30 results on '"Carole Laffont"'
Search Results
2. Bioactive Cytokinins Are Selectively Secreted by Sinorhizobium meliloti Nodulating and Nonnodulating Strains
- Author
-
Anna Kisiala, Carole Laffont, R. J. Neil Emery, and Florian Frugier
- Subjects
Microbiology ,QR1-502 ,Botany ,QK1-989 - Abstract
Bacteria present in the rhizosphere of plants often synthesize phytohormones, and these signals can consequently affect root system development. In legumes, plants adapt to nitrogen starvation by forming lateral roots as well as a new organ, the root nodule, following a symbiotic interaction with bacteria collectively referred to as rhizobia. As cytokinin (CK) phytohormones were shown to be necessary and sufficient to induce root nodule organogenesis, the relevance of CK production by symbiotic rhizobia was questioned. In this study, we analyzed quantitatively, by liquid chromatography-tandem mass spectrometry, the production of 25 forms of CK in nine rhizobia strains belonging to four different species. All bacterial strains were able to synthesize a mix of CK, and bioactive forms of CK, such as iP, were notably found to be secreted in bacterial culture supernatants. Use of a mutant affected in extracellular polysaccharide (EPS) production revealed a negative correlation of EPS production with the ability to secrete CK. In addition, analysis of a nonnodulating Sinorhizobium meliloti strain revealed a similar pattern of CK production and secretion when compared with a related nodulating strain. This indicates that bacterially produced CK are not sufficient to induce symbiotic nodulation.
- Published
- 2013
- Full Text
- View/download PDF
3. The CRE1 cytokinin pathway is differentially recruited depending on Medicago truncatula root environments and negatively regulates resistance to a pathogen.
- Author
-
Carole Laffont, Thomas Rey, Olivier André, Mara Novero, Théophile Kazmierczak, Frédéric Debellé, Paola Bonfante, Christophe Jacquet, and Florian Frugier
- Subjects
Medicine ,Science - Abstract
Cytokinins are phytohormones that regulate many developmental and environmental responses. The Medicago truncatula cytokinin receptor MtCRE1 (Cytokinin Response 1) is required for the nitrogen-fixing symbiosis with rhizobia. As several cytokinin signaling genes are modulated in roots depending on different biotic and abiotic conditions, we assessed potential involvement of this pathway in various root environmental responses. Phenotyping of cre1 mutant roots infected by the Gigaspora margarita arbuscular mycorrhizal (AM) symbiotic fungus, the Aphanomyces euteiches root oomycete, or subjected to an abiotic stress (salt), were carried out. Detailed histological analysis and quantification of cre1 mycorrhized roots did not reveal any detrimental phenotype, suggesting that MtCRE1 does not belong to the ancestral common symbiotic pathway shared by rhizobial and AM symbioses. cre1 mutants formed an increased number of emerged lateral roots compared to wild-type plants, a phenotype which was also observed under non-stressed conditions. In response to A. euteiches, cre1 mutants showed reduced disease symptoms and an increased plant survival rate, correlated to an enhanced formation of lateral roots, a feature previously linked to Aphanomyces resistance. Overall, we showed that the cytokinin CRE1 pathway is not only required for symbiotic nodule organogenesis but also affects both root development and resistance to abiotic and biotic environmental stresses.
- Published
- 2015
- Full Text
- View/download PDF
4. Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase.
- Author
-
Emeline Huault, Carole Laffont, Jiangqi Wen, Kirankumar S Mysore, Pascal Ratet, Gérard Duc, and Florian Frugier
- Subjects
Genetics ,QH426-470 - Abstract
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions.
- Published
- 2014
- Full Text
- View/download PDF
5. The Medicago SymCEP7 hormone increases nodule number via shoots without compromising lateral root number
- Author
-
Ariel Ivanovici, Carole Laffont, Estíbaliz Larrainzar, Neha Patel, Courtney S Winning, Han-Chung Lee, Nijat Imin, Florian Frugier, and Michael A Djordjevic
- Subjects
Physiology ,Genetics ,Plant Science - Abstract
Legumes acquire soil nutrients through nitrogen-fixing root nodules and lateral roots. To balance the costs and benefits of nodulation, legumes negatively control root nodule number by autoregulatory and hormonal pathways. How legumes simultaneously coordinate root nodule and lateral root development to procure nutrients remains poorly understood. In Medicago (Medicago truncatula), a subset of mature C-TERMINALLY ENCODED PEPTIDE (CEP) hormones can systemically promote nodule number, but all CEP hormones tested to date negatively regulate lateral root number. Here we showed that Medicago CEP7 produces a mature peptide, SymCEP7, that promotes nodulation from the shoot without compromising lateral root number. Rhizobial inoculation induced CEP7 in the susceptible root nodulation zone in a Nod factor-dependent manner, and, in contrast to other CEP genes, its transcription level was elevated in the ethylene signaling mutant sickle. Using mass spectrometry, fluorescence microscopy and expression analysis, we demonstrated that SymCEP7 activity requires the COMPACT ROOT ARCHITECTURE 2 receptor and activates the shoot-to-root systemic effector, miR2111. Shoot-applied SymCEP7 rapidly promoted nodule number in the pM to nM range at concentrations up to five orders of magnitude lower than effects mediated by root-applied SymCEP7. Shoot-applied SymCEP7 also promoted nodule number in White Clover (Trifolium repens) and Lotus (Lotus japonicus), which suggests that this biological function may be evolutionarily conserved. We propose that SymCEP7 acts in the Medicago shoot to counter balance the autoregulation pathways induced rapidly by rhizobia to enable nodulation without compromising lateral root growth, thus promoting the acquisition of nutrients other than nitrogen to support their growth.
- Published
- 2023
- Full Text
- View/download PDF
6. Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition
- Author
-
Sandrine Ruffel, Florian Frugier, Carole Laffont, Pierre Gautrat, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
0106 biological sciences ,0301 basic medicine ,Root nodule ,root development ,Nitrogen ,[SDV]Life Sciences [q-bio] ,chemistry.chemical_element ,Plant Science ,Biology ,Plant Root Nodulation ,Plant Roots ,01 natural sciences ,03 medical and health sciences ,Nutrient ,Nitrogen Fixation ,Botany ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,nitrate transport ,Symbiosis ,Legume ,ComputingMilieux_MISCELLANEOUS ,2. Zero hunger ,nitrogen fixing symbiotic nodule ,carbon ,food and beverages ,MESH: Nitrogen Fixation, Plant Root Nodulation, Plant Roots, Root Nodules, Plant Symbiosis ,Fabaceae ,legume ,15. Life on land ,systemic signaling ,nitrogen-fixing symbiotic nodule ,030104 developmental biology ,chemistry ,Nitrate transport ,Shoot ,Root Nodules, Plant ,010606 plant biology & botany ,Symbiotic bacteria - Abstract
International audience; Plant nutrient acquisition is tightly regulated by resource availability and metabolic needs, implying the existence of communication between roots and shoots to ensure their integration at the whole-plant level. Here, we focus on systemic signaling pathways controlling nitrogen (N) nutrition, achieved both by the root import of mineral N and, in legume plants, through atmospheric N fixation by symbiotic bacteria inside dedicated root nodules. We explore features conserved between systemic pathways repressing or enhancing symbiotic N fixation and the regulation of mineral N acquisition by roots, as well as their integration with other environmental factors, such as phosphate, light, and CO2 availability.
