8 results on '"Caroline Perdu"'
Search Results
2. Molecular characterization of the missing electron pathways for butanol synthesis in Clostridium acetobutylicum
- Author
-
Céline Foulquier, Antoine Rivière, Mathieu Heulot, Suzanna Dos Reis, Caroline Perdu, Laurence Girbal, Mailys Pinault, Simon Dusséaux, Minyeong Yoo, Philippe Soucaille, Isabelle Meynial-Salles, Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Nottingham, UK (UON), ANR acetoH2 PNRB 2006 ANR Bio6 BioE-001, ANR-08-BIOE-0012,BioButaFuel,Bioconversion d'hydrolysat de lignocellulose en Butanol, biocarburant de nouvelle génération de haute efficacité, à haut titre et rendement(2008), and ANR-14-CE05-0019,cellutanol,construction d'une souche d'E. coli à cellulosomes pour la conversion de la cellulose en butanol(2014)
- Subjects
Clostridium ,Multidisciplinary ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,[SDV]Life Sciences [q-bio] ,Butanols ,General Physics and Astronomy ,Electrons ,General Chemistry ,NAD ,General Biochemistry, Genetics and Molecular Biology ,Ferredoxin-NADP Reductase ,Fermentation ,Ferredoxins ,Clostridium acetobutylicum ,Oxidoreductases ,NADP - Abstract
International audience; Ferredoxin-NAD(P) + oxidoreductases are important enzymes for redox balancing in n-butanol production by Clostridium acetobutylicum, but the encoding genes remain unknown. Here, the authors identify the long sought-after genes and increase n-butanol production by optimizing the levels of the two enzymes.Clostridium acetobutylicum is a promising biocatalyst for the renewable production of n-butanol. Several metabolic strategies have already been developed to increase butanol yields, most often based on carbon pathway redirection. However, it has previously demonstrated that the activities of both ferredoxin-NADP(+) reductase and ferredoxin-NAD(+) reductase, whose encoding genes remain unknown, are necessary to produce the NADPH and the extra NADH needed for butanol synthesis under solventogenic conditions. Here, we purify, identify and partially characterize the proteins responsible for both activities and demonstrate the involvement of the identified enzymes in butanol synthesis through a reverse genetic approach. We further demonstrate the yield of butanol formation is limited by the level of expression of CA_C0764, the ferredoxin-NADP(+) reductase encoding gene and the bcd operon, encoding a ferredoxin-NAD(+) reductase. The integration of these enzymes into metabolic engineering strategies introduces opportunities for developing a homobutanologenic C. acetobutylicum strain.
- Published
- 2021
- Full Text
- View/download PDF
3. The PopN gate-keeper complex acts on the ATPase PscN to regulate the T3SS secretion switch from early to middle substrates in Pseudomonas aeruginosa
- Author
-
Michel Ragno, Charles M. Stopford, Eric Faudry, Arne Rietsch, Alexandra Kraut, Caroline Perdu, Bakhos Jneid, Tuan Dung Ngo, Yohann Couté, Julia Novion Ducassou, Ina Attrée, Pathogenèse bactérienne et réponses cellulaires (PBRC), Centre National de la Recherche Scientifique (CNRS)-Biologie du Cancer et de l'Infection (BCI ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Etude de la dynamique des protéomes (EDyP ), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, ANR PRP1.4 AVIESAN T3SS, Association Vaincre la Mucoviscidose, Association Grégory Lemarchal, ANR-10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010), ANR-15-CE11-0018,HemoPseudo,Pneumonie hémorragique à Pseudomonas aeruginosa : étude de nouvelles stratégies de virulence(2015), ANR-10-INBS-0008,ProFI,Infrastructure Française de Protéomique(2010), and ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
- Subjects
Virulence Factors ,ATPase ,Microscale thermophoresis ,Type three secretion system ,Protein–protein interaction ,Substrate Specificity ,03 medical and health sciences ,0302 clinical medicine ,Bacterial Proteins ,Structural Biology ,Type III Secretion Systems ,Bacteria pathogenesis ,Secretion ,Protein Interaction Maps ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Molecular Biology ,030304 developmental biology ,Adenosine Triphosphatases ,0303 health sciences ,Protein-Protein interaction ,biology ,Mass spectrometry ,Chemistry ,Effector ,Type 3 Secretion System ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Cell biology ,Cytoplasm ,Chaperone (protein) ,Pseudomonas aeruginosa ,biology.protein ,030217 neurology & neurosurgery ,Molecular Chaperones - Abstract
International audience; Pseudomonas aeruginosa is an opportunistic bacterium of which the main virulence factor is the Type III Secretion System. The ATPase of this machinery, PscN (SctN), is thought to be localized at the base of the secretion apparatus and to participate in the recognition, chaperone dissociation and unfolding of exported T3SS proteins. In this work, a protein-protein interaction ELISA revealed the interaction of PscN with a wide range of exported T3SS proteins including the needle, translocator, gate-keeper and effector. These interactions were further confirmed by Microscale Thermophoresis that also indicated a preferential interaction of PscN with secreted proteins or protein-chaperone complex rather than with chaperones alone, in line with the release of the chaperones in the bacterial cytoplasm after the dissociation from their exported proteins. Moreover, we suggest a new role of the gate-keeper complex and the ATPase in the regulation of early substrates recognition by the T3SS. This finding sheds a new light on the mechanism of secretion switching from early to middle substrates in P. aeruginosa .
