques en Langues (CRAPEL), Université Nancy 2, Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley] (UC Berkeley), Polytechnic Institute of Leiria, NMR Laboratory, Université de Mons, Université de Mons (UMons), School of Biomedical Science, Curtin University [Perth], Planning and Transport Research Centre (PATREC)-Planning and Transport Research Centre (PATREC), BIOMERIT Research Centre, School of Microbiology, University College Cork (UCC), Department of Engineering Science, University of Oxford, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Friedel, Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratory of Phytopathology, Wageningen University and Research [Wageningen] (WUR), Department of Microbial Ecology, Netherlands Institute of Ecology, Department of Animal Production, Universidad de Córdoba = University of Córdoba [Córdoba], IMV Technologies, Gulliver (UMR 7083), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Institut für Chemie, Technical University of Berlin / Technische Universität Berlin (TU), Lipides - Nutrition - Cancer (U866) (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation de Dijon (ENSBANA), Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), DEPARTMENT OF CHEMISTRY, Durham University, Molekulare Ökologie, Joint Attosecond Science Laboratory, University of Ottawa and National Research Council, Department of Mechanical and Aerospace Engineering [Univ California Davis] (MAE - UC Davis), University of California [Davis] (UC Davis), University of Helsinki, University of California-University of California, Université de Lorraine (UL)-Institut National de la Recherche Agronomique (INRA), Humboldt-Universität zu Berlin, University of Twente [Netherlands]-MESA+ Institute for Nanotechnology, Technische Universität München [München] (TUM), Universiteit Gent = Ghent University [Belgium] (UGENT), Department of Biosystems, KU Leuven, Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), University of California [Berkeley], NMR and Molecular Imaging Laboratory [Mons], University of Mons [Belgium] (UMONS), University of Oxford [Oxford], Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Universidad de Córdoba [Cordoba], Technische Universität Berlin (TU), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bourgogne (UB)-Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation de Dijon (ENSBANA)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Department of Mechanical and Aerospace Engineering [Davis], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), University of Florida [Gainesville], Institut für Biologie, Humboldt Universität zu Berlin, Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF), Ghent University [Belgium] (UGENT), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Stanford University [Stanford], Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), NMR and Molecular Imaging Laboratory, Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS), Wageningen University and Research Centre [Wageningen] (WUR), Gulliver, ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), Technische Universität Berlin (TUB), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Max Planck Society (GERMANY), Max Planck Society (GERMANY)-Max Planck Society (GERMANY), Laboratoire Leprince-Ringuet ( LLR ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -École polytechnique ( X ) -Centre National de la Recherche Scientifique ( CNRS ), Atmospheric Chemistry Observations and Modeling Laboratory ( ACOML ), National Center for Atmospheric Research [Boulder] ( NCAR ), University of California [San Diego] ( UC San Diego ), Eidgenössische Technische Hochschule [Zürich] ( ETH Zürich ), University of Science and Technology of China [Hefei] ( USTC ), State Key Laboratory of Nuclear Physics and Technology ( SKL-NPT ), Massachusetts Institute of Technology ( MIT ), Memorial Sloan Kettering Cancer Center ( MSKCC ), Shanghai Ocean University, Dynamique des Génomes et Adaptation Microbienne ( DynAMic ), Institut National de la Recherche Agronomique ( INRA ) -Université de Lorraine ( UL ), University College Dublin [Dublin] ( UCD ), Parallélisme, Réseaux, Systèmes, Modélisation ( PRISM ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Centre National de la Recherche Scientifique ( CNRS ), Grenoble Institut des Neurosciences ( GIN ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -CHU Grenoble-Université Joseph Fourier - Grenoble 1 ( UJF ), Integrated Optical MicroSystems ( IOMS ), Technische Universität München [München] ( TUM ), Ghent University [Belgium] ( UGENT ), Aalborg University [Denmark] ( AAU ), Centers for Disease Control and Prevention [Atlanta] ( CDC ), Groupe d'Etude de la Matière Condensée ( GEMAC ), Groningen Biomolecular Sciences and Biotechnology Institute ( GBB ), Microbiologie Moléculaire des Actinomycètes ( ACTINO ), Département Microbiologie ( Dpt Microbio ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut de génétique et microbiologie [Orsay] ( IGM ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Joint Center for Structural Genomics ( JCSG ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Centre de Recherches et d'Applications Pédagogiques en Langues ( CRAPEL ), Space Sciences Laboratory [Berkeley] ( SSL ), Université de Mons ( UMons ), Planning and Transport Research Centre ( PATREC ) -Planning and Transport Research Centre ( PATREC ), University College Cork ( UCC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL ( ENSCP ) -Centre National de la Recherche Scientifique ( CNRS ), Wageningen University and Research Centre [Wageningen] ( WUR ), ESPCI ParisTech, Technische Universität Berlin ( TUB ), Lipides - Nutrition - Cancer (U866) ( LNC ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation de Dijon ( ENSBANA ), Centre de recherche Paul Pascal, CNRS, Université de Bordeaux ( UPR8641 ), Centre de Recherche Paul Pascal, CNRS, Université de Bordeaux, University Durham, University of California [Davis] ( UC Davis ), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), [GIN] Grenoble Institut des Neurosciences (GIN), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), and Saarland University, Building A4.1, 66123 Saarbruecken, Germany.
