86 results on '"Carlos Arguelles"'
Search Results
2. Millicharged particles from the heavens: single- and multiple-scattering signatures
- Author
-
Víctor Muñoz, Carlos Arguelles, and Kevin J. Kelly
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Scattering ,Energy transfer ,Monte Carlo method ,Detector ,FOS: Physical sciences ,Electron ,QC770-798 ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Neutrino detector ,Nuclear and particle physics. Atomic energy. Radioactivity ,Beyond Standard Model ,Particle ,High Energy Physics::Experiment ,Neutrino Physics ,Energy (signal processing) - Abstract
For nearly a century, studying cosmic-ray air showers has driven progress in our understanding of elementary particle physics. In this work, we revisit the production of millicharged particles in these atmospheric showers and provide new constraints for XENON1T and Super-Kamiokande and new sensitivity estimates of current and future detectors, such as JUNO. We discuss distinct search strategies, specifically studies of single-energy-deposition events, where one electron in the detector receives a relatively large energy transfer, as well as multiple-scattering events consisting of (at least) two relatively small energy depositions. We demonstrate that these atmospheric search strategies -- especially this new, multiple-scattering signature -- provide significant room for improvement in the next decade, in a way that is complementary to anthropogenic, beam-based searches for MeV-GeV millicharged particles. Finally, we also discuss the implementation of a Monte Carlo simulation for millicharged particle detection in large-volume neutrino detectors, such as IceCube., 17 pages + 3 appendices, 11 figures. Comments welcome. Data and code available at https://github.com/Harvard-Neutrino/HeavenlyMCP
- Published
- 2021
3. Dark Matter decay to neutrinos
- Author
-
Diyaselis Delgado, Carlos Arguelles, Avi Friedlander, Ali Kheirandish, Ibrahim Safa, Aaron Vincent, and Henry White
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
It is possible that the strongest interactions between dark matter and the Standard Model occur via the neutrino sector. Unlike gamma rays and charged particles, neutrinos provide a unique avenue to probe for astrophysical sources of dark matter, since they arrive unimpeded and undeflected from their sources. Previously, we reported on annihilations of dark matter to neutrinos; here, we review constraints on the decay of dark matter into neutrinos over a range of dark matter masses from MeV to ZeV, compiling previously reported limits, exploring new electroweak corrections and computing constraints where none have been computed before. We examine the expected contributions to the neutrino flux at current and upcoming neutrino experiments as well as photons from electroweak emission expected at gamma-ray telescopes, leading to constraints on the dark matter decay lifetime, which ranges from $\tau \sim 1.2\times10^{21}$ s at 10 MeV to $1.5\times10^{29}$s at 1 PeV., Comment: 11 pages, 5 figures. Introductory video of this article can be found in https://youtu.be/q5jO7sCQl8c
- Published
- 2022
4. Sterile Neutrino III_Sterile neutrinos and other scenarios
- Author
-
Carlos-Arguelles Delgado
- Subjects
Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
Plenary Talk from Neutrino 2022
- Published
- 2022
- Full Text
- View/download PDF
5. Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS
- Author
-
Konstancja, Satalecka, Acciari, Victor A., Stefano, Ansoldi, Lucio Angelo Antonelli, Axel Arbet Engels, Manuel, Artero, Katsuaki, Asano, Dominik, Baack, Ana, Babic, Andr('(e))s, Baquero, Ulisses Barres de Almeida, Juan Abel Barrio, Ivana, Batkovi('(c)), Josefa Becerra Gonzalez, Wlodek, Bednarek, Lorenzo, Bellizzi, Elisa, Bernardini, Maria-Isabel, Bernardos, Alessio, Berti, Jürgen, Besenrieder, Wrijupan, Bhattacharyya, Ciro, Bigongiari, Adrian, Biland, Oscar, Blanch, Hendrik, Bökenkamp, Giacomo, Bonnoli, Zeljka, Bosnjak, Giovanni, Busetto, Roberto, Carosi, Giovanni, Ceribella, Matteo, Cerruti, Yating, Chai, Ashot, Chilingarian, Stefan, Cikota, Sidika Merve Colak, Eduardo, Colombo, Jose Luis Contreras, Juan, Cortina, Stefano, Covino, Giacomo D( extquotesingle)Amico, Valerio D( extquotesingle)Elia, Paolo Da Vela, Francesco, Dazzi, Alessandro De Angelis, Barbara De Lotto, Manuel, Delfino, Jordi, Delgado, Carlos Delgado Mendez, Davide, Depaoli, Federico Di Pierro, Leonardo Di Venere, Elia Do Souto Espi(~(n))eira, Dijana Dominis Prester, Alice, Donini, Daniela, Dorner, Michele, Doro, Dominik, Elsaesser, Vandad Fallah Ramazani, Alicia, Fattorini, Maria Victoria Fonseca, Lluis, Font, Christian, Fruck, Satoshi, Fukami, Yasushi, Fukazawa, Garc('(i))a L('(o))pez, Ramon J., Markus, Garczarczyk, Sargis, Gasparyan, Markus, Gaug, Giglietto, Nicola, Francesco, Giordano, Pawel, Gliwny, Nikola, Godinovic, David, Green, Jarred Gershon Green, Daniela, Hadasch, Alexander, Hahn, Lea, Heckmann, Javier, Herrera, John, Hoang, Dario, Hrupec, Moritz, Hütten, Tomohiro, Inada, Kazuma, Ishio, Yuki, Iwamura, Irene Jim('(e))nez Mart('(i))nez, Jenni, Jormanainen, L('(e))a, Jouvin, Marie, Karjalainen, Daniel, Kerszberg, Yukiho, Kobayashi, Hidetoshi, Kubo, Junko, Kushida, Alessandra, Lamastra, Damir, Lelas, Francesco, Leone, Elina, Lindfors, Lena, Linhoff, Saverio, Lombardi, Francesco, Longo, Ruben, Lopez-Coto, Marcos, L('(o))pez-Moya, Alicia, L('(o))pez-Oramas, Loporchio, Serena, Bernardo Machado de Oliveira Fraga, Camilla, Maggio, Pratik, Majumdar, Martin, Makariev, Manuela, Mallamaci, Galina, Maneva, Marina, Manganaro, Karl, Mannheim, Laura, Maraschi, Mos(`(e)), Mariotti, Manel, Martinez, Daniel, Mazin, Stefano, Menchiari, Simone, Mender, Sa( (s))a Mi('(c))anovi('(c)), Davide, Miceli, Tjark, Miener, Jose Miguel Miranda, Razmik, Mirzoyan, Edgar, Molina, Abelardo, Moralejo, Daniel, Morcuende, Victoria, Moreno, Elena, Moretti, Takeshi, Nakamori, Lara, Nava, Vitaly, Neustroev, Cosimo, Nigro, Kari, Nilsson, Kyoshi, Nishijima, Koji, Noda, Seiya, Nozaki, Yoshiki, Ohtani, Tomohiko, Oka, Jorge, Otero-Santos, Simona, Paiano, Michele, Palatiello, David, Paneque, Riccardo, Paoletti, Paredes, Josep