- Published
- 2021
- Full Text
- View/download PDF
7. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically
- Author
-
Pierre Gautrat, Michael A. Djordjevic, Florian Frugier, Ariel Ivanovici, Mathias Brault, Carole Laffont, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Australian National University (ANU), and Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
0106 biological sciences ,0301 basic medicine ,Root nodule ,Cytokinins ,[SDV]Life Sciences [q-bio] ,General Physics and Astronomy ,Peptides/chemistry ,Plant Roots/metabolism ,01 natural sciences ,Plant Root Nodulation ,Plant Roots ,Gene Expression Regulation, Plant ,Receptor ,lcsh:Science ,Promoter Regions, Genetic ,Rhizobial symbiosis ,Plant Proteins ,Regulation of gene expression ,Multidisciplinary ,biology ,Rhizobium/metabolism ,food and beverages ,Medicago truncatula ,Cell biology ,Root Nodules ,Root Nodules, Plant ,Rhizobium ,Cytokinins/metabolism ,Science ,Sinorhizobium meliloti/metabolism ,Protein Sorting Signals ,General Biochemistry, Genetics and Molecular Biology ,Article ,Rhizobia ,Promoter Regions ,03 medical and health sciences ,Genetic ,Transcription Factors/metabolism ,Binding site ,Symbiosis ,Transcription factor ,Gene ,Protein Sorting Signals/genetics ,fungi ,General Chemistry ,Plant ,biology.organism_classification ,030104 developmental biology ,Gene Expression Regulation ,Lotus/metabolism ,Lotus ,lcsh:Q ,Plant Root Nodulation/genetics ,Epidermis ,Plant sciences ,Peptides ,Protein Kinases ,010606 plant biology & botany ,Sinorhizobium meliloti ,Transcription Factors - Abstract
Legumes tightly regulate nodule number to balance the cost of supporting symbiotic rhizobia with the benefits of nitrogen fixation. C-terminally Encoded Peptides (CEPs) and CLAVATA3-like (CLE) peptides positively and negatively regulate nodulation, respectively, through independent systemic pathways, but how these regulations are coordinated remains unknown. Here, we show that rhizobia, Nod Factors, and cytokinins induce a symbiosis-specific CEP gene, MtCEP7, which positively regulates rhizobial infection. Via grafting and split root studies, we reveal that MtCEP7 increases nodule number systemically through the MtCRA2 receptor. MtCEP7 and MtCLE13 expression in rhizobia-inoculated roots rely on the MtCRE1 cytokinin receptor and on the MtNIN transcription factor. MtNIN binds and transactivates MtCEP7 and MtCLE13, and a NIN Binding Site (NBS) identified within the proximal MtCEP7 promoter is required for its symbiotic activation. Overall, these results demonstrate that a cytokinin-MtCRE1-MtNIN regulatory module coordinates the expression of two antagonistic, symbiosis-related, peptide hormones from different families to fine-tune nodule number., CLE and CEP peptides regulate rhizobial symbiosis in legumes to balance the benefits of nitrogen fixation with the metabolic costs of nodule production. Here Laffont et al. show that cytokinin and bacterial Nod factors induce Medicago CEP7 which acts antagonistically to CLE13 to fine-tune nodulation.
- Published
- 2020
- Full Text
- View/download PDF
8. Compact Root Architecture 2 Promotes Root Competence for Nodulation through the miR2111 Systemic Effector
- Author
-
Pierre Gautrat, Carole Laffont, Florian Frugier, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-16-CE20-0009,PSYCHE,Réponses systémiques des plantes aux changements environnementaux(2016), and Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
0301 basic medicine ,nitrogen-fixing nodule ,[SDV]Life Sciences [q-bio] ,Plant Root Nodulation ,General Biochemistry, Genetics and Molecular Biology ,Rhizobia ,[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics ,03 medical and health sciences ,rhizobium ,0302 clinical medicine ,SUNN ,Symbiosis ,AON ,Medicago truncatula ,autoregulation of nodulation ,Legume ,ComputingMilieux_MISCELLANEOUS ,Plant Proteins ,biology ,microRNA ,Effector ,fungi ,food and beverages ,biology.organism_classification ,systemic signaling ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,TML ,Cell biology ,MicroRNAs ,030104 developmental biology ,RNA, Plant ,Shoot ,Rhizobium ,CRA2 ,General Agricultural and Biological Sciences ,Root Nodules, Plant ,CEP peptides ,030217 neurology & neurosurgery ,Bacteria - Abstract
Nitrogen-deprived legume plants form new root organs, the nodules, following a symbiosis with nitrogen-fixing rhizobial bacteria [1]. Because this interaction is beneficial for the plant but has a high energetic cost, nodulation is tightly controlled by host plants through systemic pathways (acting at long distance) to promote or limit rhizobial infections and nodulation depending on earlier infections and on nitrogen availability [2]. In the Medicago truncatula model legume, CLE12 (Clavata3/Embryo surrounding region 12) and CLE13 signaling peptides produced in nodulated roots act in shoots through the SUNN (Super Numeric Nodule) receptor to negatively regulate nodulation and therefore autoregulate nodule number [3-5]. Conversely, CEP (C-terminally Encoded Peptide) signaling peptides produced in nitrogen-starved roots act in shoots through the CRA2 (Compact Root Architecture 2) receptor to promote nodulation already in the absence of rhizobia [6-9]. We show in this study that a downstream shoot-to-root signaling effector of these systemic pathways is the shoot-produced miR2111 microRNA [10] that negatively regulates TML1 (Too Much Love 1) and TML2 [11] transcripts accumulation in roots, ultimately promoting nodulation. Low nitrogen conditions and CEP1 signaling peptides induce in the absence of rhizobia the production of miR2111 depending on CRA2 activity in shoots, thus favoring root competence for nodulation. Together with the SUNN pathway negatively regulating the same miR2111 systemic effector when roots are nodulated, this allows a dynamic fine-tuning of the nodulation capacity of legume roots by nitrogen availability and rhizobial cues.
- Published
- 2020
- Full Text
- View/download PDF
9. MtNRLK1, a CLAVATA1-like leucine-rich repeat receptor-like kinase upregulated during nodulation in Medicago truncatula
- Author
-
Annick De Keyser, Christa Verplancke, Carole Laffont, Marcelle Holsters, Virginie Mortier, Justine Fromentin, Florian Frugier, Sofie Goormachtig, Carolien De Cuyper, Goormachtig, Sofie, Frugier, Florian, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Department of plant systems biology, Flanders Institute for Biotechnology, Universiteit Gent = Ghent University (UGENT), LabEx Saclay Plant Sciences-SPS project, Plant Phenotyping Pipeline-3P LIdEx project, IPS2 imaging facility, and Universiteit Gent = Ghent University [Belgium] (UGENT)
- Subjects
0106 biological sciences ,0301 basic medicine ,[SDV]Life Sciences [q-bio] ,lcsh:Medicine ,Plant Root Nodulation ,lateral root ,01 natural sciences ,Gene Expression Regulation, Plant ,Medicago ,cle peptides ,lcsh:Science ,Plant Proteins ,SEQUENCE ALIGNMENT ,Multidisciplinary ,biology ,SYMBIOTIC ASSOCIATIONS ,PLANT DEVELOPMENT ,food and beverages ,symbiotic associations ,Medicago truncatula ,CLE PEPTIDES ,Up-Regulation ,Cell biology ,sequence alignment ,plant development ,cell-cycle genes ,meristem maintenance ,systemic regulation ,nodule development ,organ development ,NODULE ,Receptors, Peptide ,Protein Serine-Threonine Kinases ,Leucine-rich repeat ,Article ,LATERAL ROOT ,ORGAN DEVELOPMENT ,Insertional mutagenesis ,DEVELOPMENT ,03 medical and health sciences ,Protein Domains ,CELL-CYCLE GENES ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,SYSTEMIC REGULATION ,MERISTEM MAINTENANCE ,Lateral root ,fungi ,lcsh:R ,Biology and Life Sciences ,Meristem maintenance ,Meristem ,biology.organism_classification ,030104 developmental biology ,lcsh:Q ,010606 plant biology & botany - Abstract
Peptides are signaling molecules regulating various aspects of plant development, including the balance between cell division and differentiation in different meristems. Among those, CLAVATA3/Embryo Surrounding Region-related (CLE-ESR) peptide activity depends on leucine-rich-repeat receptor-like-kinases (LRR-RLK) belonging to the subclass XI. In legume plants, such as the Medicago truncatula model, specific CLE peptides were shown to regulate root symbiotic nodulation depending on the LRR-RLK SUNN (Super Numeric Nodules). Amongst the ten M. truncatula LRR-RLK most closely related to SUNN, only one showed a nodule-induced expression, and was so-called MtNRLK1 (Nodule-induced Receptor-Like Kinase 1). MtNRLK1 expression is associated to root and nodule vasculature as well as to the proximal meristem and rhizobial infection zone in the nodule apex. Except for the root vasculature, the MtNRLK1 symbiotic expression pattern is different than the one of MtSUNN. Functional analyses either based on RNA interference, insertional mutagenesis, and overexpression of MtNRLK1 however failed to identify a significant nodulation phenotype, either regarding the number, size, organization or nitrogen fixation capacity of the symbiotic organs formed.
- Published
- 2018
- Full Text
- View/download PDF
10. Independent Regulation of Symbiotic Nodulation by the SUNN Negative and CRA2 Positive Systemic Pathways
- Author
-
Pierre Gautrat, Gérard Duc, Emeline Huault, Carole Laffont, Péter Kaló, Virginie Bourion, Florian Frugier, Gabriella Endre, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Biological Research Centre [Szeged] (BRC), Agricultural Biotechnology Institute, Agroécologie [Dijon], Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, French-Hungarian bilateral NKTH-ANR LEGUMICS [TET_10-1-2011-0397], ANR [2010-INTI3-1602-01], Hungarian National Research Fund [OTKA-105852], Paris Sud/Paris-Saclay University, LEGUMICS ANR project, Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, and Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
- Subjects
0106 biological sciences ,Physiology ,Mutant ,Plant Science ,Biology ,Plant Root Nodulation ,Plant Roots ,01 natural sciences ,Symbiosis ,Medicago truncatula ,Genetics ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,ComputingMilieux_MISCELLANEOUS ,Plant Proteins ,Kinase ,fungi ,Wild type ,food and beverages ,Articles ,biology.organism_classification ,Phenotype ,Cell biology ,Mutation ,Shoot ,Signal transduction ,Metabolic Networks and Pathways ,010606 plant biology & botany - Abstract
International audience; Plant systemic signaling pathways allow the integration and coordination of shoot and root organ metabolism and development at the whole-plant level depending on nutrient availability. In legumes, two systemic pathways have been reported in the Medicago truncatula model to regulate root nitrogen-fixing symbiotic nodulation. Both pathways involve leucine-rich repeat receptor-like kinases acting in shoots and proposed to perceive signaling peptides produced in roots depending on soil nutrient availability. In this study, we characterized in the M. truncatula Jemalong A17 genotype a mutant allelic series affecting the Compact Root Architecture2 (CRA2) receptor. These analyses revealed that this pathway acts systemically from shoots to positively regulate nodulation and is required for the activity of carboxyl-terminally encoded peptides (CEPs). In addition, we generated a double mutant to test genetic interactions of the CRA2 systemic pathway with the CLAVATA3/EMBRYO SURROUNDING REGION peptide (CLE)/Super Numeric Nodule (SUNN) receptor systemic pathway negatively regulating nodule number from shoots, which revealed an intermediate nodule number phenotype close to the wild type. Finally, we showed that the nitrate inhibition of nodule numbers was observed in cra2 mutants but not in sunn and cra2 sunn mutants. Overall, these results suggest that CEP/CRA2 and CLE/SUNN systemic pathways act independently from shoots to regulate nodule numbers.
- Published
- 2019
- Full Text
- View/download PDF
11. Gibberellins negatively regulate the development of Medicago truncatula root system
- Author
-
Camille Fonouni-Farde, Abdelhafid Bendahmane, Florian Frugier, Carole Laffont, Anouck Diet, Ambre Miassod, Halima Morin, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), Unité de recherche en génomique végétale (URGV), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), and Frugier, Florian
- Subjects
0301 basic medicine ,lcsh:Medicine ,Root system ,Plant Roots ,lateral root ,purl.org/becyt/ford/1 [https] ,chemistry.chemical_compound ,0302 clinical medicine ,Arabidopsis thaliana ,PLASTICITY ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,Plant Proteins ,GIBBERELLIN ,2. Zero hunger ,Multidisciplinary ,biology ,food and beverages ,organization ,Medicago truncatula ,Cell biology ,Plant species ,Gibberellin ,CIENCIAS NATURALES Y EXACTAS ,growth ,Meristem ,Article ,Ciencias Biológicas ,03 medical and health sciences ,Expansin ,ROOT ,ground tissue ,apical meristem ,cell-layers ,auxin ,paclobutrazol ,scarecrow ,inhibit ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,purl.org/becyt/ford/1.6 [https] ,Gibberellic acid ,Ciencias de las Plantas, Botánica ,lcsh:R ,fungi ,15. Life on land ,biology.organism_classification ,Gibberellins ,030104 developmental biology ,chemistry ,lcsh:Q ,DELLA ,030217 neurology & neurosurgery - Abstract
The root system displays a remarkable plasticity that enables plants to adapt to changing environmental conditions. This plasticity is tightly linked to the activity of root apical meristems (RAMs) and to the formation of lateral roots, both controlled by related hormonal crosstalks. In Arabidopsis thaliana, gibberellins (GAs) were shown to positively control RAM growth and the formation of lateral roots. However, we showed in Medicago truncatula that GAs negatively regulate root growth and RAM size as well as the number of lateral roots depending at least on the MtDELLA1 protein. By using confocal microscopy and molecular analyses, we showed that GAs primarily regulate RAM size by affecting cortical cell expansion and additionally negatively regulate a subset of cytokinin-induced root expansin encoding genes. Moreover, GAs reduce the number of cortical cell layers, resulting in the formation of both shorter and thinner roots. These results suggest contrasting effects of GA regulations on the root system architecture depending on plant species. Fil: Fonouni-farde, Camille Audrey. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Miassod, Ambre. Universite Paris Saclay; Francia Fil: Laffont, Carole. Universite Paris Saclay; Francia Fil: Morin, Halima. Universite Paris Saclay; Francia Fil: Bendahmane, Abdelhafid. Universite Paris Saclay; Francia Fil: Diet, Anouck. Universite Paris Saclay; Francia Fil: Frugier, Florian. Universite Paris Saclay; Francia
- Published
- 2019
- Full Text
- View/download PDF
12. Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula
- Author
-
Pierre Gautrat, Annick De Keyser, Sofie Goormachtig, Carole Laffont, Florian Frugier, Virginie Mortier, Justine Fromentin, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Universiteit Gent = Ghent University [Belgium] (UGENT), Center for Plant Systems Biology (PSB Center), Vlaams Instituut voor Biotechnologie [Ghent, Belgique] (VIB), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Labex 'Saclay Plant Science', Lidex 'Plant Phenotyping Pipeline' (3P), Research Foundation-Flanders : G.0350.04N, G.0066.07N : Paris-Saclay University, Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Plant Systems Biology, State University of Ghent, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Universiteit Gent = Ghent University (UGENT)
- Subjects
0106 biological sciences ,0301 basic medicine ,Physiology ,PROTEIN ,Plant Science ,01 natural sciences ,F-box protein ,Plant Root Nodulation ,Transcriptome ,Gene Expression Regulation, Plant ,SIGNALS ,Homeostasis ,ComputingMilieux_MISCELLANEOUS ,Plant Proteins ,SEQUENCE ALIGNMENT ,biology ,Autoregulation of nodulation (AON) ,food and beverages ,Research Papers ,Medicago truncatula ,Cell biology ,CLE PEPTIDES ,RECEPTOR KINASE ,REGULATES NODULE NUMBER ,Root Nodules, Plant ,Lotus japonicus ,Down-Regulation ,rhizobia ,Rhizobia ,03 medical and health sciences ,Gene silencing ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Gene ,PERCEPTION ,Nod factor perception (NFP) ,fungi ,Biology and Life Sciences ,Too Much Love (TML) ,biology.organism_classification ,symbiotic nodulation ,GENE ,TRANSPORT ,CLAVATA signaling peptide ,ROOT DEVELOPMENT ,030104 developmental biology ,Plant—Environment Interactions ,biology.protein ,Ectopic expression ,010606 plant biology & botany - Abstract
We provide new insights into the autoregulation of nodulation that allow us to better understand how the legume Medicago truncatula restricts further nodulation once enough nodules have been formed., The number of legume root nodules resulting from a symbiosis with rhizobia is tightly controlled by the plant. Certain members of the CLAVATA3/Embryo Surrounding Region (CLE) peptide family, specifically MtCLE12 and MtCLE13 in Medicago truncatula, act in the systemic autoregulation of nodulation (AON) pathway that negatively regulates the number of nodules. Little is known about the molecular pathways that operate downstream of the AON-related CLE peptides. Here, by means of a transcriptome analysis, we show that roots ectopically expressing MtCLE13 deregulate only a limited number of genes, including three down-regulated genes encoding lysin motif receptor-like kinases (LysM-RLKs), among which are the nodulation factor (NF) receptor NF Perception gene (NFP) and two up-regulated genes, MtTML1 and MtTML2, encoding Too Much Love (TML)-related Kelch-repeat containing F-box proteins. The observed deregulation was specific for the ectopic expression of nodulation-related MtCLE genes and depended on the Super Numeric Nodules (SUNN) AON RLK. Moreover, overexpression and silencing of these two MtTML genes demonstrated that they play a role in the negative regulation of nodule numbers. Hence, the identified MtTML genes are the functional counterpart of the Lotus japonicus TML gene shown to be central in the AON pathway. Additionally, we propose that the down-regulation of a subset of LysM-RLK-encoding genes, among which is NFP, might contribute to the restriction of further nodulation once the first nodules have been formed.
- Published
- 2019
- Full Text
- View/download PDF
13. Y MAP kinase-mediated negative regulation of symbiotic nodule formation in Medicago truncatula
- Author
-
Florian Frugier, Hojin Ryu, Carole Laffont, Ildoo Hwang, Department of Life Sciences, POSTECH Biotech Center, Korea University of Science and Technology, Department of Biology, Northern Arizona University [Flagstaff], Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), Université Paris-Saclay, Cooperative Research Program for Agriculture Science & Technolgy Development [PJ010953022016], Basic Science Research Program through the National Research Foundation of Korea [2015R1A4A1041869], CNRS, and Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,MAPK/ERK pathway ,MAP Kinase Signaling System ,[SDV]Life Sciences [q-bio] ,Biology ,Plant Root Nodulation ,Article ,Nod factor ,03 medical and health sciences ,Medicago truncatula ,Botany ,Molecular Biology ,Transcription factor ,Cell Biology ,General Medicine ,legume ,biology.organism_classification ,MAPK ,symbiosis ,Cell biology ,ERN1 ,030104 developmental biology ,nitrogen fixation ,Mitogen-activated protein kinase ,biology.protein ,Mitogen-Activated Protein Kinases ,Signal transduction ,Root Nodules, Plant ,signal transduction - Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medica-go truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.
- Published
- 2017
- Full Text
- View/download PDF
14. KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development
- Author
-
Carole Laffont, Florian Frugier, Giovanna Frugis, Elisabetta Di Giacomo, Francesca Sciarra, Maria Adelaide Iannelli, Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche, Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), CNR/CNRS bilateral project SYMKNOX, CNR/DiSBA Project/Commessa [AG.P01.003], Italian Ministry of Economy and Finance [191/2009], Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
- Subjects
0106 biological sciences ,0301 basic medicine ,Root nodule ,nodule ,Physiology ,organogenesis ,[SDV]Life Sciences [q-bio] ,Organogenesis ,Plant Science ,Biology ,Genes, Plant ,Models, Biological ,Plant Root Nodulation ,01 natural sciences ,03 medical and health sciences ,cytokinin ,Gene Expression Regulation, Plant ,RNA interference ,Botany ,Medicago truncatula ,Gene silencing ,Biomass ,Gene Silencing ,Symbiosis ,Transcription factor ,Gene ,Plant Proteins ,KNOX ,fungi ,homeobox ,food and beverages ,biology.organism_classification ,root ,Cell biology ,Phenotype ,030104 developmental biology ,Homeobox ,Root Nodules, Plant ,Plant Shoots ,EFD ,Transcription Factors ,010606 plant biology & botany - Abstract
We investigated the role of KNOX genes in legume root nodule organogenesis. Class 1 KNOX homeodomain transcription factors (TFs) are involved in plant shoot development and leaf shape diversity. Class 2 KNOX genes are less characterized, even though an antagonistic function relative to class 1 KNOXs was recently proposed. In silico expression data and further experimental validation identified in the Medicago truncatula model legume three class 2 KNOX genes, belonging to the KNAT3/4/5-like subclass (Mt KNAT3/4/5-like), as expressed during nodulation from early stages. RNA interference (RNAi)-mediated silencing and overexpression studies were used to unravel a function for KNOX TFs in nodule development. Mt KNAT3/4/5-like genes encoded four highly homologous proteins showing overlapping expression patterns during nodule organogenesis, suggesting functional redundancy. Simultaneous reduction of Mt KNAT3/4/5-like genes indeed led to an increased formation of fused nodule organs, and decreased the expression of the MtEFD (Ethylene response Factor required for nodule Differentiation) TF and its direct target MtRR4, a cytokinin response gene. Class 2 KNOX TFs therefore regulate legume nodule development, potentially through the MtEFD/MtRR4 cytokinin-related regulatory module, and may control nodule organ boundaries and shape like class 2 KNOX function in leaf development.
- Published
- 2017
- Full Text
- View/download PDF
15. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development
- Author
-
Michael A. Djordjevic, Ariel Ivanovici, Florian Frugier, Nijat Imin, Carole Laffont, Neha Patel, Nadiatul A. Mohd-Radzman, Jens Stougaard, Dugald Reid, BBSRC John Innes Centre, Partenaires INRAE, Australian National University (ANU), Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Aarhus University [Aarhus], Australian Research Council DP150104250 Australian National University International PhD Scholarship A.W. Howard Fellowship Grains Research and Development Corporation Hons scholarship Centre National de la Recherche Scientifique Agence Nationale de la Recherche Labex Saclay Plant Science Lidex 'Plant Phenotyping Pipeline' Endeavour fellowship, John Innes Centre [Norwich], and Biotechnology and Biological Sciences Research Council (BBSRC)
- Subjects
0106 biological sciences ,0301 basic medicine ,NODULATION ,Receptors, Peptide ,Physiology ,[SDV]Life Sciences [q-bio] ,Mutant ,Organogenesis ,MEDICAGO-TRUNCATULA-SUNN ,Plant Science ,GENE FAMILY ,01 natural sciences ,Plant Root Nodulation ,Plant Roots ,03 medical and health sciences ,Plant Growth Regulators ,Arabidopsis ,Botany ,Medicago truncatula ,Genetics ,KINASE ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Receptor ,RHIZOBIUM-TRIFOLII ,Plant Proteins ,biology ,Lateral root ,fungi ,food and beverages ,Articles ,Ethylenes ,biology.organism_classification ,ETHYLENE ,Cell biology ,CLE PEPTIDES ,TRANSDUCTION PATHWAY ,030104 developmental biology ,Phenotype ,ARABIDOPSIS-THALIANA ,Signal transduction ,AUXIN TRANSPORT ,010606 plant biology & botany ,Rhizobium - Abstract
International audience; C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways.
- Published
- 2016
- Full Text
- View/download PDF
16. Comparative Transcriptomic Analysis of Salt Adaptation in Roots of Contrasting Medicago truncatula Genotypes
- Author
-
Véronique Gruber, Jean-Laurent Ichanté, Axel de Zélicourt, Laura de Lorenzo, Benoit Alunni, Sandrine Imbeaud, Hervé Delacroix, Sandrine Blanchet, Carole Laffont, Mounawer Badri, Anouck Diet, Julie Plet, Esther M. González, Florian Frugier, Ons Zahaf, Martin Crespi, Ana Zabalza, Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Génomique Fonctionnelle des Tumeurs Solides (U1162), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de génétique moléculaire (CGM), Université Paris-Sud - Paris 11 (UP11), Laboratoire de physiologie cellulaire végétale ( LPCV ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut National de la Recherche Agronomique ( INRA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ), Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Genomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Paris Descartes - Paris 5 ( UPD5 ) -IFR105-Université Paris Diderot - Paris 7 ( UPD7 ), Centre de génétique moléculaire ( CGM ), and Université Paris-Sud - Paris 11 ( UP11 )
- Subjects
0106 biological sciences ,[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology ,MESH : Molecular Sequence Data ,MESH : Plant Roots ,MESH: Plant Roots ,MESH : Genotype ,Plant Science ,Sodium Chloride ,01 natural sciences ,Plant Roots ,Transcriptome ,MESH: Genotype ,Gene Expression Regulation, Plant ,MESH: Medicago truncatula ,MESH : Adaptation, Physiological ,Plant Proteins ,2. Zero hunger ,Abiotic component ,chemistry.chemical_classification ,0303 health sciences ,MESH: Plant Proteins ,food and beverages ,Adaptation, Physiological ,Medicago truncatula ,MESH : Sodium Chloride ,Soil salinity ,MESH: Sodium Chloride ,Genotype ,Molecular Sequence Data ,Biology ,03 medical and health sciences ,MESH: Gene Expression Profiling ,Auxin ,MESH : Plant Proteins ,Botany ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MESH: Gene Expression Regulation, Plant ,Gene ,Molecular Biology ,030304 developmental biology ,MESH: Molecular Sequence Data ,Abiotic stress ,MESH : Gene Expression Profiling ,MESH : Medicago truncatula ,Gene Expression Profiling ,fungi ,15. Life on land ,biology.organism_classification ,MESH: Adaptation, Physiological ,chemistry ,Adaptation ,MESH : Gene Expression Regulation, Plant ,010606 plant biology & botany - Abstract
International audience; Evolutionary diversity can be driven by the interaction of plants with different environments. Molecular bases involved in ecological adaptations to abiotic constraints can be explored using genomic tools. Legumes are major crops worldwide and soil salinity is a main stress affecting yield in these plants. We analyzed in the Medicago truncatula legume the root transcriptome of two genotypes having contrasting responses to salt stress: TN1.11, sampled in a salty Tunisian soil, and the reference Jemalong A17 genotype. TN1.11 plants show increased root growth under salt stress as well as a differential accumulation of sodium ions when compared to A17. Transcriptomic analysis revealed specific gene clusters preferentially regulated by salt in root apices of TN1.11, notably those related to the auxin pathway and to changes in histone variant isoforms. Many genes encoding transcription factors (TFs) were also differentially regulated between the two genotypes in response to salt. Among those selected for functional studies, overexpression in roots of the A17 genotype of the bHLH-type TF most differentially regulated between genotypes improved significantly root growth under salt stress. Despite the global complexity of the differential transcriptional responses, we propose that an increase in this bHLH TF expression may be linked to the adaptation of M. truncatula to saline soil environments.
- Published
- 2012
- Full Text
- View/download PDF
17. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence
- Author
-
Anouck Diet, Martin Crespi, Carole Laffont, Véronique Gruber, Ons Zahaf, Federico Ariel, Axel de Zélicourt, Jessica Marion, Florian Frugier, and Michaël Moison
- Subjects
0106 biological sciences ,Plant Science ,Root system ,Biology ,01 natural sciences ,03 medical and health sciences ,Symbiosis ,Botany ,Genetics ,medicine ,Amyloplast ,Lateral root formation ,Transcription factor ,030304 developmental biology ,2. Zero hunger ,0303 health sciences ,Abiotic stress ,fungi ,food and beverages ,Nodule (medicine) ,Cell Biology ,15. Life on land ,biology.organism_classification ,Medicago truncatula ,medicine.symptom ,010606 plant biology & botany - Abstract
Summary Legume crops related to the model plant Medicago truncatula can adapt their root architecture to environmental conditions, both by branching and by establishing a symbiosis with rhizobial bacteria to form nitrogen-fixing nodules. Soil salinity is a major abiotic stress affecting plant yield and root growth. Previous transcriptomic analyses identified several transcription factors linked to the M. truncatula response to salt stress in roots, including NAC (NAM/ATAF/CUC)-encoding genes. Over-expression of one of these transcription factors, MtNAC969, induced formation of a shorter and less-branched root system, whereas RNAi-mediated MtNAC969 inactivation promoted lateral root formation. The altered root system of over-expressing plants was able to maintain its growth under high salinity, and roots in which MtNAC969 was down-regulated showed improved growth under salt stress. Accordingly, expression of salt stress markers was decreased or induced in MtNAC969 over-expressing or RNAi roots, respectively, suggesting a repressive function for this transcription factor in the salt-stress response. Expression of MtNAC969 in central symbiotic nodule tissues was induced by nitrate treatment, and antagonistically affected by salt in roots and nodules, similarly to senescence markers. MtNAC969 RNAi nodules accumulated amyloplasts in the nitrogen-fixing zone, and were prematurely senescent. Therefore, the MtNAC969 transcription factor, which is differentially affected by environmental cues in root and nodules, participates in several pathways controlling adaptation of the M. truncatula root system to the environment.
- Published
- 2012
- Full Text
- View/download PDF
18. Flavonoids and auxin transport Inhibitors rescue symbiotic nodulation in the medicago truncatula cytokinin perception mutant cre1
- Author
-
Carole Laffont, Ulrike Mathesius, Jason Liang Pin Ng, Samira Hassan, Charles H. Hocart, Florian Frugier, Thy T. Truong, Australian National University (ANU), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Australian Research Council [FT100100669], and Saclay Plant Science 'Labex' in the F.F. laboratory
- Subjects
0106 biological sciences ,Cytokinins ,genetic structures ,[SDV]Life Sciences [q-bio] ,Plant Science ,Plant Root Nodulation ,Plant Roots ,01 natural sciences ,chemistry.chemical_compound ,Chalcones ,Plant Growth Regulators ,heterocyclic compounds ,Research Articles ,Plant Proteins ,chemistry.chemical_classification ,0303 health sciences ,biology ,Reverse Transcriptase Polymerase Chain Reaction ,food and beverages ,Plants, Genetically Modified ,Medicago truncatula ,Cell biology ,Flavanones ,Host-Pathogen Interactions ,Cytokinin ,Isoliquiritigenin ,Rhizobia ,03 medical and health sciences ,Auxin ,Triiodobenzoic Acids ,Botany ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Kaempferols ,Symbiosis ,030304 developmental biology ,Flavonoids ,Indoleacetic Acids ,fungi ,Biological Transport ,Cell Biology ,biology.organism_classification ,Transport inhibitor ,Microscopy, Fluorescence ,chemistry ,Mutation ,Polar auxin transport ,Basipetal auxin transport ,Sinorhizobium meliloti ,010606 plant biology & botany - Abstract
International audience; Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro-and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.
- Published
- 2015
- Full Text
- View/download PDF
19. Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase
- Author
-
Carole Laffont, Emeline Huault, Jiangqi Wen, Kirankumar S. Mysore, Florian Frugier, Gérard Duc, Pascal Ratet, Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, CNRS, ANR project 'LEGUMICS', EU [INRA-UMR1347], National Science Foundation Plant Genome Research Program [DBI-0703285, IOS-1127155], 'Infrastructures en Biologie Sante et Agronomie' (IBiSA), ANR [ANR-10-INSB-04-01, ANR-10-LABX-0040-SPS], 'Conseil General de l'Essonne', and Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)
- Subjects
Cancer Research ,Root nodule ,récepteur like kinase ,lcsh:QH426-470 ,[SDV]Life Sciences [q-bio] ,Meristem ,Plant Genetics ,Molecular Genetics ,Symbiosis ,Botany ,Genetics ,Arabidopsis thaliana ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Lateral root formation ,Molecular Biology ,Genetics (clinical) ,Ecology, Evolution, Behavior and Systematics ,Phylogeny ,ComputingMilieux_MISCELLANEOUS ,Plant Proteins ,2. Zero hunger ,Plant Growth and Development ,biology ,Lateral root ,fungi ,Receptor Protein-Tyrosine Kinases ,Biology and Life Sciences ,food and beverages ,medicago truncatula ,biology.organism_classification ,Medicago truncatula ,racine ,Species Interactions ,lcsh:Genetics ,Shoot ,Root Nodules, Plant ,symbiose ,Rhizobium ,Research Article ,Developmental Biology - Abstract
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions., Author Summary Despite the essential functions of roots in plant access to water and nutrients, root system architecture has not been directly considered for crop breeding improvement, but it is now considered key for a “second green revolution.” In this study, we aimed to decipher integrated molecular mechanisms coordinating lateral organ development in legume roots: lateral roots and nitrogen-fixing symbiotic nodules. The compact root architecture 2 (cra2) mutant form an increased number of lateral roots and a reduced number of symbiotic nitrogen-fixing nodules. This mutant is affected in a CLAVATA1-like Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that has not previously been linked to root development. Grafting experiments showed that CRA2 negatively controls lateral root formation and positively controls nodule development through local and systemic pathways, respectively. Overall, our results can be integrated in the framework of regulatory pathways controlling the symbiotic nodule number, the so-called “Autoregulation of Nodulation” (AON), involving another LRR-RLK that also acts systemically from the shoots, SUNN (Super Numeric Nodules). A coordinated function of the CRA2 and SUNN LRR-RLKs may thereby permit the dynamic fine tuning of the nodule number depending on the environmental conditions.
- Published
- 2014
- Full Text
- View/download PDF
20. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development
- Author
-
Caroline Hartmann, Erika Sallet, Martin Crespi, Kirankumar S. Mysore, Florian Frugier, Christine Lelandais-Brière, Pilar Bustos-Sanmamed, Carole Laffont, Jérôme Gouzy, Jiangqi Wen, Christelle Reynes, Elodie Hudik, and Anne-Claude Camproux
- Subjects
Small interfering RNA ,Transcription, Genetic ,Transgene ,RNA SILENCING ,Mutant ,Trans-acting siRNA ,Plant Development ,Plant Science ,Biology ,Ciencias Biológicas ,SMALL RNAS ,purl.org/becyt/ford/1 [https] ,Medicago truncatula ,Gene silencing ,Gene Silencing ,Transgenes ,RNA, Small Interfering ,purl.org/becyt/ford/1.6 [https] ,Alleles ,Plant Proteins ,PHA-SIRNA ,TA-SIRNA ,Genetics ,SGS3 ,RDR6 ,Bioquímica y Biología Molecular ,Argonaute ,RNA-Dependent RNA Polymerase ,biology.organism_classification ,RNA silencing ,LEGUMES ,Phenotype ,Genetic Loci ,Mutation ,Agronomy and Crop Science ,CIENCIAS NATURALES Y EXACTAS ,Biotechnology - Abstract
Summary: RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species. Fil: Bustos Sanmamed, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Institut Des Sciences Du Végétal; Francia Fil: Hudik, Elodie. Institut Des Sciences Du Végétal; Francia Fil: Laffont, Carole. Institut Des Sciences Du Végétal; Francia Fil: Reynes, Christelle. Molécules Thérapeutiques In Silico; Francia. Université Paris Diderot - Paris 7; Francia Fil: Sallet, Erika. Laboratoire Des Interactions Plantes-microorganismes; Francia Fil: Wen, Jiangqi. The Samuel Roberts Noble Foundation; Estados Unidos Fil: Mysore, Kirankumar S.. The Samuel Roberts Noble Foundation; Estados Unidos Fil: Camproux, Anne Claude. Université Paris Diderot - Paris 7; Francia. Molécules Thérapeutiques In Silico; Francia Fil: Hartmann, Caroline. Institut Des Sciences Du Végétal; Francia. Université Paris Diderot - Paris 7; Francia Fil: Gouzy, Jérome. Laboratoire Des Interactions Plantes-microorganismes; Francia Fil: Frugier, Florian. Institut Des Sciences Du Végétal; Francia Fil: Crespi, Martin. Institut Des Sciences Du Végétal; Francia Fil: Lelandais Brière, Christine. Institut Des Sciences Du Végétal; Francia. Université Paris Diderot - Paris 7; Francia
- Published
- 2014
- Full Text
- View/download PDF
21. ROLE OF KNOX TRANSCRIPTION FACTORS IN MEDICAGO TRUNCATULA SYMBIOTIC NODULE ORGANOGENESIS: THE SYMKNOX BILATERAL CNR/CNRS PROJECT
- Author
-
Elisabetta Di Giacomo (1), Carole Laffont (2), Francesca Sciarra (1), Maria Adelaide Iannelli (1), Florian Frugier (2), and Giovanna Frugis (1)
- Subjects
fungi ,food and beverages - Abstract
Legumes are able to develop symbiotic interactions with bacteria of the Rhizobia family to form nitrogen-fixing nodules from the infected roots. While L. japonicus forms N-fixing root nodules with determinate growth, M. truncatula forms indeterminate nodules which have a persistent meristem at their apices. Early molecular events of nodule initiation are well understood (Oldroyd et al., 2011) and involve activation of cytokinin signalling mediated by the MtCRE1 receptor (Gonzalez-Rizzo et al., 2006; Plet et al., 2011). Less is known about the molecular mechanisms governing the identity and maintenance of fixing nodule organs and their meristems. In seed plants, the role of KNOX homeodomain transcription factors of class 1 in shoot apical meristem formation and morphogenetic processes is well established (Hake et al., 2004; Hay and Tsiantis, 2010; Di Giacomo et al., 2013). Differently, KNOX of class 2 have been less characterized and their role in morphogenetic processes is still unclear. The genome of the model legume species M. truncatula harbors 11 KNOX genes (MtKNOXs). Gene expression studies revealed organ-specificity, possible cytokinin-dependent transcriptional activation of two MtKNOXs and expression of at least five MtKNOXs in roots (Di Giacomo et al., 2008). Due to KNOXs function in the morphogenetic processes underlying organ outgrowth, we wondered whether MtKNOXs expression in roots may subtend a role of KNOX in nodule organogenesis in response to rhizobia. This issue was investigated within the framework of the bilateral Scientific Cooperation between CNR (IT) and CNRS (France) "SYMKNOX".
- Published
- 2014
22. Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains
- Author
-
R. J. Neil Emery, Carole Laffont, Florian Frugier, and Anna Kisiala
- Subjects
Root nodule ,Cytokinins ,Physiology ,Plant Root Nodulation ,Plant Roots ,Rhizobia ,Microbiology ,Plant Growth Regulators ,Species Specificity ,Tandem Mass Spectrometry ,Nitrogen Fixation ,Medicago truncatula ,Symbiosis ,Sinorhizobium meliloti ,Rhizosphere ,biology ,Polysaccharides, Bacterial ,food and beverages ,General Medicine ,biology.organism_classification ,Mutation ,Nitrogen fixation ,Rhizobium ,Agronomy and Crop Science ,Bacteria ,Chromatography, Liquid - Abstract
Bacteria present in the rhizosphere of plants often synthesize phytohormones, and these signals can consequently affect root system development. In legumes, plants adapt to nitrogen starvation by forming lateral roots as well as a new organ, the root nodule, following a symbiotic interaction with bacteria collectively referred to as rhizobia. As cytokinin (CK) phytohormones were shown to be necessary and sufficient to induce root nodule organogenesis, the relevance of CK production by symbiotic rhizobia was questioned. In this study, we analyzed quantitatively, by liquid chromatography-tandem mass spectrometry, the production of 25 forms of CK in nine rhizobia strains belonging to four different species. All bacterial strains were able to synthesize a mix of CK, and bioactive forms of CK, such as iP, were notably found to be secreted in bacterial culture supernatants. Use of a mutant affected in extracellular polysaccharide (EPS) production revealed a negative correlation of EPS production with the ability to secrete CK. In addition, analysis of a nonnodulating Sinorhizobium meliloti strain revealed a similar pattern of CK production and secretion when compared with a related nodulating strain. This indicates that bacterially produced CK are not sufficient to induce symbiotic nodulation.
- Published
- 2013
23. Analyzing protein distribution in plant tissues using 'whole-mount' immunolocalization
- Author
-
Pilar, Bustos-Sanmamed, Carole, Laffont, Florian, Frugier, Christine, Lelandais-Brière, Martin, Crespi, Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Institut des sciences du végétal (ISV), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology ,RNA, Untranslated ,animal structures ,MESH : RNA, Untranslated ,MESH : Ribonucleoproteins, Small Nuclear ,MESH: Plant Proteins ,MESH: Ribonucleoproteins, Small Nuclear ,MESH : Medicago truncatula ,Ribonucleoproteins, Small Nuclear ,MESH: RNA, Untranslated ,MESH: Ribonucleoproteins ,Ribonucleoproteins ,MESH : Spliceosomes ,MESH : Plant Proteins ,Medicago truncatula ,Spliceosomes ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MESH : Ribonucleoproteins ,MESH: Medicago truncatula ,MESH: Spliceosomes ,Plant Proteins - Abstract
International audience; Proteins are distributed in different cellular compartments. Our group studies the role of non-coding RNAs and associated RNPs in the development and stress response in legumes. Ribonucleoproteins (RNPs) are RNA-protein complexes that play different roles in many cellular processes. Long and small non-coding RNAs determine the specificity of action of several RNPs as the RNA Induced Silencing Complex (RISC), or affect mRNA translation, splicing and stability by interacting with other RNPs such as P-bodies, spliceosome or polysomes. Together with small and long RNAs (Chapter 20), the precise localization of the associated RNPs or the translational products regulated by small RNAs (ie target proteins regulated by miRNAs, or translationally-regulated products) by immunocytochemistry could bring novel insights into these regulatory processes. The protocol described is currently used for detection of RNP associated proteins in nodules and roots of Medicago truncatula but could be extended to any other protein. The critical points, as the choice of the antibody and the fixation and permeabilization steps, that allow preservation of tissue and cell integrity and increase the accessibility to epitopes, will be discussed.
- Published
- 2013
- Full Text
- View/download PDF
24. Analyzing small and long RNAs in plant development using non-radioactive in situ hybridization
- Author
-
Pilar, Bustos-Sanmamed, Carole, Laffont, Florian, Frugier, Christine, Lelandais-Brière, Martin, Crespi, Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Institut des sciences du végétal (ISV), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology ,MESH : RNA, Messenger ,MESH : RNA, Plant ,MESH : In Situ Hybridization ,MESH: RNA, Plant ,MicroRNAs ,MESH : MicroRNAs ,MESH: In Situ Hybridization ,Gene Expression Regulation, Plant ,RNA, Plant ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,RNA, Messenger ,MESH: Gene Expression Regulation, Plant ,MESH: MicroRNAs ,MESH : Gene Expression Regulation, Plant ,In Situ Hybridization ,MESH: RNA, Messenger - Abstract
International audience; In the past decade, hundreds of non-coding RNAs (small and long RNAs) have been identified as crucial elements in developmental processes and stress response in plants. Among small RNAs, the microRNAs or miRNAs control levels of specific mRNA by inhibiting translation or reducing the stability of their mRNA targets through integration into different ribonucleoproteins (RNP). Spatio-temporal expression of small and long RNAs, using reporter genes or in situ hybridization, is essential to understand their functions. We are interested in understanding the role of various non-coding RNAs (including miRNAs) in the regulation of root and nodule development in legumes, which are agriculturally important crops. Here, we present the protocol we are currently using for detection of small and long RNA in model legume plants and tissues, like nodules and roots. The probe selection, as well as the fixation and permeabilization steps allowing to preserve tissues and cell integrity and to increase accessibility to RNA targets, will be specifically discussed.
- Published
- 2013
- Full Text
- View/download PDF
25. Analyzing Small and Long RNAs in Plant Development Using Non-radioactive In Situ Hybridization
- Author
-
Martin Crespi, Carole Laffont, Florian Frugier, Pilar Bustos-Sanmamed, and Christine Lelandais-Brière
- Subjects
0106 biological sciences ,0303 health sciences ,Reporter gene ,Messenger RNA ,RNA ,In situ hybridization ,Argonaute ,Biology ,Bioinformatics ,01 natural sciences ,Long non-coding RNA ,Cell biology ,03 medical and health sciences ,microRNA ,030304 developmental biology ,010606 plant biology & botany ,Ribonucleoprotein - Abstract
In the past decade, hundreds of non-coding RNAs (small and long RNAs) have been identified as crucial elements in developmental processes and stress response in plants. Among small RNAs, the microRNAs or miRNAs control levels of specific mRNA by inhibiting translation or reducing the stability of their mRNA targets through integration into different ribonucleoproteins (RNP). Spatio-temporal expression of small and long RNAs, using reporter genes or in situ hybridization, is essential to understand their functions. We are interested in understanding the role of various non-coding RNAs (including miRNAs) in the regulation of root and nodule development in legumes, which are agriculturally important crops. Here, we present the protocol we are currently using for detection of small and long RNA in model legume plants and tissues, like nodules and roots. The probe selection, as well as the fixation and permeabilization steps allowing to preserve tissues and cell integrity and to increase accessibility to RNA targets, will be specifically discussed.
- Published
- 2012
- Full Text
- View/download PDF
26. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula
- Author
-
Julie Plet, Emeline Huault, Sandrine Blanchet, Jean Laurent Ichanté, Carole Laffont, Raquel Lia Chan, Mathias Brault, Florian Frugier, Martin Crespi, Mireille Chabaud, Michaël Moison, Marianne Brault-Hernandez, Sébastien Carrère, Federico Ariel, Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Electrophysiologie des Membranes (LEM) EA 3514, Université Paris Diderot - Paris 7 (UPD7), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Instituto de Agrobiotecnología del Litoral [Santa Fe] (IAL), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Litoral [Santa Fe] (UNL), French Agence Nationale de la Recherche, Agencia Nacional de Promocion Cientifica y Tecnologica [PICT 2005 38103, PICT 2007 37000/022], ECOS-Sud program [A07B03], Argentinean Ministry of Education, French Embassy, Banco Santa Fe Foundation, Ministere de la Recherche et de la Technologie (France), GRAIN LEGUME [GLIP-EEC-FP6], Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0106 biological sciences ,Root nodule ,Cytokinins ,Plant Science ,01 natural sciences ,Plant Root Nodulation ,chemistry.chemical_compound ,Plant Growth Regulators ,Gene Expression Regulation, Plant ,heterocyclic compounds ,Promoter Regions, Genetic ,Research Articles ,Phylogeny ,Oligonucleotide Array Sequence Analysis ,Plant Proteins ,2. Zero hunger ,Regulation of gene expression ,0303 health sciences ,biology ,food and beverages ,Medicago truncatula ,Biochemistry ,Cytokinin ,Root Nodules, Plant ,Signal Transduction ,Molecular Sequence Data ,Organogenesis ,03 medical and health sciences ,Nitrogen Fixation ,Consensus Sequence ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Amino Acid Sequence ,Symbiosis ,Transcription factor ,030304 developmental biology ,Gene Expression Profiling ,fungi ,Promoter ,Cell Biology ,biology.organism_classification ,Response regulator ,MicroRNAs ,Mutagenesis, Insertional ,chemistry ,Seedlings ,Mutagenesis, Site-Directed ,Transcriptome ,Sequence Alignment ,010606 plant biology & botany ,Sinorhizobium meliloti ,Transcription Factors - Abstract
Cytokinin regulates many aspects of plant development, and in legume crops, this phytohormone is necessary and sufficient for symbiotic nodule organogenesis, allowing them to fix atmospheric nitrogen. To identify direct links between cytokinins and nodule organogenesis, we determined a consensus sequence bound in vitro by a transcription factor (TF) acting in cytokinin signaling, the nodule-enhanced Medicago truncatula Mt RR1 response regulator (RR). Among genes rapidly regulated by cytokinins and containing this so-called RR binding site (RRBS) in their promoters, we found the nodulation-related Type-A RR Mt RR4 and the Nodulation Signaling Pathway 2 (NSP2) TF. Site-directed mutagenesis revealed that RRBS cis-elements in the RR4 and NSP2 promoters are essential for expression during nodule development and for cytokinin induction. Furthermore, a microRNA targeting NSP2 (miR171 h) is also rapidly induced by cytokinins and then shows an expression pattern anticorrelated with NSP2. Other primary targets regulated by cytokinins depending on the Cytokinin Response1 (CRE1) receptor were a cytokinin oxidase/dehydrogenase (CKX1) and a basic Helix-Loop-Helix TF (bHLH476). RNA interference constructs as well as insertion of a Tnt1 retrotransposon in the bHLH gene led to reduced nodulation. Hence, we identified two TFs, NSP2 and bHLH476, as direct cytokinin targets acting at the convergence of phytohormonal and symbiotic cues.
- Published
- 2012
- Full Text
- View/download PDF
27. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula
- Author
-
Christian Legros, Laure Viau, Bruno Lapied, Marc Lepetit, Anis M. Limami, Céline Vandecasteele, Florian Frugier, Marie-Christine Morère-Le Paven, Anthoni Pellizzaro, Céline Bourdin, Alain Hamon, Carole Laffont, Physiologie Moléculaire des Semences (PMS), Institut National d'Horticulture-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA), Récepteurs et Canaux Ioniques Membranaires (RCIM), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-Institut National d'Horticulture, Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), and Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,Physiology ,QTL ,Population ,Anion Transport Proteins ,Xenopus ,Plant Science ,Quantitative trait locus ,01 natural sciences ,Plant Roots ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Arabidopsis ,Botany ,Medicago truncatula ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,nitrate transport ,education ,NRT1 ,030304 developmental biology ,Plant Proteins ,2. Zero hunger ,Regulation of gene expression ,0303 health sciences ,education.field_of_study ,primary root growth ,Nitrates ,biology ,NO3 ,Transporter ,Nitrate Transporters ,biology.organism_classification ,Molecular biology ,Nitrate transport ,010606 plant biology & botany - Abstract
International audience; Primary root growth in the absence or presence of exogenous NO(3)(-) was studied by a quantitative genetic approach in a recombinant inbred line (RIL) population of Medicago truncatula. A quantitative trait locus (QTL) on chromosome 5 appeared to be particularly relevant because it was seen in both N-free medium (LOD score 5.7; R(2)=13.7) and medium supplied with NO(3)(-) (LOD score, 9.5; R(2)=21.1) which indicates that it would be independent of the general nutritional status. Due to its localization exactly at the peak of this QTL, the putative NRT1-NO(3)(-) transporter (Medtr5g093170.1), closely related to Arabidopsis AtNRT1.3, a putative low-affinity nitrate transporter, appeared to be a significant candidate involved in the control of primary root growth and NO(3)(-) sensing. Functional characterization in Xenopus oocytes using both electrophysiological and (15)NO(3)(-) uptake approaches showed that Medtr5g093170.1, named MtNRT1.3, encodes a dual-affinity NO(3)(-) transporter similar to the AtNRT1.1 'transceptor' in Arabidopsis. MtNRT1.3 expression is developmentally regulated in roots, with increasing expression after completion of germination in N-free medium. In contrast to members of the NRT1 superfamily characterized so far, MtNRT1.3 is environmentally up-regulated by the absence of NO(3)(-) and down-regulated by the addition of the ion to the roots. Split-root experiments showed that the increased expression stimulated by the absence of NO(3)(-) was not the result of a systemic signalling of plant N status. The results suggest that MtNRT1.3 is involved in the response to N limitation, which increases the ability of the plant to acquire NO(3)(-) under N-limiting conditions.
- Published
- 2011
- Full Text
- View/download PDF
28. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots
- Author
-
Sofie Goormachtig, Stefanie De Bodt, Annick De Keyser, Katrien D'haeseleer, Carole Laffont, Griet Den Herder, Florian Frugier, Martin Crespi, Virginie Mortier, Christine Lelandais-Brière, Julie Plet, Marcelle Holsters, Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Center for Plant Systems Biology (PSB Center), and Vlaams Instituut voor Biotechnologie [Ghent, Belgique] (VIB)
- Subjects
0106 biological sciences ,Physiology ,MESH: Plant Shoots ,Arabidopsis ,MESH: Plant Roots ,MESH: Amino Acid Sequence ,Plant Science ,MESH: RNA, Plant ,MESH: Base Sequence ,01 natural sciences ,Plant Root Nodulation ,Plant Roots ,MESH: Protein Structure, Tertiary ,Gene Expression Regulation, Plant ,Arabidopsis thaliana ,MESH: Arabidopsis ,MESH: Phylogeny ,MESH: Tobacco ,MESH: Medicago truncatula ,Lateral root formation ,Phylogeny ,Plant Proteins ,Regulation of gene expression ,0303 health sciences ,MESH: Plant Proteins ,biology ,food and beverages ,MESH: Transcription Factors ,Plants, Genetically Modified ,MESH: Saccharomyces cerevisiae ,Medicago truncatula ,Cell biology ,MESH: Plant Leaves ,RNA, Plant ,MESH: Plant Root Nodulation ,Plant Shoots ,MESH: Indoleacetic Acids ,MESH: Mutation ,MESH: Trans-Activators ,Recombinant Fusion Proteins ,Molecular Sequence Data ,MESH: Arabidopsis Proteins ,Flowers ,Saccharomyces cerevisiae ,Rhizobia ,03 medical and health sciences ,Botany ,Tobacco ,MESH: Recombinant Fusion Proteins ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Amino Acid Sequence ,MESH: Gene Expression Regulation, Plant ,Transcription factor ,030304 developmental biology ,MESH: Molecular Sequence Data ,Base Sequence ,Indoleacetic Acids ,Arabidopsis Proteins ,fungi ,Lateral root ,MESH: Flowers ,biology.organism_classification ,Protein Structure, Tertiary ,Plant Leaves ,MicroRNAs ,MESH: Plants, Genetically Modified ,Mutation ,Trans-Activators ,MESH: Sinorhizobium meliloti ,MESH: MicroRNAs ,010606 plant biology & botany ,Sinorhizobium meliloti ,Transcription Factors - Abstract
International audience; Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. * The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. * MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. * This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.