- Subjects
MESH : Protein Biosynthesis ,protein synthesis ,Operon ,MESH : Polysaccharides ,International Cooperation ,MESH: Plants ,plant ,Review ,MESH: Terpenes ,gene cluster ,polyketide ,data base ,genetic database ,Gene cluster ,acyltransferase ,Databases, Genetic ,MESH : Metagenome ,MESH : Genetic Markers ,genetics ,terpene ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,ComputingMilieux_MISCELLANEOUS ,MESH : Peptides ,MESH: Peptides ,biology ,fungus ,nonribosomal peptide synthesis ,Plants ,bacterium ,peptide ,priority journal ,MESH: Protein Biosynthesis ,Multigene Family ,MESH : Terpenes ,MESH: Computational Biology ,Genetic Markers ,MESH: Terminology as Topic ,Bioinformatics ,MESH : Multigene Family ,biological activity ,Article ,metagenome ,Alkaloids ,Manchester Institute of Biotechnology ,Terminology as Topic ,Bioinformatica ,MESH : Bacteria ,Peptide Biosynthesis ,MESH : Databases, Genetic ,Molecular Biology ,MESH : Fungi ,MESH: Polyketides ,standardization ,secondary metabolism ,[ SDV ] Life Sciences [q-bio] ,Bacteria ,ta1182 ,Computational Biology ,MESH : Terminology as Topic ,operon ,Laboratorium voor Phytopathologie ,MESH: International Cooperation ,gene function ,Metagenomics ,polysaccharide ,Laboratory of Phytopathology ,chemical structure ,Metagenome ,MESH: Multigene Family ,EPS ,biosynthesis ,Peptides ,MESH : Computational Biology ,MESH : International Cooperation ,[SDV]Life Sciences [q-bio] ,MESH: Genetic Markers ,information ,MESH : Alkaloids ,Synthetic biology ,MESH: Peptide Biosynthesis, Nucleic Acid-Independent ,database ,MESH: Databases, Genetic ,Genetics ,MESH : Polyketides ,MESH : Peptide Biosynthesis, Nucleic Acid-Independent ,ddc:540 ,standards ,Peptide Biosynthesis, Nucleic Acid-Independent ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,nomenclature ,genetic marker ,alkaloid derivative ,MESH: Fungi ,Biology ,MESH : Plants ,peptide derivative ,Polyketide ,MESH: Alkaloids ,Polysaccharides ,ddc:570 ,Life Science ,14. Life underwater ,Secondary metabolism ,enzyme specificity ,Gene ,nonhuman ,Terpenes ,Fungi ,nucleotide sequence ,Cell Biology ,MESH: Metagenome ,ResearchInstitutes_Networks_Beacons/manchester_institute_of_biotechnology ,alkaloid ,MESH: Bacteria ,MESH: Polysaccharides ,13. Climate action ,Polyketides ,Protein Biosynthesis ,synthetic biology ,metabolism - Abstract
M.H.M. was supported by a Rubicon fellowship of the Netherlands Organization for Scientific Research (NWO;Rubicon 825.13.001). The work of R.K. was supported by the European Union’s Seventh Framework Programme(Joint Call OCEAN.2011–2: Marine microbial diversity—new insights into marine ecosystems functioning and its biotechnological potential) under the grant agreement no.287589 (Micro B3). M.C. was supported by a Biotechnology and Biological Sciences Research Council (BBSRC)studentship (BB/J014478/1). The GSC is supported by funding from the Natural Environment Research Council(UK), the National Institute for Energy Ethics and Society(NIEeS; UK), the Gordon and Betty Moore Foundation,the National Science Foundation (NSF; US) and the US Department of Energy. The Manchester Synthetic Biology Research Centre, SYNBIOCHEM, is supported by BBSRC/Engineering and Physical Sciences Research Council(EPSRC) grant BB/M017702/1, Medema, M.H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J.B., Blin, K., De Bruijn, I., Chooi, Y.H., Claesen, J., Coates, R.C., Cruz-Morales, P., Duddela, S., Düsterhus, S., Edwards, D.J., Fewer, D.P., Garg, N., Geiger, C., Gomez-Escribano, J.P., Greule, A., Hadjithomas, M., Haines, A.S., Helfrich, E.J.N., Hillwig, M.L., Ishida, K., Jones, A.C., Jones, C.S., Jungmann, K., Kegler, C., Kim, H.U., Kötter, P., Krug, D., Masschelein, J., Melnik, A.V., Mantovani, S.M., Monroe, E.A., Moore, M., Moss, N., Nützmann, H.-W., Pan, G., Pati, A., Petras, D., Reen, F.J., Rosconi, F., Rui, Z., Tian, Z., Tobias, N.J., Tsunematsu, Y., Wiemann, P., Wyckoff, E., Yan, X., Yim, G., Yu, F., Xie, Y., Aigle, B., Apel, A.K., Balibar, C.J., Balskus, E.P., Barona-Gómez, F., Bechthold, A., Bode, H.B., Borriss, R., Brady, S.F., Brakhage, A.A., Caffrey, P., Cheng, Y.Q., Clardy, J., Cox, R.J., De Mot, R., Donadio, S., Donia, M.S., Van Der Donk, W.A., Dorrestein, P.C., Doyle, S., Driessen, A.J.M., Ehling-Schulz, M., Entian, K.-D., Fischbach, M.A., Gerwick, L., Gerwick, W.H., Gross, H., Gust, B., Hertweck, C., Höfte, M., Jensen, S.E., Ju, J., Katz, L., Kaysser, L., Klassen, J.L., Keller, N.P., Kormanec, J., Kuipers, O.P., Kuzuyama, T., Kyrpides, N.C., Kwon, H.