M., Lovro, Pavleti('(c)), Pablo, Pe(~(n))il, Massimo, Persic, Marine, Pihet, Pier Giorgio Prada Moroni, Elisa, Prandini, Chaitanya, Priyadarshi, Ivica, Puljak, Wolfgang, Rhode, Marc, Rib('(o)), Javier, Rico, Chiara, Righi, Andrea, Rugliancich, Narek, Sahakyan, Takayuki, Saito, Shunsuke, Sakurai, Francesco Gabriele Saturni, Bernd, Schleicher, Kevin, Schmidt, Thomas, Schweizer, Julian, Sitarek, Iva, ( (S))nidari('(c)), Dorota, Sobczy('(n))ska, Alessia, Spolon, Antonio, Stamerra, Jelena Stri( (s))kovi('(c)), Derek, Strom, Marcel, Strzys, Yusuke, Suda, Tihomir, Suri('(c)), Mitsunari, Takahashi, Ryuji, Takeishi, Fabrizio, Tavecchio, Petar, Temnikov, Tomislav, Terzic, Masahiro, Teshima, Luca, Tosti, Stefano, Truzzi, Antonio, Tutone, Santiago, Ubach, Juliane van Scherpenberg, Gaia, Vanzo, Monica VAZQUEZ ACOSTA, Sofia, Ventura, Vassil, Verguilov, Carlo Francesco Vigorito, Vincenzo, Vitale, Ievgen, Vovk, Martin, Will, Carolin, Wunderlich, Tokonatsu, Yamamoto, Darko, Zari('(c)), Matteo, Balbo, Thomas, Bretz, Jens, Buss, Laura, Eisenberger, Dorothee, Hildebrand, Roman, Iotov, Adelina, Kalenski, Dominik, Neise, Maximilian, Noethe, Aleksander, Paravac, Vitalii, Sliusar, Roland, Walter, Rasha, Abbasi, Markus, Ackermann, Jenni, Adams, Juanan, Aguilar, Ahlers, M., Maryon, Ahrens, Cyril Martin Alispach, Antonio Augusto Alves Junior, Najia Moureen Binte Amin, Rui, An, Karen, Andeen, Tyler, Anderson, Gisela, Anton, Carlos, Arguelles, Yosuke, Ashida, Spencer, Axani, Xinhua, Bai, Aswathi Balagopal, V., Anastasia Maria Barbano, Barwick, S. W., Benjamin, Bastian, Vedant, Basu, Sebastian, Baur, Bay, R. C., Beatty, J. J., Becker, K. -H., Julia Becker Tjus, Chiara, Bellenghi, Segev, Benzvi, Berley, D., Besson, D. Z., Gary, Binder, Daniel, Bindig, Blaufuss, E., Summer, Blot, Matthias, Boddenberg, Federico, Bontempo, Jurgen, Borowka, Boser, S., Olga, Botner, Jakob, Bottcher, Etienne, Bourbeau, Federica, Bradascio, Braun, J., Stephanie, Bron, Jannes, Brostean-Kaiser, Sally-Ann, Browne, Alexander, Burgman, Ryan, Burley, Raffaela, Busse, Michael, Campana, Erin, Carnie-Bronca, Chujie, Chen, Dmitry, Chirkin, Koun, Choi, Bryanlee, Clark, Kenneth, Clark, Lew, Classen, Alan, Coleman, Gabriel, Collin, Conrad, J. M., Paul, Coppin, Pablo, Correa, Cowen, D. F., Cross, R., Christian, Dappen, Pranav, Dave, Catherine DE CLERCQ, James, Delaunay, Hans, Dembinski, Kunal, Deoskar, Sam De Ridder, Abhishek, Desai, Paolo, Desiati, Krijn de Vries, Gwenhaël de Wasseige, Meike De With, Tyce, Deyoung, Sukeerthi, Dharani, Alejandro, Diaz, Juan Carlos Diaz-Velez, Markus, Dittmer, Hrvoje, Dujmovic, Matt, Dunkman, Michael, Duvernois, Emily, Dvorak, Thomas, Ehrhardt, Philipp, Eller, Ralph, Engel, Hannah, Erpenbeck, John, Evans, Evenson, P. A., Kwok Lung Fan, Fazely, A. R., Sebastian, Fiedlschuster, Aaron, Fienberg, Kirill, Filimonov, Chad, Finley, Leander, Fischer, Derek, B Fox, Anna, Franckowiak, Elizabeth, Friedman, Alexander, Fritz, Philipp, Furst, Gaisser, T. K., Jay, Gallagher, Erik, Ganster, Alfonso, Garcia, Simone, Garrappa, Gerhardt, L., Ava, Ghadimi, Christian, Glaser, Theo, Glauch, Thorsten, Glusenkamp, Goldschmidt, A., Javier, Gonzalez, Sreetama, Goswami, Darren, Grant, Timoth('(e))e, Gr('(e))goire, Spencer, Griswold, Mehmet, Gunduz, Christoph, Günther, Christian, Haack, Allan, Hallgren, Halliday, R., Halve, L., Halzen, F., Martin Ha Minh, Kael, Hanson, John, Hardin, Harnisch, Alexander A., Andreas, Haungs, Simon, Hauser, Dustin, Hebecker, Helbing, K., Felix, Henningsen, Hettinger, Emma C., Stephanie, Hickford, Joshua, Hignight, Colton, Hill, Hill, G. C., Kara, Hoffman, Ruth, Hoffmann, Tobias, Hoinka, Benjamin, Hokanson-Fasig, Hoshina, K., Feifei, Huang, Matthias, Huber, Thomas, Huber, Klas, Hultqvist, Mirco, Hunnefeld, Raamis, Hussain, Seongjin, In, Nad(`(e))ge, Iovine, Aya, Ishihara, Matti, Jansson, George, Japaridze, Minjin, Jeong, Ben, Jones, Donghwa, Kang, Woosik, Kang, Xinyue, Kang, Alexander, Kappes, David, Kappesser, Timo, Karg, Martina, Karl, Karle, A., Katz, U., Kauer, M., Moritz, Kellermann, Kelley, J. L., Ali, Kheirandish, Ken( extquotesingle)ichi Kin, Thomas, Kintscher, Joanna, Kiryluk, Spencer, Klein, Ramesh, Koirala, Hermann, Kolanoski, Tomas, Kontrimas, Lutz, Kopke, Claudio, Kopper, Sandro, Kopper, Koskinen, D. J., Paras, Koundal, Michael, Kovacevich, Marek, Kowalski, Tetiana, Kozynets, Emma, Kun, Naoko, Kurahashi, Neha, Lad, Cristina Lagunas Gualda, Justin, Lanfranchi, Michael, J Larson, Frederik Hermann Lauber, Jeffrey, Lazar, Jiwoong, Lee, Kayla, Leonard, Agnieszka, Leszczy('(n))ska, Yijia, Li, Massimiliano, Lincetto, Qinrui, Liu, Maria, Liubarska, Elisa, Lohfink, Cristian Jesus Lozano Mariscal, Lu, Lu, Francesco, Lucarelli, Andrew, Ludwig, William, Luszczak, Yang, Lyu, Wing Yan Ma, James, Madsen, Kendall, Mahn, Yuya, Makino, Sarah, Mancina, Ioana Codrina Maris, Maruyama, Reina H., Mase, K., Thomas, Mcelroy, Frank, Mcnally, James Vincent Mead, Meagher, K., Andres, Medina, Maximilian, Meier, Stephan, Meighen-Berger, Jessie, Micallef, Daniela, Mockler, Teresa, Montaruli, Roger, Moore, Morse, R., Marjon, Moulai, Richard, Naab, Ryo, Nagai, Uwe, Naumann, Jannis, Necker, Le Viet Nguyen, Hans, Niederhausen, Mehr, Nisa, Sarah, Nowicki, Dave, Nygren, Anna Obertacke Pollmann, Marie, Oehler, Olivas, A., Erin O( extquotesingle)Sullivan, Hershal, Pandya, Daria, Pankova, Nahee, Park, Grant, Parker, Ek Narayan Paudel, Larissa, Paul, Carlos Perez de los Heros, Lilly, Peters, Saskia, Philippen, Damian, Pieloth, Sarah, Pieper, Martin, Pittermann, Pizzuto, A., Plum, M., Yuiry, Popovych, Alessio, Porcelli, Maria Prado Rodriguez, Buford Price, P., Brandom, Pries, Gerald, Przybylski, Christoph, Raab, Amirreza, Raissi, Mohamed, Rameez, Rawlins, K., Immacolata Carmen Rea, Abdul, Rehman, Ren('(e)), Reimann, Giovanni, Renzi, Elisa, Resconi, Simeon, Reusch, Mike, Richman, Benedikt, Riedel, Ella, Roberts, Sally, Robertson, Gerrit, Roellinghoff, Martin, Rongen, Carsten, Rott, Tim, Ruhe, Dirk, Ryckbosch, Devyn Rysewyk Cantu, Ibrahim, Safa, Julian, Saffer, Sebastian Sanchez