1. The All-Sky Impact of the LMC on the Milky Way Circumgalactic Medium
- Author
-
Carr, Christopher, Bryan, Greg L., Garavito-Camargo, Nicolás, Besla, Gurtina, Setton, David J., and Johnston, Kathryn V.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The first infall of the LMC into the Milky Way (MW) represents a large and recent disruption to the MW circumgalactic medium (CGM). In this work, we use idealized, hydrodynamical simulations of a MW-like CGM embedded in a live dark matter halo with an infalling LMC-like satellite initialized with its own CGM to understand how the encounter is shaping the global physical and kinematic properties of the MW CGM. First, we find that the LMC sources order-unity enhancements in MW CGM density, temperature, and pressure from a $\mathcal{M} \approx 2$ shock from the supersonic CGM-CGM collision, extending from the LMC to beyond $\sim R_{\rm 200, MW}$, enhancing column densities, X-ray brightness, the thermal Sunyaev-Zeldovich (tSZ) distortion, and potentially synchrotron emission from cosmic rays over large angular scales across the Southern Hemisphere. Second, the MW's reflex motion relative to its outer halo produces a dipole in CGM radial velocities, with $v_{\rm R} \pm 30-50$ km/s at $R > 50$ kpc in the Northern/Southern hemispheres respectively, consistent with measurements in the stellar halo. Finally, ram pressure strips most of the LMC CGM gas by the present day, leaving $\sim 10^{8-9} M_{\odot}$ of warm, ionized gas along the past orbit of the LMC moving at high radial and/or tangential velocities $\sim 50-100$ kpc from the MW. Massive satellites like the LMC leave their mark on the CGM structure of their host galaxies, and signatures from this interaction may manifest in key all-sky observables of the CGM of the MW and other massive galaxies., Comment: Submitted to ApJ. 22 pages, 15 Figures. Comments welcomed
- Published
- 2024