-J., Lautru, S., Lavigne, R., Lee, C.Y., Linquan, B., Liu, X., Liu, W., Luzhetskyy, A., Mahmud, T., Mast, Y., Méndez, C., Metsä-Ketelä, M., Micklefield, J., Mitchell, D.A., Moore, B.S., Moreira, L.M., Müller, R., Neilan, B.A., Nett, M., Nielsen, J., O'Gara, F., Oikawa, H., Osbourn, A., Osburne, M.S., Ostash, B., Payne, S.M., Pernodet, J.-L., Petricek, M., Piel, J., Ploux, O., Raaijmakers, J.M., Salas, J.A., Schmitt, E.K., Scott, B., Seipke, R.F., Shen, B., Sherman, D.H., Sivonen, K., Smanski, M.J., Sosio, M., Stegmann, E., Süssmuth, R.D., Tahlan, K., Thomas, C.M., Tang, Y., Truman, A.W., Viaud, M., Walton, J.D., Walsh, C.T., Weber, T., Van Wezel, G.P., Wilkinson, B., Willey, J.M., Wohlleben, W., Wright, G.D., Ziemert, N., Zhang, C., Zotchev, S.B., Breitling, R., Takano, E., Glöckner, F.O.
- Published
- 2015
6. Neutral Loss Fragmentation Pattern Based Screening for Arginine-Rich Natural Products in Xenorhabdus and Photorhabdus
- Author
-
Christian Carsten Sachs, Michael Karas, Carsten Kegler, Sebastian W. Fuchs, Friederike I. Nollmann, and Helge B. Bode
- Subjects
Collision-induced dissociation ,Stereochemistry ,Xenorhabdus ,Arginine ,Mass spectrometry ,01 natural sciences ,Analytical Chemistry ,03 medical and health sciences ,chemistry.chemical_compound ,Fragmentation (mass spectrometry) ,Amino Acid Sequence ,Peptide sequence ,030304 developmental biology ,chemistry.chemical_classification ,Biological Products ,0303 health sciences ,Natural product ,biology ,010405 organic chemistry ,biology.organism_classification ,0104 chemical sciences ,Amino acid ,chemistry ,Biochemistry ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,Peptides ,Photorhabdus - Abstract
Although sharing a certain degree of structural uniformity, natural product classes exhibit variable functionalities such as different amino acid or acyl residues. During collision induced dissociation, some natural products exhibit a conserved fragmentation pattern close to the precursor ion. The observed fragments result from a shared set of neutral losses, creating a unique fragmentation pattern, which can be used as a fingerprint for members of these natural product classes. The culture supernatants of 69 strains of the entomopathogenic bacteria Photorhabdus and Xenorhabdus were analyzed by MALDI-MS(2), and a database comprising MS(2) data from each strain was established. This database was scanned for concordant fragmentation patterns of different compounds using a customized software, focusing on relative mass differences of the fragment ions to their precursor ion. A novel group of related natural products comprising 25 different arginine-rich peptides from 16 different strains was identified due to its characteristic neutral loss fragmentation pattern, and the structures of eight compounds were elucidated. Two biosynthesis gene clusters encoding nonribosomal peptide synthetases were identified, emphasizing the possibility to identify a group of structurally and biosynthetically related natural products based on their neutral loss fragmentation pattern.
- Published
- 2012
7. Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens
- Author
-
Sebastian C. Kinski, Alexander O. Brachmann, Ferdinand Kirchner, Helge B. Bode, Carsten Kegler, and Imke Schmitt
- Subjects
Bioengineering ,medicine.disease_cause ,01 natural sciences ,Applied Microbiology and Biotechnology ,Microbiology ,03 medical and health sciences ,chemistry.chemical_compound ,Bacterial Proteins ,Biosynthesis ,Photorhabdus luminescens ,Gene cluster ,Escherichia coli ,medicine ,Cloning, Molecular ,Promoter Regions, Genetic ,Gene ,Phylogeny ,Piperidones ,030304 developmental biology ,Cloning ,Genetics ,0303 health sciences ,biology ,010405 organic chemistry ,Bayes Theorem ,Pigments, Biological ,General Medicine ,biology.organism_classification ,3. Good health ,0104 chemical sciences ,chemistry ,Multigene Family ,Heterologous expression ,Photorhabdus ,Bacteria ,Biotechnology - Abstract
The production of the blue pigment indigoidine has been achieved in the entomopathogenic bacterium Photorhabdus luminescens by a promoter exchange and in Escherichia coli following heterologous expression of the biosynthesis gene indC. Moreover, genes involved in the regulation of this previously "silent" biosynthesis gene cluster have been identified in P. luminescens.
- Published
- 2012
- Full Text
- View/download PDF
8. Simple 'on-demand' production of bioactive natural products
- Author
-
Marcel Kaiser, Carsten Kegler, Rukayye Simsek, Qiuqin Zhou, Edna Bode, Helge B. Bode, Alexander O. Brachmann, Christina Dauth, and Petra A B Klemmt
- Subjects
Biochemistry ,Natural (archaeology) ,Xenorhabdus ,Cell Line ,chemistry.chemical_compound ,Biosynthesis ,On demand ,Animals ,Overproduction ,Promoter Regions, Genetic ,Molecular Biology ,Gene ,Simple (philosophy) ,Genetics ,Biological Products ,Natural product ,biology ,Organic Chemistry ,biology.organism_classification ,Arabinose ,Rats ,chemistry ,Multigene Family ,Molecular Medicine ,Genetic Engineering ,Photorhabdus ,Bacteria ,Plasmids - Abstract
Exchange of the native promoter to the arabinose-inducible promoter PBAD was established in entomopathogenic bacteria to silence and/or activate gene clusters involved in natural product biosynthesis. This allowed the "on-demand" production of GameXPeptides, xenoamicins, and the blue pigment indigoidine. The gene clusters for the novel "mevalagmapeptides" and the highly toxic xenorhabdins were identified by this approach.
- Published
- 2015
9. Establishment of a real-time PCR protocol for expression studies of secondary metabolite biosynthetic gene clusters in the G/C-rich myxobacterium Sorangium cellulosum So ce56
- Author
-
Carsten Kegler, Klaus Gerth, and Rolf Müller
- Subjects
Genetics ,Reverse Transcriptase Polymerase Chain Reaction ,Operon ,Gene Expression Profiling ,Bioengineering ,Gene Expression Regulation, Bacterial ,General Medicine ,Biology ,biology.organism_classification ,Applied Microbiology and Biotechnology ,Gene Expression Regulation, Enzymologic ,Reverse transcriptase ,Ligases ,Real-time polymerase chain reaction ,Transcription (biology) ,Gene cluster ,Macrolides ,Myxococcales ,RNA extraction ,Gene ,Biotechnology ,Sorangium cellulosum - Abstract
In the attempt to establish a reliable real-time PCR protocol for transcriptional analysis of secondary metabolism in Sorangium cellulosum strain So ce56, a RNA extraction method and a reverse transcription protocol was developed. In order to validate chivosazol or etnangien gene cluster transcripts as good candidates to develop the real-time PCR protocol, stability measurements of the transcripts were performed proving both transcripts to be very stable. The chivosazol biosynthetic gene cluster was taken as the test case to evaluate the special problems arising from the large size of the transcripts and the high G/C-content of the encoding DNA. A set of primer pairs targeting the presumed 90 kbp chivosazol transcript at different positions was employed. The production rate of chivosazol was compared to the transcription of the operon in time course experiments revealing that during the logarithmic growth phase transcription is maximally induced and levels out during the stationary phase. Some deviations in transcript numbers could be measured depending on the primer pair used, but cross-evaluation strengthened the notion that the measured numbers reflect the whole transcript quantities and the in vivo level. Finally, a putative promoter located between chiA and chiB was examined by using the developed real-time PCR protocol.
- Published
- 2006
10. Functional characterization of tobacco transcription factor TGA2.1
- Author
-
Carsten Kegler, Christiane Gatz, Ronald Scholz, Stefanie Krawczyk, and Ingo Lenk
- Subjects
0106 biological sciences ,Blotting, Western ,Mutant ,Electrophoretic Mobility Shift Assay ,Plant Science ,Biology ,01 natural sciences ,law.invention ,03 medical and health sciences ,chemistry.chemical_compound ,Gene Expression Regulation, Plant ,Auxin ,law ,Tobacco ,Genetics ,Transcription factor ,Plant Proteins ,030304 developmental biology ,Pathogenesis-related protein ,chemistry.chemical_classification ,0303 health sciences ,Binding Sites ,bZIP domain ,General Medicine ,Blotting, Northern ,Plants, Genetically Modified ,chemistry ,Biochemistry ,RNA, Plant ,Mutation ,Recombinant DNA ,Salicylic Acid ,Agronomy and Crop Science ,Salicylic acid ,DNA ,Protein Binding ,Transcription Factors ,010606 plant biology & botany - Abstract
Activation sequence-1 (as-1)-like regulatory cis elements mediate transcriptional activation in response to increased levels of plant signalling molecules auxin and salicylic acid (SA). Our earlier work has shown that tobacco cellular as-1-binding complex SARP (salicylic acid responsive protein) is primarily comprised of bZIP protein TGA2.2 and of minor amounts of a protein that cross-reacts with an antibody directed against related bZIP factor TGA2.1. As this protein was significantly smaller than recombinant TGA2.1, the origin of this protein had remained unresolved. Here we demonstrate that it corresponds to a distinct cleavage product of TGA2.1 generated during extract preparation. Overexpression of TGA2.1 led to increased levels of the TGA2.1/TGA2.2 heterodimer which was as effective with regard to enhancing the SA-inducibility of as-1 containing target gene Nt103 as corresponding amounts of the TGA2.2 homodimer. Thus, the TGA2.1 specific N-terminal domain, which had revealed transcriptional activation potential in yeast, did not show enhanced transcriptional activation in planta. TGA2.1 even had a negative effect on the SA-induced expression of the truncated CaMV 35S (-90) promoter that contains an isolated as-1-element upstream of the TATA-box. Plants expressing a TGA mutant deficient in DNA binding (TGA2.1trd) showed reduced levels of SA-inducible Nt103 expression, thus resembling plants expressing the analogous TGA2.2 derivative TGA2.2trd. In contrast to TGA2.2trd, TGA2.1trd did not reduce auxin-induced expression of Nt103 and SA-induced expression of pathogenesis related protein PR-1a, indicating that TGA2.1trd and TGA2.2trd differ in their capacity to outcompete regulatory factors involved in these regulatory pathways.