Herrera, Alexander, Sandrock, Joakim, Sandroos, Marcos, Santander, Subir, Sarkar, Sourav, Sarkar, Maximilian Karl Scharf, Merlin, Schaufel, Harald, Schieler, Sebastian, Schindler, Schlunder, P., Torsten, Schmidt, Austin, Schneider, Judith, Schneider, Schröder, Frank G., Lisa Johanna Schumacher, Georg, Schwefer, Steve, Sclafani, Seckel, D., Surujhdeo, Seunarine, Ankur, Sharma, Shefali, Shefali, Manuel, Silva, Barbara, Skrzypek, Ben, Smithers, Robert, Snihur, Jan, Soedingrekso, Dennis, Soldin, Christian, Spannfellner, Glenn, Spiczak, Christian, Spiering, Juliana, Stachurska, Michael, Stamatikos, Stanev, T., Robert, Stein, Joeran, Stettner, Steuer, A., Stezelberger, T., Timo, Sturwald, Thomas, Stuttard, Sullivan, G. W., Taboada, I., Frederik, Tenholt, Samvel, Ter-Antonyan, Tilav, S., Franziska, Tischbein, Kirsten, Tollefson, Christoph, Tönnis, Simona, Toscano, Delia, Tosi, Alexander, Trettin, Maria, Tselengidou, Chunfai, Tung, Andrea, Turcati, Roxanne, Turcotte, Colin, Turley, Jean Pierre Twagirayezu, Bunheng, Ty, Martin Unland Elorrieta, Nora, Valtonen-Mattila, Justin, Vandenbroucke, Nick van Eijndhoven, David, Vannerom, Jakob van Santen, Stef, Verpoest, Matthias, Vraeghe, Walck, C., Timothyblake, Watson, Chris, Weaver, Philip, Weigel, Andreas, Weindl, Matthew, Weiss, Jan, Weldert, Chris, Wendt, Johannes, Werthebach, Mark, Weyrauch, Nathan, Whitehorn, Wiebusch, C. H., Dawn, Williams, Martin, Wolf, Kurt, Woschnagg, Gerrit, Wrede, Johan, Wulff, Xianwu, Xu, Yiqian, Xu, Juan Pablo Yanez, Yoshida, S., Shiqi, Yu, Tianlu, Yuan, Zelong, Zhang, Weidong, Jin, Hassan, Abdalla, Felix, Aharonian, Faical, Ait-Benkhali, Oguzhan, Anguener, Cornelia, Arcaro, Celine, Armand, Tom, Armstrong, Halim, Ashkar, Michael, Backes, Vardan, Baghmanyan, Victor Barbosa Martins, Anna, Barnacka, Monica, Barnard, Rowan, Batzofin, Yvonne, Becherini, David, Berge, Konrad, Bernlöhr, Baiyang, Bi, Markus, Boettcher, Catherine, Boisson, Julien, Bolmont, Mathieu de Bony, Mischa, Breuhaus, Robert, Brose, Francois, Brun, Tomasz, Bulik, Thomas, Bylund, Floriane, Cangemi, Sami, Caroff, Sabrina, Casanova, Jaqueline, Catalano, Pauline, Chambery, Tej Bahadur Chand, Andrew, Chen, Garret, Cotter, Malgorzata, Curlo, Jean Damascene Mbarubucyeye, Isak Delberth Davids, James, Davies, Justine, Devin, Arache, Djannati-Ataï, Anton, Dmytriiev, Axel, Donath, Victor, Doroshenko, Lente, Dreyer, Louis Du Plessis, Connor, Duffy, Kathrin, Egberts, Sabrina, Einecke, Gabriel, Emery, Jean-Pierre, Ernenwein, Steven, Fegan, Kirsty, Feijen, Armand, Fiasson, Gaëtan Fichet de Clairfontaine, Gerard, Fontaine, Lott, Frans, Matthias, Fuessling, Stefan, Funk, Stefano, Gabici, Yves, Gallant, Shahede, Ghafourizade, Gianluca, Giavitto, Luca, Giunti, Dorit, Glawion, Jean-Francois, Glicenstein, Marie-H('(e))l(`(e))ne, Grondin, Sumari, Hattingh, Maria, Haupt, German, Hermann, Jim, Hinton, Werner, Hofmann, Clemens, Hoischen, Tim, Holch, Markus, Holler, Dieter, Horns, Zhiqiu, Huang, David, Huber, Mario, Hörbe, Marek, Jamrozy, Felix, Jankowsky, Vikas, Joshi, Ira, Jung, Eli, Kasai, Krzysztof, Katarzynski, Ul(`(i)), Katz, Dmitry, Khangulyan, Bruno, Khelifi, Stefan, Klepser, Wlodek, Kluzniak, Nukri, Komin, Ruslan, Konno, Karl, Kosack, Dmitriy, Kostunin, Michael, Kreter, Ga( (s))per Kukec Mezek, Anu, Kundu, Giovanni, Lamanna, S('(e))bastien Le Stum, Anne, Lemiere, Marianne, Lemoine-Goumard, Jean-Philippe, Lenain, Fabian, Leuschner, Christelle, Levy, Thomas, Lohse, Anna, Luashvili, Iryna, Lypova, Jonathan, Mackey, Jhilik, Majumdar, Denys, Malyshev, Dmitry, Malyshev, Vincent, Marandon, Paolo, Marchegiani, Alexandre, Marcowith, Arnaud, Mares, Guillem Marti( extquotesingle)i-Devesa, Ramin, Marx, Gilles, Maurin, Pieter, Meintjes, Manuel, Meyer, Alison, Mitchell, Rafal, Moderski, Lars, Mohrmann, Alessandro, Montanari, Chris, Moore, Paul, Morris, Emmanuel, Moulin, Jacques, Muller, Thomas, Murach, Kaori, Nakashima, Mathieu Naurois (de), Amid, Nayerhoda, Hambeleleni, Ndiyavala, Jacek, Niemiec, Angel, Noel, Paul O( extquotesingle)Brien, Laenita Lorraine Oberholzer, Stefan, Ohm, Laura, Olivera-Nieto, Emma Ona-Wilhelmi (de), Michal, Ostrowski, Sebastian, Panny, Michael, Panter, Dan, Parsons, Giada, Peron, Santiago, Pita, Vincent, Poireau, Dmitry, Prokhorov, Heike, Prokoph, Gerd, Puehlhofer, Michael, Punch, Andreas, Quirrenbach, Patrick, Reichherzer, Anita, Reimer, Olaf, Reimer, Quentin, Remy, Matthieu, Renaud, Brian, Reville, Frank, Rieger, Carlo, Romoli, Gavin, Rowell, Bronislaw, Rudak, Hector Rueda Ricarte, Edna Ruiz Velasco, Vardan, Sahakian, Simon, Sailer, Heiko, Salzmann, David, Sanchez, Andrea, Santangelo, Manami, Sasaki, Johannes, Schaefer, Hester, Schutte, Ullrich, Schwanke, Fabian, Schüssler, Mohanraj, Senniappan, Albert, Seyffert, Shapopi, Jimmy N. S., Kleopas, Shiningayamwe, Rachel, Simoni, Atreyee, Sinha, Helene, Sol, Hugh, Spackman, Andreas, Specovius, Samuel Timothy Spencer, Marion, Spir-Jacob, Lukasz, Stawarz, Riaan, Steenkamp, Christian, Stegmann, Simon, Steinmassl, Constantin, Steppa, Lei, Sun, Tadayuki, Takahashi, Takaaki, Tanaka, Thomas, Tavernier, Andrew, Taylor, Regis, Terrier, Hannes, Thiersen, Charles, Thorpe-Morgan, Martin, Tluczykont, Lenka, Tomankova, Michelle, Tsirou, Naomi, Tsuji, Richard, Tuffs, Yasunobu, Uchiyama, Johann van der Walt, Christopher van Eldik, Carlo van Rensburg, Brian van Soelen, George, Vasileiadis, Johannes, Veh, Christo, Venter, Pascal, Vincent, Jacco, Vink, Völk, Heinrich J., Stefan, Wagner, Jason John Watson, Felix, Werner, Richard, White, Alicja, Wierzcholska, Yu Wun Wong, Hend, Yassin, Anke, Yusafzai, Michael, Zacharias, Roberta, Zanin, Davit, Zargaryan, Andrzej, Zdziarski, Andreas, Zech, Sylvia, Zhu, Andreas, Zmija, Samuel, Zouari, Natalia, Zywucka, The FACT Collaboration, The H.E.S.S. Collaboration, The IceCube Collaboration, The MAGIC Collaboration, The VERITAS Collaboration, and Współautorami artykułu są członkowie Magic Collaboration, IceCube Collaboration, FACT Collaboration, H.E.S.S. Collaboration, VERITAS Collaboration w liczbie 808