- Published
- 2011
- Full Text
- View/download PDF
29. The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula
- Author
-
Florian Frugier, Sandrine Blanchet, Lysiane Brocard, Catherine Lapierre, Ulrike Mathesius, Pascal Ratet, Martin Crespi, Carole Laffont, Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et Développement de Rennes (IGDR), Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-IFR140-Centre National de la Recherche Scientifique (CNRS), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,lotus-japonicus ,Physiology ,Mutant ,MESH: Plant Roots ,Plant Science ,MESH: RNA, Plant ,Lignin ,Plant Roots ,01 natural sciences ,Gene Expression Regulation, Plant ,sinorhizobium-meliloti ,cell elongation ,MESH: Medicago truncatula ,Oligonucleotide Array Sequence Analysis ,Plant Proteins ,2. Zero hunger ,Regulation of gene expression ,chemistry.chemical_classification ,0303 health sciences ,biology ,MESH: Plant Proteins ,Plant physiology ,food and beverages ,Medicago truncatula ,Biochemistry ,RNA, Plant ,lateral root-formation ,hormone interactions ,MESH: Indoleacetic Acids ,nodule ,formation de racines latérales ,arabidopsis-thaliana ,nodule development ,Cell wall ,03 medical and health sciences ,MESH: Gene Expression Profiling ,Auxin ,MESH: Methyltransferases ,Genetics ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MESH: Gene Expression Regulation, Plant ,030304 developmental biology ,Flavonoids ,Indoleacetic Acids ,Gene Expression Profiling ,Development and Hormone Action ,fungi ,Wild type ,Methyltransferases ,biology.organism_classification ,MESH: Lignin ,Mutagenesis, Insertional ,plant-growth ,chemistry ,MESH: Mutagenesis, Insertional ,MESH: Oligonucleotide Array Sequence Analysis ,Polar auxin transport ,MESH: Flavonoids ,lignin biosynthesis ,010606 plant biology & botany - Abstract
L'article original est publié par The American Society of Plant Biologists; International audience; The root system architecture is crucial to adapt plant growth to changing soil environmental conditions and consequently to maintain crop yield. In addition to root branching through lateral roots, legumes can develop another organ, the nitrogen-fixing nodule, upon a symbiotic bacterial interaction. A mutant, cra1, showing compact root architecture was identified in the model legume Medicago truncatula. cra1 roots were short and thick due to defects in cell elongation, whereas densities of lateral roots and symbiotic nodules were similar to the wild type. Grafting experiments showed that a lengthened life cycle in cra1 was due to the smaller root system and not to the pleiotropic shoot phenotypes observed in the mutant. Analysis of the cra1 transcriptome at a similar early developmental stage revealed few significant changes, mainly related to cell wall metabolism. The most down-regulated gene in the cra1 mutant encodes a Caffeic Acid O-Methyl Transferase, an enzyme involved in lignin biosynthesis; accordingly, whole lignin content was decreased in cra1 roots. This correlated with differential accumulation of specific flavonoids and decreased polar auxin transport in cra1 mutants. Exogenous application of the isoflavone formononetin to wild-type plants mimicked the cra1 root phenotype, whereas decreasing flavonoid content through silencing chalcone synthases restored the polar auxin transport capacity of the cra1 mutant. The CRA1 gene, therefore, may control legume root growth through the regulation of lignin and flavonoid profiles, leading to changes in polar auxin transport.
- Published
- 2010
- Full Text
- View/download PDF
30. MicroRNA166 controls root and nodule development in Medicago truncatula
- Author
-
Carole Laffont, Martin Crespi, Andreas Niebel, Julie Plet, Philippe Laporte, Jean-Philippe Combier, Mariana Jovanovic, Florian Frugier, Adnane Boualem, Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Nouveaux Outils pour La Coopération et l'Education (NOCE), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Ecole Nationale Vétérinaire de Lyon (ENVL), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Vétérinaire de Lyon (ENVL)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Nouveaux Outils pour La Coopération et l'Education ( NOCE ), Laboratoire d'Informatique Fondamentale de Lille ( LIFL ), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique ( Inria ) -Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique ( CNRS ) -Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique ( Inria ) -Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique ( CNRS ), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique ( Inria ) -Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique ( CNRS ), Ecologie microbienne ( EM ), Centre National de la Recherche Scientifique ( CNRS ) -Ecole Nationale Vétérinaire de Lyon ( ENVL ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique ( INRA ) -VetAgro Sup ( VAS ), Laboratoire des interactions plantes micro-organismes ( LIPMO ), and Institut National de la Recherche Agronomique ( INRA ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
0106 biological sciences ,MESH : Plant Roots ,MESH : Brain Chemistry ,MESH: Plant Roots ,clustered miRNA ,Plant Science ,MESH: Amino Acid Sequence ,MESH: Base Sequence ,01 natural sciences ,MESH : Cattle ,MESH: Cattle Diseases ,MESH: Animals ,In Situ Hybridization ,0303 health sciences ,MESH : Amino Acid Sequence ,MESH : Reverse Transcriptase Polymerase Chain Reaction ,MESH : In Situ Hybridization ,Medicago truncatula ,Cell biology ,MESH : Proton-Translocating ATPases ,MESH : DNA Primers ,MESH: Proteolipids ,MESH: DNA Primers ,MESH: Mitochondria ,Organogenesis ,MESH: Microscopy, Electron ,MESH : Electrophoresis, Polyacrylamide Gel ,03 medical and health sciences ,MESH: In Situ Hybridization ,microRNA ,Botany ,Genetics ,MESH: Blotting, Northern ,MESH: Mass Spectrometry ,MESH : Cattle Diseases ,MESH: Molecular Sequence Data ,MESH : Medicago truncatula ,Lateral root ,HD ZIP III transcription factors ,MESH : Pigments, Biological ,MESH: Neuronal Ceroid-Lipofuscinoses ,MESH : Brain ,MESH : Amino Acids ,MESH : Gene Expression Regulation, Plant ,MESH: MicroRNAs ,MESH: Female ,MESH: Liver ,[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology ,MESH : Molecular Sequence Data ,MESH: Amino Acids ,Plant Roots ,lateral root ,MESH: Proton-Translocating ATPases ,Gene Expression Regulation, Plant ,MESH: Reverse Transcriptase Polymerase Chain Reaction ,MESH : Female ,MESH: Brain Chemistry ,MESH : Pancreas ,MESH: Medicago truncatula ,biology ,Reverse Transcriptase Polymerase Chain Reaction ,MESH : Blotting, Northern ,MESH: Pancreas ,MESH: Lipoproteins ,MESH : Kidney ,MESH: Cattle ,MESH : Mitochondria ,Rhizobium ,MESH: Pigments, Biological ,Transgene ,MESH : Lipoproteins ,MESH: Brain ,MESH : Mass Spectrometry ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MESH: Gene Expression Regulation, Plant ,Transcription factor ,Gene ,030304 developmental biology ,DNA Primers ,Base Sequence ,polycistronic miRNA ,MESH : Liver ,MESH : Lipids ,Cell Biology ,MESH: Kidney ,Meristem ,biology.organism_classification ,Blotting, Northern ,symbiotic nodulation ,MESH: Lipids ,MESH : Microscopy, Electron ,MESH : MicroRNAs ,MicroRNAs ,MESH : Proteolipids ,MESH : Base Sequence ,MESH : Animals ,MESH : Neuronal Ceroid-Lipofuscinoses ,010606 plant biology & botany ,MESH: Electrophoresis, Polyacrylamide Gel - Abstract
International audience; Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.