- Published
- 2004
11. Insect-specific production of new GameXPeptides in photorhabdus luminescens TTO1, widespread natural products in entomopathogenic bacteria
- Author
-
Geraldine Mulley, Marcel Kaiser, Christina Dauth, Helge B. Bode, Nicholas R. Waterfield, Friederike I. Nollmann, and Carsten Kegler
- Subjects
media_common.quotation_subject ,Heterologous ,Secondary Metabolism ,Insect ,Computational biology ,Moths ,Protein Engineering ,Biochemistry ,Natural (archaeology) ,Microbiology ,Bacterial Proteins ,Photorhabdus luminescens ,Animals ,Peptide Synthases ,Molecular Biology ,media_common ,biology ,Host (biology) ,Gene Expression Profiling ,Organic Chemistry ,biology.organism_classification ,Larva ,Multigene Family ,Mutation ,Molecular Medicine ,Heterologous expression ,Peptides ,Photorhabdus ,Bacteria - Abstract
Discovery of new natural products by heterologous expression reaches its limits, especially when specific building blocks are missing in the heterologous host or the production medium. Here, we describe the insect-specific production of the new GameXPeptides E-H (5-8) from Photorhabdus luminescens TTO1, which can be produced heterologously from expression of the GameXPeptide synthetase GxpS only upon supplementation of the production media with the missing building blocks, and thus must be regarded as the true natural products under natural conditions.
- Published
- 2014
12. Radical
- Author
-
Brandon I. Morinaka, Anna L. Vagstad, Maximilian J. Helf, Muriel Gugger, Carsten Kegler, Michael F. Freeman, Helge B. Bode, and Jxf6rn Piel
- Published
- 2014
13. Rapid Determination of the Amino Acid Configuration of Xenotetrapeptide
- Author
-
Helge B. Bode, Florian Fleischhacker, Friederike I. Nollmann, Edna Bode, Carsten Kegler, and Tilman Ahrendt
- Subjects
Stereochemistry ,Molecular Conformation ,Peptide ,Mass spectrometry ,01 natural sciences ,Biochemistry ,Mass Spectrometry ,Xenorhabdus ,03 medical and health sciences ,Coli strain ,Escherichia coli ,Molecular Biology ,Chromatography, High Pressure Liquid ,Transaminases ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Xenorhabdus nematophila ,Strain (chemistry) ,010405 organic chemistry ,Escherichia coli Proteins ,Organic Chemistry ,Absolute configuration ,Deuterium ,0104 chemical sciences ,Amino acid ,chemistry ,Molecular Medicine ,Hydrogen–deuterium exchange ,Peptides - Abstract
An E. coli strain with deletions in five transaminases (ΔaspC ΔilvE ΔtyrB ΔavtA ΔybfQ) was constructed to be unable to degrade several amino acids. This strain was used as an expression host for the analysis of the amino acid configuration of nonribosomally synthesized peptides, including the novel peptide "xenotetrapeptide" from Xenorhabdus nematophila, by using a combination of labeling experiments and mass spectrometry. Additionally, the number of D-amino acids in the produced peptide was assigned following simple cultivation of the expression strain in D2 O.
- Published
- 2014
- Full Text
- View/download PDF
14. Molecular characterisation of gibberellin 20-oxidases. Structure-function studies on recombinant enzymes and chimaeric proteins
- Author
-
Carsten Kegler, Peter Hedden, Theo Lange, Andrew L. Phillips, and Jan E. Graebe
- Subjects
0106 biological sciences ,Stereochemistry ,Physiology ,Multifunctional Enzymes ,Plant Science ,medicine.disease_cause ,01 natural sciences ,law.invention ,03 medical and health sciences ,chemistry.chemical_compound ,law ,Complementary DNA ,medicine ,Genetics ,Escherichia coli ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,biology ,Tricarboxylic acid ,Cell Biology ,General Medicine ,biology.organism_classification ,Enzyme ,chemistry ,Biochemistry ,Recombinant DNA ,DNA ,Cucurbita maxima ,010606 plant biology & botany - Abstract
Gibberellin (GA) 20-oxidases are multifunctional enzymes that catalyse reactions at an important branch point in the GA biosynthetic pathway. These enzymes oxidise the C-20 methyl group of a diterpene carboxylic acid precursor (e.g. GA 12 ) to form an alcohol (in our case GA 15 -open lactone) and an aldehyde (GA 24 ). The aldehyde is either oxidised to a tricarboxylic acid (GA 25 ) or, with loss of carbon-20 and lactonisation, to C 19 -GA (GA 9 ). This branching is interesting to study, because C 19 -GA derivatives function as plant hormones in different tissues, whereas the C 20 -GA tricarboxylic acids have no known function. We have constructed chimaeric proteins by combining a GA 20-oxidase from immature seeds of Cucurbita maxima L., which produces mainly C-20 carboxylic acids, with a 20-oxidase from Marah macrocarpus immature seeds, which forms predominantly C 19 -GAS. The cDNAs encoding these two very similar 20-oxidases were digested with restriction endonucleases Van91I, BclI, and BsaWI, and six chimaeric sequences were produced by recombination of the DNA fragments. The pCM1-construct was obtained by exchanging nt 303-809 of the Cucurbita cDNA with the homologous DNA from the Marah 20-oxidase. In pCM2, pCM3, pCM4, pCM5 and pCM6, nt 810-992, nt 993-end, nt 303-992, nt 810-end, and nt 311-end were exchanged, respectively. All constructs were cloned in a pUC 18 vector and functionally expressed in E. coli NM522 cells. GA 20-oxidase activity was detectable in cell-lysates from the transformed E. coli, but the extent and kind of conversion depended on the construct. Highest conversion of GA 12 was found with pCMl and pCM3, one-tenth of this conversion was observed with pCM5 and pCM6, and one-hundredth was obtained with the hybrid proteins from pCM2 and pCM4. With pCM2 and pCM4, neither the C 19 -end product, GA 9 , nor the C 20 -end product, GA 25 , was formed. However, after transformation with constructs pCM1, pCM3, pCM5 or pCM6, GA 9 accounted for 30, 40, 60 and 90%, respectively, of the end products formed. Thus, the segments originating from M. macrocarpus conferred upon the chimaeric proteins an increasing ability to direct the biosynthetic flow into C 19 -GAs in this order. Although GA24 is the immediate precursor, much less end products were formed by using this substrate.
- Published
- 1997
15. Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum
- Author
-
Ludovic Delage, Diana Wischang, Jennifer Herrmann, Hans Vilter, Lutz Viehweger, Fanny Gaillard, Matthias Altmeyer, Jens Hartung, Heiko Schulz, Rolf Müller, Carsten Kegler, Madlen Radlow, and Catherine Leblanc
- Subjects
Bromides ,Models, Molecular ,Halogenation ,Stereochemistry ,Protein Conformation ,Molecular Sequence Data ,chemistry.chemical_element ,Biochemistry ,chemistry.chemical_compound ,Bromide ,Drug Discovery ,Metalloprotein ,Organic chemistry ,Reactivity (chemistry) ,Amino Acid Sequence ,Cloning, Molecular ,Molecular Biology ,Ascophyllum ,Bromoperoxidase ,chemistry.chemical_classification ,Bromine ,biology ,Organic Chemistry ,biology.organism_classification ,Protein tertiary structure ,chemistry ,Peroxidases ,biology.protein ,Vanadates ,Oxidation-Reduction ,Sequence Alignment - Abstract
The sequence of bromoperoxidase II from the brown alga Ascophyllum nodosum was determined from a full length cloned cDNA, obtained from a tandem mass spectrometry RT-PCR-approach. The clone encodes a protein composed of 641 amino-acids, which provides a mature 67.4 kDa-bromoperoxidase II-protein (620 amino-acids). Based on 43% sequence homology with the previously characterized bromoperoxidase I from A. nodosum, a tertiary structure was modeled for the bromoperoxidase II. The structural model was refined on the basis of results from gel filtration and vanadate-binding studies, showing that the bromoperoxidase II is a hexameric metalloprotein, which binds 0.5 equivalents of vanadate as cofactor per 67.4 kDa-subunit, for catalyzing oxidation of bromide by hydrogen peroxide in a bi-bi-ping-pong mechanism (k(cat) = 153 s(-1), 22 °C, pH 5.9). Bromide thereby is converted into a bromoelectrophile of reactivity similar to molecular bromine, based on competition kinetic data on phenol bromination and correlation analysis. Reactivity provided by the bromoperoxidase II mimics biosynthesis of methyl 4-bromopyrrole-2-carboxylate, a natural product isolated from the marine sponge Axinella tenuidigitata.
