Nathalie Charbonnel, Anne Loiseau, Alexandre Dehne-Garcia, Emilie Bard, Muriel Vayssier-Taussat, Carine Brouat, Jean-François Cosson, Lucie Tamisier, Maria Razzauti, Maria Bernard, Maxime Galan, Caroline Tatard, Hélène Vignes, Galan, Maxime, Cosson, Jean-Francois, Bik, Holly, Centre de Biologie pour la Gestion des Populations (UMR CBGP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Unité de Recherche d'Épidémiologie Animale (UR EpiA), Institut National de la Recherche Agronomique (INRA), Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Biologie moléculaire et immunologie parasitaires et fongiques (BIPAR), École nationale vétérinaire - Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA)-Laboratoire de santé animale, sites de Maisons-Alfort et de Dozulé, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), New York University [New York] (NYU), NYU System (NYU), Agence Nationale de la Recherche (ANR) (ENEMI ANR-11-JSV7-0006, Institut National de la Recherche Agronomique (INRA) (MEM Patho-ID)., European Project: 267196,EC:FP7:PEOPLE,FP7-PEOPLE-2010-COFUND,AGREENSKILLS(2012), Unité de recherche d'Épidémiologie Animale (UEA), Laboratoire de santé animale, sites de Maisons-Alfort et de Dozulé, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Institut National de la Recherche Agronomique (INRA)-École nationale vétérinaire d'Alfort (ENVA)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Génétique et Amélioration des Fruits et Légumes (GAFL), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École nationale vétérinaire - Alfort (ENVA)-Laboratoire de santé animale, sites de Maisons-Alfort et de Normandie, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and École nationale vétérinaire - Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA)-Laboratoire de santé animale, sites de Maisons-Alfort et de Normandie
Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses., The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis, and 221 Mastomys erythroleucus, collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia. Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial pathogens without requiring assumptions about their presence in the samples. This approach is therefore particularly suitable to continuous pathogen surveillance in the context of disease-monitoring programs. IMPORTANCE Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses.