6 results on '"Carmina Barberena-Jonas"'
Search Results
2. Nationwide genomic biobank in Mexico unravels demographic history and complex trait architecture from 6,057 individuals
- Author
-
Mashaal Sohail, Amanda Y. Chong, Consuelo D. Quinto-Cortes, María J. Palma-Martínez, Aaron Ragsdale, Santiago G. Medina-Muñoz, Carmina Barberena-Jonas, Guadalupe Delgado-Sánchez, Luis Pablo Cruz-Hervert, Leticia Ferreyra-Reyes, Elizabeth Ferreira-Guerrero, Norma Mongua-Rodríguez, Andrés Jimenez-Kaufmann, Hortensia Moreno-Macías, Carlos A. Aguilar-Salinas, Kathryn Auckland, Adrián Cortés, Víctor Acuña-Alonzo, Alexander G. Ioannidis, Christopher R. Gignoux, Genevieve L. Wojcik, Selene L. Fernández-Valverde, Adrian V.S. Hill, María Teresa Tusié-Luna, Alexander J. Mentzer, John Novembre, Lourdes García-García, and Andrés Moreno-Estrada
- Abstract
Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories as well as complex trait architectures remain hidden due to the lack of Big Data. To fill this gap, the Mexican Biobank project genotyped 1.8 million markers in 6,057 individuals from 32 states and 898 sampling localities across Mexico with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Through a suite of state-of-the-art methods for ancestry deconvolution and inference of identity-by-descent (IBD) segments, we inferred detailed ancestral histories for the last 200 generations in different Mesoamerican regions, unraveling native and colonial/post-colonial demographic dynamics. We observed large variations in runs of homozygosity (ROH) among genomic regions with different ancestral origins reflecting their demographic histories, which also affect the distribution of rare deleterious variants across Mexico. We analyzed a range of biomedical complex traits and identified significant genetic and environmental factors explaining their variation, such as ROH found to be significant predictors for trait variation in BMI and triglycerides.
- Published
- 2022
- Full Text
- View/download PDF
3. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes
- Author
-
Paul Bastard, Kuang-Chih Hsiao, Qian Zhang, Jeremy Choin, Emma Best, Jie Chen, Adrian Gervais, Lucy Bizien, Marie Materna, Christine Harmant, Maguelonne Roux, Nicola L. Hawley, Daniel E. Weeks, Stephen T. McGarvey, Karla Sandoval, Carmina Barberena-Jonas, Consuelo D. Quinto-Cortés, Erika Hagelberg, Alexander J. Mentzer, Kathryn Robson, Boubacar Coulibaly, Yoann Seeleuthner, Benedetta Bigio, Zhi Li, Gilles Uzé, Sandra Pellegrini, Lazaro Lorenzo, Zineb Sbihi, Sylvain Latour, Marianne Besnard, Tiphaine Adam de Beaumais, Evelyne Jacqz Aigrain, Vivien Béziat, Ranjan Deka, Litara Esera Tulifau, Satupa‘itea Viali, Muagututi‘a Sefuiva Reupena, Take Naseri, Peter McNaughton, Vanessa Sarkozy, Jane Peake, Annaliesse Blincoe, Sarah Primhak, Simon Stables, Kate Gibson, See-Tarn Woon, Kylie Marie Drake, Adrian V.S. Hill, Cheng-Yee Chan, Richard King, Rohan Ameratunga, Iotefa Teiti, Maite Aubry, Van-Mai Cao-Lormeau, Stuart G. Tangye, Shen-Ying Zhang, Emmanuelle Jouanguy, Paul Gray, Laurent Abel, Andrés Moreno-Estrada, Ryan L. Minster, Lluis Quintana-Murci, Andrew C. Wood, Jean-Laurent Casanova, Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Rockefeller University [New York], Human genetics of infectious diseases: Complex predisposition (Equipe Inserm U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Département de Pédiatrie et maladies infectieuses [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Howard Hughes Medical Institute (HHMI), University of Auckland [Auckland], Génétique Evolutive Humaine - Human Evolutionary Genetics, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Collège de France - Chaire Génomique humaine et évolution, Collège de France (CdF (institution)), University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE), Langebio (CINVESTAV), University of New South Wales [Sydney] (UNSW), Sydney Children's hospital, Garvan Institute of medical research, UNSW Faculty of Medicine [Sydney], Institut Louis Malardé [Papeete] (ILM), Institut de Recherche pour le Développement (IRD), Auckland City Hospital, Canterbury Health Laboratories, University of Oxford, University of Queensland [Brisbane], Brown University, Ministry of Health [Samoa], Tupua Tamasese Meaole Hospital (TTM), University of Cincinnati (UC), Hopital Saint-Louis [AP-HP] (AP-HP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris Cité (UPCité), Institut Gustave Roussy (IGR), Centre Hospitalier de Polynésie Française, Signalisation des Cytokines - Cytokine Signaling, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Cellules Souches, Plasticité Cellulaire, Médecine Régénératrice et Immunothérapies (IRMB), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), University of Oslo (UiO), National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Yale University [New Haven], Hub Bioinformatique et Biostatistique - Bioinformatics and Biostatistics HUB, Institut Pasteur [Paris] (IP)-Université Paris Cité (UPCité), Human genetics of infectious diseases : Mendelian predisposition (Equipe Inserm U1163), Shanghai Jiaotong University, Murdoch Children's Research Institute (MCRI), The laboratory of V.-M. Cao-Lormeau is supported by MATAEA grant no. 03557/MED/REC_29/05/2019 (Délégation à la recherche de la Polynésie française). The Laboratory of Human Evolutionary Genetics is supported by Institut Pasteur, Collège de France, the Centre national de la recherche scientifique, Fondation Allianz-Institut de France, the French Government’s Investissement d’Avenir program, Laboratoires d’Excellence 'Integrative Biology of Emerging Infectious Diseases' (ANR-10-LABX-62-IBEID) and 'Milieu Intérieur' (ANR-10-LABX-69-01), Fondation de France (grant no. 00106080), and Fondation pour la Recherche Médicale (Equipe FRM DEQ20180339214). The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH, R01AI088364 and R01AI163029), the National Center for Advancing Translational Sciences, the NIH Clinical and Translational Science Award program (UL1 TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics, and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (UM1HG006504 and U24HG008956), the Yale High-Performance Computing Center (S10OD018521), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the French National Research Agency (ANR) under the 'Investments for the Future' program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM, EQU201903007798), the FRM and ANR GENCOVID project, the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), and ANR AABIFNCOV (ANR-20-CO11-0001) projects, the European Union’s Horizon 2020 research and innovation program under grant agreement 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, INSERM, the French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), and the University of Paris. P. Bastard was supported by the FRM (EA20170638020) and by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt-Schueller). The National Laboratory of Genomics for Biodiversity (LANGEBIO-CINVESTAV) in Mexico is supported by Consejo Nacional de Ciencia y Technologia (grant number FONCICYT/50/2016), The Newton Fund through the Medical Research Council (grant number MR/N028937/1), and the International Center for Genetic Engineering and Biotechnology grant number CRP/MEX20-01, awarded to A. Moreno-Estrada. S.G. Tangye is supported by a Leadership 3 Investigator Grant awarded by the National Health and Medical Research Council of Australia (1176665) and the Jeffrey Modell Foundation. Clinical Immunogenomics Research Consortium Australasia investigators (K.-C. Hsiao, P. McNaughton, A. Blincoe, J. Peake, S.G. Tangye, and P. Gray) are supported by the John Brown Cook Foundation. This work was supported by the National Institutes of Health grants R01-HL093093 (S.T. McGarvey) and R01-HL133040 (R.L. Minster). Molecular data for the Trans-Omics in Precision Medicine (TOPMed) program were provided by the National Heart, Lung, and Blood Institute (NHLBI). Genome sequencing for the Soifua Manuia study, labeled 'NHLBI TOPMed: Genome-wide Association Study of Adiposity in Samoans' (phs000972.v4.p1) in the dbGaP, was performed at the Northwest Genomics Center (HHSN268201100037C) and the New York Genome Center (HHSN268201500016C). Core support, including centralized genomic read mapping and genotype calling, along with variant quality metrics and filtering, was provided by the TOPMed Informatics Research Center (3R01-HL117626-02S1, contract HHSN268201800002I). Core support, including phenotype harmonization, data management, sample-identity QC, and general program coordination, was also provided by the TOPMed Data Coordinating Center (R01-HL120393, U01-HL120393, contract HHSN268201800001I). We gratefully acknowledge the studies and participants who provided biological samples and data for TOPMed. This research was funded in whole or in part by the French National Research Agency (ANR)., ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), ANR-10-LABX-0069,MILIEU INTERIEUR,GENETIC & ENVIRONMENTAL CONTROL OF IMMUNE PHENOTYPE VARIANCE: ESTABLISHING A PATH TOWARDS PERSONALIZED MEDICINE(2010), ANR-10-IAHU-0001,Imagine,Institut Hospitalo-Universitaire Imagine(2010), ANR-20-COVI-0003,GENCOVID,Identification des défauts monogéniques de l'immunité responsables des formes sévères de COVID-19 chez les patients précédemment en bonne santé(2020), ANR-20-CE93-0003,GENVIR,Analyse multi-omique de l'immunité anti-virale: de l'identification des circuits biologiques pertinents à la découverte de défauts monogéniques héréditaires de l'immunité chez les patients avec infections virales sévères(2020), ANR-20-CO11-0001,AABIFNCOV,Bases génétiques et immunologiques des auto-anticorps contre les interférons de type I prédisposant aux formes sévères de COVID-19.(2020), European Project: 824110,H2020-INFRAIA-2018-1,EASI-Genomics(2019), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPC), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC), Institut Pasteur [Paris]-Université Paris Cité (UPC), University of Oxford [Oxford], Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPC), Institute for Regenerative Medicine and Biotherapy [Montpellier], Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Universitaire de Montpellier (CHU Montpellier ), Université Paris Cité (UPC), Garvan Institute of Medical Research [Sydney, Australia], and Chaire Génomique humaine et évolution
- Subjects
[SDV.GEN]Life Sciences [q-bio]/Genetics ,Infectious disease and host defense ,Homozygote ,Immunology ,Innate immunity and inflammation ,Receptor, Interferon alpha-beta ,Polynesia ,Virus Diseases ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Humans ,Immunology and Allergy ,Immunodeficiency ,Child ,Alleles ,Human disease genetics - Abstract
International audience; Globally, autosomal recessive IFNAR1 deficiency is a rare inborn error of immunity underlying susceptibility to live attenuated vaccine and wild-type viruses. We report seven children from five unrelated kindreds of western Polynesian ancestry who suffered from severe viral diseases. All the patients are homozygous for the same nonsense IFNAR1 variant (p.Glu386*). This allele encodes a truncated protein that is absent from the cell surface and is loss-of-function. The fibroblasts of the patients do not respond to type I IFNs (IFN-α2, IFN-ω, or IFN-β). Remarkably, this IFNAR1 variant has a minor allele frequency >1% in Samoa and is also observed in the Cook, Society, Marquesas, and Austral islands, as well as Fiji, whereas it is extremely rare or absent in the other populations tested, including those of the Pacific region. Inherited IFNAR1 deficiency should be considered in individuals of Polynesian ancestry with severe viral illnesses.
- Published
- 2022
- Full Text
- View/download PDF
4. The genetic legacy of the Manila galleon trade in Mexico
- Author
-
Javier Blanco-Portillo, Carmina Barberena-Jonas, Consuelo Dayzú Quinto-Cortés, Santiago G. Medina-Muñoz, Juan Esteban Rodríguez-Rodríguez, Andres Moreno-Estrada, and Alexander Ioannidis
- Subjects
Asia ,Genetics, Population ,Asian People ,Philippines ,Genetic Variation ,Humans ,General Agricultural and Biological Sciences ,Mexico ,General Biochemistry, Genetics and Molecular Biology ,Asia, Southeastern - Abstract
The population of Mexico has a considerable genetic substructure due to both its pre-Columbian diversity and due to genetic admixture from post-Columbian trans-oceanic migrations. The latter primarily originated in Europe and Africa, but also, to a lesser extent, in Asia. We analyze previously understudied genetic connections between Asia and Mexico to infer the timing and source of this genetic ancestry in Mexico. We identify the predominant origin within Southeast Asia—specifically western Indonesian and non-Negrito Filipino sources—and we date its arrival in Mexico to approximately 13 generations ago (1620 CE). This points to a genetic legacy from the seventeenth century Manila galleon trade between the colonial Spanish Philippines and the Pacific port of Acapulco. Indeed, within Mexico we observe the highest level of this trans-Pacific ancestry in Acapulco, located in the state of Guerrero. This colonial Spanish trade route from East Asia to Europe was centred on Mexico and appears in historical records, but its legacy has been largely ignored. Identities and stories were suppressed due to slavery, assimilation of the immigrants as ‘Indios’ and incomplete historical records. Here we characterize this understudied Mexican ancestry. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
- Published
- 2022
5. Paths and timings of the peopling of Polynesia inferred from genomic networks
- Author
-
María C. Ávila-Arcos, Alexandra Sockell, Consuelo D. Quinto-Cortés, Alexander J. Mentzer, Keolu Fox, Mauricio Moraga, Scott Huntsman, Karla Sandoval, Javier Blanco-Portillo, Tom Parks, Celeste Eng, Kathryn J. H. Robson, Julian R. Homburger, Adrian V. S. Hill, Abdul Salam M. Sofro, Ricardo A. Verdugo, Andrés Moreno-Estrada, Esteban G. Burchard, Sonia Haoa-Cardinali, Carlos Bustamante, Juan Esteban Rodríguez-Rodríguez, Kathryn Auckland, Juan Francisco Miquel-Poblete, Christopher R. Gignoux, Alexander G. Ioannidis, Erika Hagelberg, and Carmina Barberena-Jonas
- Subjects
Male ,geography ,Multidisciplinary ,geography.geographical_feature_category ,Native Hawaiian or Other Pacific Islander ,Polynesian Islands ,Genome, Human ,Human Migration ,Biological anthropology ,Population genetics ,Genomics ,Archaeology ,History, Medieval ,Polynesia ,Article ,Megalith ,Archipelago ,Humans ,Female - Abstract
Polynesia was settled in a series of extraordinary voyages across an ocean spanning one third of the Earth1, but the sequences of islands settled remain unknown and their timings disputed. Currently, several centuries separate the dates suggested by different archaeological surveys2–4. Here, using genome-wide data from merely 430 modern individuals from 21 key Pacific island populations and novel ancestry-specific computational analyses, we unravel the detailed genetic history of this vast, dispersed island network. Our reconstruction of the branching Polynesian migration sequence reveals a serial founder expansion, characterized by directional loss of variants, that originated in Samoa and spread first through the Cook Islands (Rarotonga), then to the Society (Tōtaiete mā) Islands (11th century), the western Austral (Tuha’a Pae) Islands and Tuāmotu Archipelago (12th century), and finally to the widely separated, but genetically connected, megalithic statue-building cultures of the Marquesas (Te Henua ‘Enana) Islands in the north, Raivavae in the south, and Easter Island (Rapa Nui), the easternmost of the Polynesian islands, settled in approximately ad 1200 via Mangareva. Analysis of genomic networks from 430 modern individuals across 21 Pacific island populations reveals the human settlement history of Polynesia.
- Published
- 2021
6. Programmatic access to bacterial regulatory networks with regutools
- Author
-
José Alquicira-Hernandez, Alejandro Reyes, Carmina Barberena-Jonas, Leonardo Collado-Torres, Heladia Salgado, Joselyn Chávez, and Jesus E Sotelo-Fonseca
- Subjects
Bioconductor ,DNA binding site ,0303 health sciences ,03 medical and health sciences ,0302 clinical medicine ,Computer science ,Gene regulatory network ,Transcriptional regulation ,Data science ,Transcription factor ,030217 neurology & neurosurgery ,030304 developmental biology ,Block (data storage) - Abstract
SummaryRegulonDB has collected, harmonized and centralized data from hundreds of experiments for nearly two decades and is considered a point of reference for transcriptional regulation in Escherichia coli K12. Here, we present the regutools R package to facilitate programmatic access to RegulonDB data in computational biology. regutools gives researchers the possibility of writing reproducible workflows with automated queries to RegulonDB. The regutools package serves as a bridge between RegulonDB data and the Bioconductor ecosystem by reusing the data structures and statistical methods powered by other Bioconductor packages. We demonstrate the integration of regutools with Bioconductor by analyzing transcription factor DNA binding sites and transcriptional regulatory networks from RegulonDB. We anticipate that regutools will serve as a useful building block in our progress to further our understanding of gene regulatory networks.Availability and Implementationregutools is an R package available through Bioconductor at bioconductor.org/packages/regutools.Contactgithub.com/ComunidadBioInfo/regutools, lcolladotor@gmail.com, alejandro.reyes.ds@gmail.com.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.