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Point source ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,IACT ,Astrophysics ,law.invention ,High Energy Physics - Experiment ,Telescope ,High Energy Physics - Experiment (hep-ex) ,law ,HESS - Abteilung Hinton ,ddc:530 ,High Energy Physics::Experiment ,MAGIC (telescope) ,Neutrino ,Blazar ,Astrophysics - High Energy Astrophysical Phenomena ,Cherenkov radiation - Abstract
The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, $\mathrm{E} > 100\,\mathrm{GeV}$) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system., Presented at the 37th International Cosmic Ray Conference (ICRC 2021). See arXiv:2107.06966 for all IceCube contributions. See arXiv:2108.05257 for all H.E.S.S. contributions
- Published
- 2022
6. Where are we with light sterile neutrinos?
- Author
-
Michael H. Shaevitz, Alejandro Diaz, Janet Conrad, Carlos Arguelles, and G. H. Collin
- Subjects
Physics ,Sterile neutrino ,Particle physics ,010308 nuclear & particles physics ,Bayesian probability ,Global fitting ,FOS: Physical sciences ,General Physics and Astronomy ,Parameter space ,01 natural sciences ,High Energy Physics - Experiment ,3. Good health ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Frequentist inference ,0103 physical sciences ,Energy spectrum ,High Energy Physics::Experiment ,Neutrino ,010306 general physics - Abstract
We review the status of searches for sterile neutrinos in the $\sim 1$ eV range, with an emphasis on the latest results from short baseline oscillation experiments and how they fit within sterile neutrino oscillation models. We present global fit results to a three-active-flavor plus one-sterile-flavor model (3+1), where we find an improvement of $\Delta \chi^2=35$ for 3 additional parameters compared to a model with no sterile neutrino. This is a 5$\sigma$ improvement, indicating that an effect that is like that of a sterile neutrino is highly preferred by the data. However we note that separate fits to the appearance and disappearance oscillation data sets within a 3+1 model do not show the expected overlapping allowed regions in parameter space. This "tension" leads us to explore two options: 3+2, where a second additional mass state is introduced, and a 3+1+decay model, where the $\nu_4$ state can decay to invisible particles. The 3+1+decay model, which is also motivated by improving compatibility with cosmological observations, yields the larger improvement, with a $\Delta \chi^2=8$ for 1 additional parameter beyond the 3+1 model, which is a $2.6\sigma$ improvement. Moreover the tension between appearance and disappearance experiments is reduced compared to 3+1, although disagreement remains. In these studies, we use a frequentist approach and also a Bayesean method of finding credible regions. With respect to this tension, we review possible problems with the global fitting method. We note multiple issues, including problems with reproducing the experimental results, especially in the case of experiments that do not provide adequate data releases. We discuss an unexpected 5 MeV excess, observed in the reactor flux energy spectrum, that may be affecting the oscillation interpretation of the short baseline reactor data. We emphasize the care that must be taken in mapping to the true neutrino energy in the case of oscillation experiments that are subject to multiple interaction modes and nuclear effects. We point to problems with the "Parameter-Goodness-of-Fit test" that is used to quantify the tension. Lastly, we point out that analyses presenting limits often receive less scrutiny that signals. While we provide a snapshot of the status of sterile neutrino searches today and global fits to their interpretation, we emphasize that this is a fast-moving field. We briefly review experiments that are expected to report new data in the immediate future. Lastly, we consider the 5-year horizon, where we propose that decay-at-rest neutrino sources are the best method of finally resolving the confusing situation., Comment: 52 pages, 36 figures. Corrected typos in Fig 12 and Table III, plus other minor corrections
- Published
- 2020
- Full Text
- View/download PDF
7. Searches for atmospheric long-lived particles
- Author
-
Carlos Arguelles, Pilar Coloma, Víctor Muñoz, Pilar Hernández, European Commission, Ministerio de Ciencia e Innovación (España), and Generalitat Valenciana
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Standard Model ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Neutrino Physics ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Gauge symmetry ,Physics ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,Function (mathematics) ,High Energy Physics - Phenomenology ,Neutrino detector ,Beyond Standard Model ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Solar and Atmospheric Neutrinos ,Neutrino ,Production rate ,Lepton - Abstract
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra $U(1)$ gauge symmetry, and a combination of both in a $U(1)_{B-L}$ model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles., Comment: 33 pages, 19 figures. v2: Minor changes, references added. Version accepted for publication in JHEP
- Published
- 2020
- Full Text
- View/download PDF
8. Los 5 principios hemodinámicos del Dr. Pinsky
- Author
-
Karla Gabriela Peniche-Moguel, Enrique Monares-Zepeda, Carlos Arguelles-Pérez, Oscar Torres-Aguilar, and Jesús Salvador Sánchez-Díaz
- Subjects
03 medical and health sciences ,0302 clinical medicine ,030228 respiratory system ,Materials Science (miscellaneous) ,030208 emergency & critical care medicine - Abstract
Resumen El estado de choque es una breve pausa en el acto de morir, frase que nunca debemos olvidar los que estamos habituados a manejar a los pacientes criticamente enfermos; la monitorizacion hemodinamica a traves de tecnologia sofisticada es actualmente una herramienta fundamental en las terapias intensivas, sin embargo, las premisas clinicas con fundamentos fisiologicos propuestas por el Dr. Michael Pinsky son una base indispensable para el inicio de la toma de decisiones medicas. A traves de esta revision no sistematica de la literatura se pretende exponer los principios hemodinamicos del Dr. Pinsky.
- Published
- 2020
- Full Text
- View/download PDF
9. Search for sterile neutrinos in low-energy double-cascade events with the IceCube Neutrino Observatory: a first expected sensitivity
- Author
-
David Vannerom, Leander Fischer, Janet Conrad, Summer Blot, and Carlos Arguelles
- Subjects
neutrino, sterile, mass ,topology ,Astrophysics::High Energy Astrophysical Phenomena ,anomaly ,neutrino, sterile, lifetime ,dark matter ,charged current ,phase space ,dimension, 2 ,neutrino, sterile, search for ,neutrino, energy ,mixing ,ddc:530 ,IceCube, upgrade ,spatial resolution ,new physics ,High Energy Physics::Phenomenology ,neutrino, production ,oscillation ,landscape ,detector, sensitivity ,cascade ,observatory ,neutrino, background ,energy, high ,neutrino, sterile ,High Energy Physics::Experiment ,neutrino, atmosphere ,signature ,tau, energy - Abstract
Particles and Nuclei International Conference, PANIC 2021, Lisboa, Portugal, 5 Sep 2021 - 10 Sep 2021; Proceedings of Science / International School for Advanced Studies (PANIC2021), 299 (2022). doi:10.22323/1.380.0299, Sterile neutrinos are a well motivated facet of the new physics landscape. From their role in the mechanism through which Standard Model (SM) neutrinos acquire mass, to their potential explanation of anomalies in oscillation experiments and even as Dark Matter candidates, these hypothetical particles are thought to play a central part in the near future of particle physics. Many models of sterile neutrinos exist, in some of which they are allowed to decay to SM particles. If the sterile neutrino production and subsequent decay happens inside the IceCube detector, this would lead to a double-cascade signature similar - but not identical - to the one known from tau neutrino charged current interactions. However, the lifetime of the sterile neutrino is potentially much longer than that of the tau lepton, depending on its mass. This opens the possibility for a spatial resolution of a double cascade topology at atmospheric neutrino energies, as opposed to searches for high energy tau neutrinos from astrophysical sources. We present the results of a first study of the IceCube-DeepCore detector sensitivity to such a signal. The strategy is to study the topology of such double-cascade events in simulation and design a classifier that helps us isolate a sample of signal events over the background from SM processes. We study the sensitivity as a function of the signal parameters to determine in what conditions could IceCube see such a signal. Scanning the two-dimensional tau-sterile mixing parameter and sterile neutrino mass phase-space, we conclude that with the current state of the analysis, this search will have to wait for the IceCube Upgrade or a major improvement in the analysis tools in order for a signal to be isolated from the very large neutrino background., Published by SISSA, Trieste
- Published
- 2022
- Full Text
- View/download PDF
10. Searching for Dark Matter from the Sun with the IceCube Detector
- Author
-
Lisa Johanna Schumacher, Elisa Lohfink, Javier Gonzalez, Roxanne Turcotte, Catherine De Clercq, Michael DuVernois, Barbara Skrzypek, Larissa Paul, Naoko Kurahashi, Frank G. Schröder, Thomas McElroy, Erin O'Sullivan, S. Böser, Gerald Przybylski, Jakob van Santen, Shiqi Yu, Federica Bradascio, Alexander Burgman, Simeon Reusch, K. Meagher, Mehr Nisa, Benedikt Riedel, Stephanie Hickford, Delia Tosi, Sebastian Baur, Sebastian Fiedlschuster, Markus Ackermann, S. W. Barwick, Sreetama Goswami, Ken'ichi Kin, Ryan Burley, A. Steuer, Qinrui Liu, Martina Karl, Raamis Hussain, Aaron Fienberg, John Evans, Amirreza Raissi, U. Katz, Sally Robertson, Judith Schneider, Andres Medina, Donghwa Kang, Merlin Schaufel, Dawn Williams, Martin Pittermann, Chris Weaver, Stephanie Bron, K. Hoshina, Hrvoje Dujmovic, Jurgen Borowka, Benjamin Bastian, Anastasia Maria Barbano, Brian Clark, Sebastian Sanchez Herrera, Glenn Spiczak, Zelong Zhang, Michael Stamatikos, Jan Soedingrekso, P. Schlunder, John Hardin, Spencer Axani, Kael Hanson, Saskia Philippen, D. F. Cowen, A. Goldschmidt, Julia Becker Tjus, Markus Ahlers, Martin Unland Elorrieta, Shefali Shefali, C. Walck, Alfonso Garcia, Ankur Sharma, Jeffrey Lazar, Le Viet Nguyen, J. J. Beatty, Tianlu Yuan, Matthias Vraeghe, Torsten Schmidt, Abdul Rehman, Carsten Rott, Dave Nygren, Mohamed Rameez, Cyril Martin Alispach, Karen Andeen, Felix Henningsen, Tyler Anderson, Surujhdeo Seunarine, Thomas K. Gaisser, Timo Karg, Hermann Kolanoski, Carlos Arguelles, Lutz Kopke, Chiara Bellenghi, Thomas Kintscher, Maximilian Meier, Jessie Micallef, Juan Pablo Yanez, IceCube, Josh Peterson, Emma Kun, Paolo Desiati, Matthias Huber, Juanan Aguilar, Lenka Tomankova, Yosuke Ashida, A. R. Fazely, J. L. Kelley, Kenneth Clark, Aya Ishihara, Matthew Weiss, Yuiry Popovych, Kirill Filimonov, Pranav Dave, Maximilian Karl Scharf, Alejandro Diaz, Krijn de Vries, Stef Verpoest, Andreas Weindl, Jenni Adams, Xianwu Xu, Jay Gallagher, Minjin Jeong, K.-H. Becker, Ruth Hoffmann, Kwok Lung Fan, Alexander Fritz, Colin Turley, Erik Ganster, Najia Moureen Binte Amin, Uwe Naumann, T. Stanev, Yiqian Xu, Emma C. Hettinger, Matt Dunkman, Federico Bontempo, Nora Valtonen-Mattila, Marcos Santander, Francesco Lucarelli, Maria Liubarska, Ramesh Koirala, Dennis Soldin, Martin Ha Minh, Hans Dembinski, Erin Carnie-Bronca, Harald Schieler, K. Rawlins, Christian Glaser, Simona Toscano, Christian Spiering, Manuel Silva, Samvel Ter-Antonyan, Ben Jones, Alan Coleman, Gisela Anton, Maria Prado Rodriguez, Devyn Rysewyk Cantu, Gwenhaël de Wasseige, D. Z. Besson, Reina H. Maruyama, R. Halliday, Daniel Bindig, Georg Schwefer, L. Gerhardt, James Vincent Mead, Thomas Stuttard, Ryo Nagai, A. Olivas, E. Blaufuss, T. Stezelberger, Sarah Pieper, Markus Dittmer, Jannis Necker, Tetiana Kozynets, Neha Lad, Dirk Ryckbosch, Elizabeth Friedman, Chad Finley, Rasha Abbasi, Summer Blot, Matthias Boddenberg, Ibrahim Safa, Daria Pankova, Damian Pieloth, Ali Kheirandish, Sarah Mancina, Gerrit Roellinghoff, Stephan Meighen-Berger, Jannes Brostean-Kaiser, Kurt Woschnagg, Simon Hauser, Anna Franckowiak, Tobias Hoinka, Vedant Basu, James Madsen, Thorsten Glusenkamp, Massimiliano Lincetto, Lu Lu, Paul Evenson, S. Yoshida, I. Taboada, Dustin Hebecker, Nathan Whitehorn, Steve Sclafani, Klas Hultqvist, Joanna Kiryluk, Christoph Tönnis, Sally-Ann Browne, Brandom Pries, Mirco Hunnefeld, Marie Oehler, Segev BenZvi, Timothée Grégoire, Paras Koundal, Mike Richman, Colton Hill, Carlos Perez de los Heros, Gabriel Collin, Simone Garrappa, Dmitry Chirkin, Johan Wulff, Jan Weldert, Etienne Bourbeau, Spencer Klein, Julian Saffer, Chris Wendt, Sebastian Schindler, Michael Kovacevich, Pablo Correa, S. Tilav, Teresa Montaruli, Christoph Günther, Alexander Kappes, Michael Campana, Emily Dvorak, Cristian Jesus Lozano Mariscal, Kendall Mahn, K. Helbing, Elisa Bernardini, Tomas Kontrimas, Christian Dappen, Justin Vandenbroucke, Timothyblake Watson, Yijia Li, Sourav Sarkar, Benjamin Hokanson-Fasig, L. Halve, Philipp Eller, Christian Spannfellner, R. Morse, Frank McNally, Chunfai Tung, Olga Botner, Jakob Bottcher, Kara Hoffman, D. J. Koskinen, Antonio Augusto Alves Junior, Chujie Chen, Raffaela Busse, Anna Obertacke Pollmann, Yang Lyu, Joeran Stettner, Cristina Lagunas Gualda, Grant Parker, Philip Weigel, M. Plum, Mehmet Gunduz, Agnieszka Leszczyńska, R. C. Bay, Hershal Pandya, Martin Rongen, Wolfgang Rhode, Spencer Griswold, Maryon Ahrens, Joshua Hignight, Timo Sturwald, Frederik Tenholt, Wing Yan Ma, Feifei Huang, Hannah Erpenbeck, Konstancja Satalecka, Theo Glauch, Xinhua Bai, Austin Schneider, Abhishek Desai, Juan Carlos Diaz-Velez, Robert Stein, Maria Tselengidou, James DeLaunay, Marjon Moulai, Ava Ghadimi, Martin Wolf, Franziska Tischbein, Hans Niederhausen, Robert A. Cross, Frederik Hermann Lauber, Koun Choi, Andrew Ludwig, Justin Lanfranchi, Ben Smithers, Jean Pierre Twagirayezu, Jiwoong Lee, Rui An, Nahee Park, Darren Grant, Derek B Fox, Immacolata Carmen Rea, Sarah Nowicki, Andreas Haungs, Robert Snihur, C. H. Wiebusch, Kunal Deoskar, A. Karle, Ioana Codrina Maris, Sam De Ridder, Christoph Raab, Nadège Iovine, D. Berley, G. C. Hill, Bunheng Ty, Patrick Reichherzer, Ralph Engel, Moritz Kellermann, Giovanni Renzi, D. Seckel, Tyce DeYoung, George Japaridze, Roger Moore, Woosik Kang, Richard Naab, Marek Kowalski, Seongjin In, Elisa Resconi, Jan Conrad, K. Mase, Yuya Makino, Alessio Porcelli, Alexander A. Harnisch, Nick van Eijndhoven, Lew Classen, René Reimann, Leander Fischer, Thomas Ehrhardt, Christian Haack, Alexander Sandrock, Kirsten Tollefson, Kayla Leonard, Alexander Trettin, Sukeerthi Dharani, Francis Halzen, Lilly Peters, Juliana Stachurska, V Aswathi Balagopal, Gerrit Wrede, Johannes Werthebach, Thomas Huber, Ek Narayan Paudel, Michael J Larson, Allan Hallgren, Sandro Kopper, William Luszczak, M. Kauer, David Kappesser, Matti Jansson, P. Buford Price, Mark Weyrauch, Joakim Sandroos, Daniela Mockler, G. W. Sullivan, James E. Braun, Philipp Furst, Tim Ruhe, Paul Coppin, Andrea Turcati, Ella Roberts, Alex Pizzuto, Gary Binder, Xinyue Kang, Claudio Kopper, Subir Sarkar, and David Vannerom
- Subjects
Physics ,Dark matter ,Detector ,Astronomy - Published
- 2021
- Full Text
- View/download PDF
11. Explaining the MiniBooNE excess through a mixed model of neutrino oscillation and decay
- Author
-
S. Vergani, Janet Conrad, N. Kamp, M. A. Uchida, Alejandro Diaz, M. H. Shaevitz, and Carlos Arguelles
- Subjects
Physics ,Sterile neutrino ,Particle physics ,010308 nuclear & particles physics ,Oscillation ,Scattering ,Coupling (probability) ,01 natural sciences ,MiniBooNE ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Low Mass ,Neutrino oscillation ,Energy (signal processing) - Abstract
The electronlike excess observed by the MiniBooNE experiment is explained with a model comprising a new low mass state (O(1) eV) participating in neutrino oscillations and a new high mass state (O(100) MeV) that decays to ν+γ. Short-baseline oscillation datasets are used to predict the oscillation parameters. Fitting the MiniBooNE energy and scattering angle data, there is a narrow joint allowed region for the decay contribution at 95% CL. The result is a substantial improvement over the single sterile neutrino oscillation model, with Δχ2/dof=19.3/2 for a decay coupling of 2.8×10−7 GeV−1, high mass state of 376 MeV, oscillation mixing angle of 7×10−4 and mass splitting of 1.3 eV2. This model predicts that no clear oscillation signature will be observed in the FNAL short baseline program due to the low signal-level.
- Published
- 2021
- Full Text
- View/download PDF
12. Dark Matter Annihilation to Neutrinos: Current Limits and Future Prospects
- Author
-
Ibrahim Safa, Ali Kheirandish, Alejandro Diaz, Aaron C. Vincent, and Carlos Arguelles
- Subjects
Physics ,Particle physics ,Annihilation ,Dark matter ,Neutrino ,Current (fluid) - Published
- 2021
- Full Text
- View/download PDF
13. TauRunner: A Monte Carlo for Very-High-Energy Tau Neutrino Propagation
- Author
-
Jeffrey Lazar, Carlos Arguelles, Ibrahim Safa, Justin Vandenbroucke, Ali Kheirandish, Oswaldo Vazquez, and Alex Pizzuto
- Subjects
Physics ,High energy ,Particle physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Monte Carlo method ,Flux ,Python (programming language) ,Tau neutrino ,High Energy Physics::Experiment ,Neutrino ,computer ,Energy (signal processing) ,computer.programming_language - Abstract
The hunt for cosmogenic neutrinos is a target of next generation observatories: IceCube-Gen2, RNO, GRAND, POEMMA, and CHANT. In a recent publication, a novel detection strategy for these neutrinos has been put forward. This new technique relies on the observation of Earth-throughgoing tau neutrinos at PeV energies. By measuring the flux at this energy, we can indirectly observe the flux at EeV energies since these two are related by the cascading down of the neutrinos. However, such a link demands an accurate simulation of the VHE tau neutrino transport. TauRunner is a Python Monte Carlo (MC) package developed in 2019 that was intended for such effort, but contained some limitations. This contribution will present the newest version of this MC, which now incorporates all the neutrino flavors in the propagation as well as other features.
- Published
- 2021
- Full Text
- View/download PDF
14. χaroν: a tool for neutrino flux generation from WIMPs
- Author
-
Jeffrey Lazar, Ali Kheirandish, Carlos Arguelles, and Qinrui Liu
- Subjects
Physics ,COSMIC cancer database ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Dark matter ,Detector ,Gamma ray ,Astronomy ,Cosmic ray ,Observable universe ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Standard Model ,High Energy Physics::Experiment ,Neutrino - Abstract
Indirect searches for signatures of corpuscular dark matter have been performed using all cosmic messengers: gamma rays, cosmic rays, and neutrinos. The search for dark matter with neutrinos is important since they are the only courier that can reach detectors from dark matter processes in dense environments, such as the core of the Sun or Earth, or the edge of the observable Universe. One thing essential to experiments is the prediction of the neutrino signature in the detector. I will introduce χaroν, a software that bridges the dark sector and Standard Model by predicting neutrino fluxes from different celestial dark matter agglomerations in diverse scenarios. This package includes an updated computation of neutrino production and propagation to the detector.
- Published
- 2021
- Full Text
- View/download PDF
15. Decaying Dark Matter at IceCube and its Signature in High-Energy Gamma-Ray Experiments
- Author
-
Barbara Skrzypek, Carlos Arguelles, Marco Chianese, Skrzypek, Barbara, Arguelles, Carlo, and Chianese, Marco
- Subjects
Physics ,High energy ,Dark matter ,Gamma ray ,Astrophysics ,Signature (topology) - Published
- 2021
- Full Text
- View/download PDF
16. Searching for millicharged particles produced in cosmic-ray air showers
- Author
-
Víctor Muñoz, Carlos Arguelles, and Kevin J. Kelly
- Subjects
Physics ,Cosmic ray ,Astrophysics - Published
- 2021
- Full Text
- View/download PDF
17. A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory
- Author
-
J. Werthebach, A. Franckowiak, Chujie Chen, Ioana Codrina Maris, K. Hoshina, A. Steuer, A. Weindl, Maryon Ahrens, P. Schlunder, Saskia Philippen, Glenn Spiczak, G. Momenté, Segev BenZvi, Spencer Klein, M. Rameez, Sam De Ridder, Frederik Tenholt, R. Nagai, D. F. Cowen, Martin Unland Elorrieta, Stephen L. Hauser, Christoph Raab, Nadège Iovine, Barbara Skrzypek, Kara Hoffman, Sarah Mancina, N. van Eijndhoven, U. Naumann, Raamis Hussain, D. Berley, G. C. Hill, Tobias Hoinka, Vedant Basu, Steve Sclafani, J. Kiryluk, B. J. P. Jones, Andres Medina, D. Mockler, Bunheng Ty, Ralph Engel, Moritz Kellermann, U. Katz, Emily Dvorak, Timo Karg, K. Andeen, D. R. Nygren, Marek Kowalski, D. Kang, Giovanni Renzi, K. D. de Vries, M. Stamatikos, Hershal Pandya, Wolfgang Rhode, Robert Stein, A.A. Alves, Pablo Correa, D. Seckel, S. Fahey, Javier Gonzalez, Roxanne Turcotte, Maximilian Karl Scharf, Alexander Trettin, P. B. Price, I. Taboada, Gisela Anton, Michael O. Wolf, Lenka Tomankova, Max Renschler, Y. Makino, Matthias Vraeghe, Tyce DeYoung, K. Tollefson, D. J. Koskinen, K. Rawlins, Nathan Whitehorn, C. Weaver, T. Anderson, B. A. Clark, Francesco Lucarelli, Brandom Pries, L. Schumacher, Devyn Rysewyk Cantu, P. Peiffer, J. Kim, Daria Pankova, E. Friedman, M. Kauer, Alan Coleman, John Hardin, Shefali Shefali, Nora Valtonen-Mattila, M. E. Huber, D. B. Fox, Alexander Fritz, D. Z. Besson, T. O. B. Schmidt, E. Bourbeau, Suyong Choi, M. Silva, Najia Moureen Binte Amin, J. P. Lazar, Sebastian Böser, R. Morse, Spencer Griswold, Jakob Bottcher, T. Montaruli, David A. Williams, A. Goldschmidt, K. Mase, Abdul Rehman, David Kappesser, Kurt Woschnagg, Paul Evenson, Clara E. Hill, Le Viet Nguyen, Sebastian Sanchez Herrera, Marcos Santander, Carsten Rott, L. Gerhardt, Y. Popovych, J. Evans, Maria Tselengidou, D. Soldin, J. B. Tjus, Chiara Bellenghi, Alexander A. Harnisch, Benjamin Bastian, Anastasia Maria Barbano, Markus Ackermann, S. W. Barwick, Matti Jansson, Immacolata Carmen Rea, P. Eller, Simone Garrappa, H. Schieler, Dmitry Chirkin, Kael Hanson, A. Kyriacou, A. Olivas, Hermann Kolanoski, Simeon Reusch, A. O. Pollmann, Elisa Bernardini, K. Meagher, S. Hickford, J. C. Gallagher, Kirill Filimonov, Mehmet Gunduz, Agnieszka Leszczyńska, R. C. Bay, Alexander Kappes, Pranav Dave, Jan Soedingrekso, K. Krings, Xianwu Xu, J. Sandroos, James Madsen, Lu Lu, M. J. Weiss, Stef Verpoest, H. Dujmovic, Austin Schneider, Juan Carlos Diaz-Velez, Jenni Adams, K.-H. Becker, Yiqian Xu, M. Plum, A. Wallace, Katharina Morik, J. Stettner, Daniel Bindig, Ramesh Koirala, Gerrit Wrede, C.P. de los Heros, Thomas Huber, Ek Narayan Paudel, Allan Hallgren, Matt Dunkman, R. Joppe, T. Stezelberger, Colin Turley, S. Kopper, Christian Glaser, Paolo Desiati, S. Sarker, C. Alispach, Damian Pieloth, R. G. Stokstad, Ali Kheirandish, Sreetama Goswami, Minjin Jeong, Martin Ha Minh, T. Glüsenkamp, Janet Conrad, G. Krückl, Jannis Necker, Sebastian Baur, R. Cross, Sebastian Fiedlschuster, Surujhdeo Seunarine, Ken'ichi Kin, Jannes Brostean-Kaiser, Chunfai Tung, Alejandro Diaz, M. J. Larson, M. U. Nisa, Tim Ruhe, E. O'Sullivan, René Reimann, Chad Finley, Federica Bradascio, A. V. Balagopal, Alexander Burgman, M. Meier, Michael Campana, F. Huang, Christoph Tönnis, Benjamin Hokanson-Fasig, E. Blaufuss, Leander Fischer, Gerrit Roellinghoff, Mirco Hunnefeld, Marie Oehler, Thomas Stuttard, William Luszczak, G. H. Collin, Sarah Pieper, Dirk Ryckbosch, S. Robertson, R. Snihur, A. Ludwig, Wing Yan Ma, Yang Lyu, Grant Parker, L. Köpke, Karl J. Clark, Juanan Aguilar, I. Safa, Merlin Schaufel, James DeLaunay, Marjon Moulai, Olga Botner, Cristian Jesus Lozano Mariscal, Kendall Mahn, L. Classen, Johan Wulff, K. Wiebe, Timothyblake Watson, J. J. Beatty, Tianlu Yuan, Stephan Meighen-Berger, S. Yoshida, Kayla Leonard, A. Ishihara, V. Baum, H. Niederhausen, Won Nam Kang, Joshua Hignight, A. Sharma, Sukeerthi Dharani, Francis Halzen, J. Merz, Paras