- Published
- 2012
16. Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry
- Author
-
Daniela Reimer, Helge B. Bode, Carsten Kegler, Alexander O. Brachmann, Ferdinand Kirchner, Sebastian W. Fuchs, Christina Dauth, Peter Grün, and Wolfram Lorenzen
- Subjects
Magnetic Resonance Spectroscopy ,Peptide ,Xenorhabdus ,Stereoisomerism ,010402 general chemistry ,Mass spectrometry ,01 natural sciences ,Peptides, Cyclic ,Catalysis ,Mass Spectrometry ,Isotopic labeling ,chemistry.chemical_classification ,Biological Products ,Chromatography ,biology ,010405 organic chemistry ,Organic Chemistry ,Absolute configuration ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,biology.organism_classification ,0104 chemical sciences ,chemistry ,Isotope Labeling ,Stable Isotope Labeling ,Peptides - Abstract
Structure elucidation of natural products including the absolute configuration is a complex task that involves different analytical methods like mass spectrometry, NMR spectroscopy, and chemical derivation, which are usually performed after the isolation of the compound of interest. Here, a combination of stable isotope labeling of Photorhabdus and Xenorhabdus strains and their transaminase mutants followed by detailed MS analysis enabled the structure elucidation of novel cyclopeptides named GameXPeptides including their absolute configuration in crude extracts without their actual isolation.
- Published
- 2011
17. Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus
- Author
-
Rolf Müller, Carsten Kegler, Matthias Altmeyer, Helge B. Bode, Gertrud Schwär, Mitchell Singer, Ivy R. Jose, and Michael W. Ring
- Subjects
Hydroxymethylglutaryl-CoA Synthase ,Proteomics ,Myxococcus xanthus ,Operon ,Mutant ,Biology ,Biochemistry ,Decarboxylation ,3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) ,chemistry.chemical_compound ,Biosynthesis ,Myxobacteria ,Leucine ,Molecular Biology ,Gene ,Oligonucleotide Array Sequence Analysis ,Terpenes ,Gene Expression Profiling ,Organic Chemistry ,biology.organism_classification ,Up-Regulation ,Phenotype ,chemistry ,Genes, Bacterial ,Mutation ,Alternative complement pathway ,Biocatalysis ,Molecular Medicine ,Acyl Coenzyme A ,Oxidation-Reduction - Abstract
Isovaleryl-CoA (IV-CoA) is usually derived from the degradation of leucine by using the Bkd (branched-chain keto acid dehydrogenase) complex. We have previously identified an alternative pathway for IV-CoA formation in myxobacteria that branches from the well-known mevalonate-dependent isoprenoid biosynthesis pathway. We identified 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (MvaS) to be involved in this pathway in Myxococcus xanthus, which is induced in mutants with impaired leucine degradation (e.g., bkd(-)) or during myxobacterial fruiting-body formation. Here, we show that the proteins required for leucine degradation are also involved in the alternative IV-CoA biosynthesis pathway through the efficient catalysis of the reverse reactions. Moreover, we conducted a global gene-expression experiment and compared vegetative wild-type cells with bkd mutants, and identified a five-gene operon that is highly up-regulated in bkd mutants and contains mvaS and other genes that are directly involved in the alternative pathway. Based on our experiments, we assigned roles to the genes required for the formation of IV-CoA from HMG-CoA. Additionally, several genes involved in outer-membrane biosynthesis and a plethora of genes encoding regulatory proteins were decreased in expression levels in the bkd(-) mutant; this explains the complex phenotype of bkd mutants including a lack of adhesion in developmental submerse culture.
- Published
- 2008
18. Complete Genome Sequence of the Myxobacterium Sorangium Cellulosum
- Author
-
Christoph Wittmann, Matthias Altmeyer, Günter Raddatz, Rolf Müller, Stefan Beyer, Edna Bode, Alexander Goesmann, Lotte Jelsbak, Klaus Gerth, Christian Rückert, Michelle Merai, Sascha Mormann, Sebastian Konietzny, Garret Suen, Maren Kopp, Roy D. Welch, José Muñoz-Dorado, Tina Knauber, Alfred Pühler, Olaf Kaiser, Aysel Alici, Lars Jelsbak, Lars Gaigalat, Sabrina D. Doss, Bukhard Linke, Frank Gross, Carolin Groeger, Thomas Bekel, Susanne Wilhelm, Stephan C. Schuster, Florenz Sasse, Susanne Schneiker, Yasser A. Elnakady, Folker Meyer, Jörn Kalinowski, Frank Rosenau, Christoph J. Bolten, Carsten Kegler, Helmut Blöcker, Kira J. Weissman, Shwan Rachid, Gregory J. Velicer, Bettina Frank, Lutz Krause, David E. Whitworth, Silke C. Wenzel, Frank-Jörg Vorhölter, Jomuna V. Choudhuri, Silke Pradella, Juana Pérez, Daniel Krug, Olena Perlova, Daniela Bartels, Taifo Mahmud, Alice C. McHardy, Helge B. Bode, Anke Treuner-Lange, Maren Scharfe, and Rosa Martínez-Arias
- Subjects
Genetics ,Whole genome sequencing ,TP ,biology ,Base Sequence ,Molecular Sequence Data ,Biomedical Engineering ,Bioengineering ,Bacterial genome size ,Sequence Analysis, DNA ,biology.organism_classification ,Applied Microbiology and Biotechnology ,Genome ,Myxobacteria ,Molecular Medicine ,Myxococcales ,Secondary metabolism ,Myxococcus xanthus ,Genome, Bacterial ,Phylogeny ,Synteny ,Sorangium cellulosum ,Biotechnology - Abstract
The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strain's complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase-like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.