- Published
- 2020
- Full Text
- View/download PDF
4. The PopN gate-keeper complex acts on the ATPase PscN to regulate the T3SS secretion switch from early to middle substrates inPseudomonas aeruginosa
- Author
-
Tuan Dung Ngo, Bakhos Jneid, Alexandra Kraut, Charles M. Stopford, Eric Faudry, Michel Ragno, Arne Rietsch, Caroline Perdu, Ina Attrée, Yohann Couté, and Julia Novion Ducassou
- Subjects
0303 health sciences ,biology ,030306 microbiology ,Microscale thermophoresis ,Effector ,Chemistry ,ATPase ,Type three secretion system ,Cell biology ,03 medical and health sciences ,Secretory protein ,Cytoplasm ,Chaperone (protein) ,biology.protein ,Secretion ,030304 developmental biology - Abstract
Pseudomonas aeruginosais an opportunistic bacterium of which the main virulence factor is the Type III Secretion System. The ATPase of this machinery, PscN (SctN), is thought to be localized at the base of the secretion apparatus and to participate in the recognition, chaperone dissociation and unfolding of exported T3SS proteins. In this work, a protein-protein interaction ELISA revealed the interaction of PscN with a wide range of exported T3SS proteins including the needle, translocator, gate-keeper and effector. These interactions were further confirmed by Microscale Thermophoresis that also indicated a preferential interaction of PscN with secreted proteins or protein-chaperone complex rather than with chaperones alone, in line with the release of the chaperones in the bacterial cytoplasm after the dissociation from their exported proteins. Moreover, we suggest a new role of the gate-keeper complex and the ATPase in the regulation of early substrates recognition by the T3SS. This finding sheds a new light on the mechanism of secretion switching from early to middle substrates inP. aeruginosa.HighlightsT3SS substrates are secreted sequentially but information on the switches are missingInteraction of the T3SS ATPase with secreted proteins were investigated by different approachesMicroscale Thermophoresis revealed a lower affinity for chaperones alone compared to complexesThe Gate-keeper complex binds to the ATPase and increases its affinity for the needle complexA new role of the Gate-keeper complex is proposed, directly acting on the T3SS ATPase
- Published
- 2020
- Full Text
- View/download PDF
5. ExsB Is Required for Correct Assembly of the Pseudomonas aeruginosa Type III Secretion Apparatus in the Bacterial Membrane and Full Virulence In Vivo
- Author
-
Ariel J. Blocker, Stéphanie Bouillot, Caroline Perdu, Eric Faudry, Philippe Huber, Sylvie Elsen, Ina Attree, Pathogenèse bactérienne et réponses cellulaires (PBRC), Biologie du Cancer et de l'Infection (BCI ), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of Bristol [Bristol], IRTELIS Ph.D. program from CEA, and Faudry, Eric
- Subjects
Male ,Operon ,Virulence Factors ,Lipoproteins ,Immunology ,Virulence ,Biology ,medicine.disease_cause ,Microbiology ,Bacterial Proteins ,medicine ,Animals ,Humans ,Secretion ,Pseudomonas Infections ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Bacterial Secretion Systems ,[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Cells, Cultured ,Regulator gene ,Mice, Inbred BALB C ,Pseudomonas aeruginosa ,Endothelial Cells ,Membrane Proteins ,Molecular Pathogenesis ,Survival Analysis ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,3. Good health ,Cell biology ,Disease Models, Animal ,Infectious Diseases ,Membrane protein ,Host cell cytoplasm ,bacteria ,Parasitology ,Protein Multimerization ,[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Bacterial outer membrane - Abstract
Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa . Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon.
- Published
- 2015
- Full Text
- View/download PDF
6. Pore Formation by T3SS Translocators: Liposome Leakage Assay
- Author
-
Caroline Perdu, Eric Faudry, Ina Attree, Pathogenèse bactérienne et réponses cellulaires (PBRC), Biologie du Cancer et de l'Infection (BCI ), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0303 health sciences ,Liposome ,biology ,030302 biochemistry & molecular biology ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Transport protein ,Type three secretion system ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,03 medical and health sciences ,chemistry.chemical_compound ,Membrane ,Dextran ,chemistry ,Cytoplasm ,Chaperone (protein) ,biology.protein ,Biophysics ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Guanidine ,030304 developmental biology - Abstract
International audience; Gram-negative bacteria utilize a dedicated membrane-embedded apparatus, the type III secretion system (T3SS), to inject proteins into host cells. The passage of the proteins across the target membrane is accomplished by a proteinaceous pore-the translocon-formed within the host-cell cytoplasmic membrane. Translocators bound to their chaperones can be expressed in Escherichia coli and subsequently dissociated from the chaperone by guanidine treatment. The pore formation properties of the translocators can then be studied by an in-vitro liposome leakage assay. Sulforhodamine-B is encapsulated within lipid vesicles during liposome preparation. At high concentration, this fluorochrome exhibits self-quenching limiting fluorescence emission. Upon pore formation, liposome leakage leads to the dilution of Sulforhodamine-B in the medium and fluorescence emission increases. Alternatively, fluorochromes coupled to large dextran molecules can be encapsulated in order to estimate pore dimensions. Here we describe protein expression and purification, dye-liposome preparation, and leakage assay conditions.
- Published
- 2013
- Full Text
- View/download PDF
7. Pore formation by T3SS translocators: liposome leakage assay
- Author
-
Eric, Faudry, Caroline, Perdu, and Ina, Attrée
- Subjects
Protein Transport ,Spectrometry, Fluorescence ,Bacterial Proteins ,Liposomes ,Escherichia coli ,Membrane Transport Proteins ,Fluorescent Dyes - Abstract
Gram-negative bacteria utilize a dedicated membrane-embedded apparatus, the type III secretion system (T3SS), to inject proteins into host cells. The passage of the proteins across the target membrane is accomplished by a proteinaceous pore-the translocon-formed within the host-cell cytoplasmic membrane. Translocators bound to their chaperones can be expressed in Escherichia coli and subsequently dissociated from the chaperone by guanidine treatment. The pore formation properties of the translocators can then be studied by an in-vitro liposome leakage assay. Sulforhodamine-B is encapsulated within lipid vesicles during liposome preparation. At high concentration, this fluorochrome exhibits self-quenching limiting fluorescence emission. Upon pore formation, liposome leakage leads to the dilution of Sulforhodamine-B in the medium and fluorescence emission increases. Alternatively, fluorochromes coupled to large dextran molecules can be encapsulated in order to estimate pore dimensions. Here we describe protein expression and purification, dye-liposome preparation, and leakage assay conditions.
- Published
- 2013
8. Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa
- Author
-
Eric Faudry, Andréa Dessen, Viviana Job, Ina Attree, Thierry Izoré, Caroline Perdu, Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Biologie du Cancer et de l'Infection (BCI ), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Pathogénie bactérienne et réponses cellulaires, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,Protein Conformation ,Operon ,Lipoproteins ,Molecular Sequence Data ,Yersinia ,Crystallography, X-Ray ,Models, Biological ,Type three secretion system ,03 medical and health sciences ,Maltose-binding protein ,Bacterial Proteins ,Structural Biology ,Transcriptional regulation ,Amino Acid Sequence ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,Sequence Homology, Amino Acid ,biology ,030306 microbiology ,Membrane Transport Proteins ,biology.organism_classification ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Cell biology ,Biochemistry ,Cytoplasm ,Pseudomonas aeruginosa ,biology.protein ,Cell fractionation ,Bacterial outer membrane ,Sequence Alignment ,Bacterial Outer Membrane Proteins - Abstract
International audience; Pseudomonas aeruginosa is an opportunistic human pathogen that employs a finely tuned type III secretion system (T3SS) to inject toxins directly into the cytoplasm of target cells. ExsB is a 15.6-kDa protein encoded in a T3SS transcription regulation operon that displays high sequence similarity to YscW, a lipoprotein from Yersinia spp. whose genetic neighborhood also involves a transcriptional regulator, and has been shown to play a role in the stabilization of the outer membrane ring of the T3SS. Here, we show that ExsB is expressed in P. aeruginosa upon induction of the T3SS, and subcellular fractionation studies reveal that it is associated with the outer membrane. The high-resolution crystal structure of ExsB shows that it displays a compact β-sandwich fold with interdependent β-sheets. ExsB possesses a large patch of basic residues that could play a role in membrane recognition, and its structure is distinct from that of MxiM, a lipoprotein involved in secretin stabilization in Shigella, as well as from those of Pil lipoproteins involved in pilus biogenesis. These results reveal that small lipoproteins involved in formation of the outer membrane secretin ring display clear structural differences that may be related to the different functions they play in these systems.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.