- Published
- 2007
19. Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters
- Author
-
Carsten Kegler, Ricarda Niggeweg, Corinna Thurow, and Christiane Gatz
- Subjects
0106 biological sciences ,Time Factors ,Transcription, Genetic ,Blotting, Western ,01 natural sciences ,Biochemistry ,DNA-binding protein ,03 medical and health sciences ,chemistry.chemical_compound ,Transcription (biology) ,Gene Expression Regulation, Plant ,Gene expression ,Tobacco ,Escherichia coli ,Promoter Regions, Genetic ,Molecular Biology ,Transcription factor ,Alleles ,Cells, Cultured ,030304 developmental biology ,Genes, Dominant ,Glucuronidase ,Plant Proteins ,Regulation of gene expression ,Cell Nucleus ,0303 health sciences ,biology ,Indoleacetic Acids ,Promoter ,Cell Biology ,biology.organism_classification ,Blotting, Northern ,Plants, Genetically Modified ,Molecular biology ,Recombinant Proteins ,Protein Structure, Tertiary ,DNA-Binding Proteins ,Plants, Toxic ,Basic-Leucine Zipper Transcription Factors ,chemistry ,Gene Expression Regulation ,Protein Biosynthesis ,Mutation ,Cauliflower mosaic virus ,Salicylic Acid ,Salicylic acid ,010606 plant biology & botany ,Transcription Factors - Abstract
In higher plants, activating sequence-1 (as-1) of the cauliflower mosaic virus 35 S promoter mediates both salicylic acid (SA)- and auxin-inducible transcriptional activation. Originally found in promoters of several viral and bacterial plant pathogens, as-1-like elements are also functional elements of plant promoters activated in the course of a defense response upon pathogen attack. Nuclear as-1-binding factor (ASF-1) and cellular salicylic acid response protein (SARP) bind specifically to as-1. Four different tobacco bZIP transcription factors (TGA1a, PG13, TGA2.1, and TGA2.2) are potential components of either ASF-1 or SARP. Here we show that ASF-1 and SARP are very similar in their composition. TGA2.2 is a major component of either complex, as shown by supershift analysis and Western blot analysis of DNA affinity-purified SARP. Minor amounts of a protein immunologically related to TGA2.1 were detected, whereas TGA1a was not detectable. Overexpression of either TGA2.2 or a dominant negative TGA2.2 mutant affected both SA and auxin (2, 4D) inducibility of various target promoters encoding as-1-like elements, albeit to different extents. This indicates that TGA2.2 is a component of the enhancosome assembling on these target promoters, both under elevated SA and 2,4D concentrations. However, the effect of altered TGA2.2 levels on gene expression was more pronounced upon SA treatment than upon 2,4D treatment.
- Published
- 2000
20. Enhancer Binding Proteins Act as Hetero-oligomers and Link Secondary Metabolite Production to Myxococcal Development, Motility, and Predation
- Author
-
Rolf Müller, Carsten Volz, and Carsten Kegler
- Subjects
Myxococcus xanthus ,Cellular differentiation ,Clinical Biochemistry ,Molecular Sequence Data ,Motility ,Secondary metabolite ,Biochemistry ,Myxobacteria ,Bacterial Proteins ,Enhancer binding ,Depsipeptides ,Drug Discovery ,medicine ,Promoter Regions, Genetic ,Molecular Biology ,Pharmacology ,Regulation of gene expression ,Genetics ,biology ,Base Sequence ,General Medicine ,Gene Expression Regulation, Bacterial ,biology.organism_classification ,Cell biology ,DNA-Binding Proteins ,Regulon ,Enhancer Elements, Genetic ,Mutation ,Molecular Medicine ,Transcription Initiation Site ,medicine.drug - Abstract
SummaryMotile predatory Myxobacteria are producers of multiple secondary metabolites and, on starvation, undergo concerted cellular differentiation to form multicellular fruiting bodies. These abilities demand myxobacterial genomes to encode sophisticated regulatory networks that are not satisfactorily understood. Here, we present two bacterial enhancer binding proteins (bEBPs) encoded in Myxococcus xanthus acting as direct regulators of secondary metabolites intriguingly exhibiting activating and inhibitory effects. Elucidation of a regulon for each bEBP enabled us to unravel their role in myxococcal development, predation, and motility. Interestingly, both bEBPs are able to interact by forming a hetero-oligomeric complex. Our findings represent an alternative mode of operation of bEBPs, which are currently thought to enhance promoter activity by acting as homo-oligomers. Furthermore, a direct link between secondary metabolite gene expression and predation, motility, and cellular development could be shown for the first time.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.