Koundal, Mike Richman, X. Bai, Konstancja Satalecka, F. McNally, Emma C. Hettinger, I. Ansseau, Michael Kovacevich, Theo Glauch, Juliana Stachurska, H. Dembinski, Reina H. Maruyama, Frank G. Schröder, Summer Blot, Thomas Ehrhardt, D. Tosi, D. van Eijk, Mark Weyrauch, Spencer Axani, Elisa Lohfink, Aaron Fienberg, Amirreza Raissi, S. Tilav, Michael DuVernois, Carlos Arguelles, Jessie Micallef, Stephanie Bron, R. S. Busse, Y. L. Li, J. P. Yanez, Gerald Przybylski, Christian Haack, Christopher Wiebusch, R. Halliday, Kunal Deoskar, K. Helbing, Alexander Sandrock, N. Kurahashi, Todor Stanev, Benedikt Riedel, Cristina Lagunas Gualda, C. Wendt, G. W. Sullivan, A. Karle, James E. Braun, Philipp Furst, D. Hebecker, G. de Wasseige, George Japaridze, Roger Moore, Paul Coppin, Andrea Turcati, T. Gregoire, J. van Santen, R. Hoffmann, Alex Pizzuto, Gary Binder, J. Bourbeau, Richard Naab, Zhedong Zhang, C. Walck, Thomas K. Gaisser, Ava Ghadimi, Franziska Tischbein, Seongjin In, Elisa Resconi, Alessio Porcelli, P. Mallik, Catherine De Clercq, M. Rongen, Qinrui Liu, Martina Karl, Jochen M. Schneider, Christian Spiering, Justin Vandenbroucke, Maria Prado Rodriguez, Abhishek Desai, Xinyue Kang, Claudio Kopper, S. C. Nowicki, Subir Sarkar, T. Kintscher, Frederik Hermann Lauber, Justin Lanfranchi, David Vannerom, Ben Smithers, Jean Pierre Twagirayezu, A. Haungs, Rui An, Nahee Park, K. Hultqvist, Darren Grant, T. Stürwald, Z. Griffith, Felix Henningsen, A. R. Fazely, Simona Toscano, J. L. Kelley, Markus Ahlers, Erik Ganster, Samvel Ter-Antonyan, Rasha Abbasi, B. J. Whelan, Jan Weldert, L. Halve, Physics, Faculty of Sciences and Bioengineering Sciences, Vriendenkring VUB, Elementary Particle Physics, and collaboration, The IceCube
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Astrophysics::High Energy Astrophysical Phenomena ,cs.LG ,Data analysis ,FOS: Physical sciences ,Fitting methods ,01 natural sciences ,Convolutional neural network ,Calibration ,Cluster finding ,Neutrino detectors ,Pattern recognition ,High Energy Physics - Experiment ,IceCube Neutrino Observatory ,Machine Learning (cs.LG) ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation ,Mathematical Physics ,010308 nuclear & particles physics ,business.industry ,hep-ex ,Deep learning ,Detector ,Neutrino detector ,Computer engineering ,Orders of magnitude (time) ,13. Climate action ,Cascade ,Pattern recognition (psychology) ,Artificial intelligence ,business - Abstract
Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented. The presented method is robust towards systematic uncertainties in the simulation and has been tested on experimental data. In comparison to standard reconstruction methods in IceCube, it can improve upon the reconstruction accuracy, while reducing the time necessary to run the reconstruction by two to three orders of magnitude., Comment: 39 pages, 15 figures, submitted to Journal of Instrumentation; added references
- Published
- 2021
18. Closing the Neutrino 'BSM Gap': Physics Potential of Atmospheric Through-Going Muons at DUNE
- Author
-
Carlos Arguelles, Austin Schneider, Barbara Skrzypek, and Janet Conrad
- Subjects
Physics ,Muon ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,Standard Model ,Nuclear physics ,High Energy Physics - Phenomenology ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Muon neutrino ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Event (particle physics) ,Cherenkov radiation - Abstract
Many Beyond-Standard Model physics signatures are enhanced in high-energy neutrino interactions. To explore these signatures, ultra-large Cherenkov detectors such as IceCube exploit event samples with charged current muon neutrino interactions > 1 TeV. Most of these interactions occur below the detector volume, and produce muons that enter the detector. However, the large spacing between detectors leads to inefficiency for measuring muons with energies below or near the critical energy of 400 GeV. In response, IceCube has built a densely instrumented region within the larger detector. This provides large samples of well-reconstructed interactions that are contained within the densely instrumented region, extending up to energies of ~50 GeV. This leaves a gap of relatively unexplored atmospheric-neutrino events with energies between 50 GeV and 1 TeV in the ultra-large detectors. In this paper we point out that interesting Beyond Standard Model signatures may appear in this energy window, and that early running of the DUNE far detectors can give insight into new physics that may appear in this range., 10 pages, 9 figures, 1 table
- Published
- 2021
- Full Text
- View/download PDF
19. EV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory
- Author
-
K. Tollefson, Albrecht Karle, U. Katz, R. S. Busse, G. H. Collin, Christopher Wiebusch, Kunal Deoskar, Thomas Ehrhardt, P. Schlunder, R. Hellauer, Spencer Axani, D. B. Fox, Kayla Leonard, R. Maunu, Alan Coleman, Sukeerthi Dharani, Francis Halzen, J. Merz, S. Hickford, R. Joppe, A. Wallace, Delia Tosi, Sebastian Baur, M. G. Aartsen, Carlos Arguelles, David Vannerom, I. Ansseau, Hermann Kolanoski, Juliana Stachurska, H. Dembinski, Stef Verpoest, Jessie Micallef, Matthias Vraeghe, George Japaridze, Roger Moore, Tim Ruhe, N. Kurahashi, Todor Stanev, C. Wendt, Ioana Codrina Maris, H. Bagherpour, Johan Wulff, Sebastian Böser, Olga Botner, J. Kim, Elisa Bernardini, A. Ludwig, Christoph Raab, Nadège Iovine, Timothyblake Watson, D. Heereman, Gisela Anton, M. Stamatikos, J. Bourbeau, K. Rawlins, G. de Wasseige, Won Nam Kang, V. Baum, Jenni Adams, D. Berley, G. C. Hill, H. Niederhausen, A. Steuer, C. Alispach, Bunheng Ty, Stephen L. Hauser, Raamis Hussain, Janet Conrad, B. Relethford, Jan Soedingrekso, Ralph Engel, Moritz Kellermann, Z. Griffith, Y. Makino, Seongjin In, R. Hoffmann, James Madsen, Konstancja Satalecka, Benjamin Bastian, Theo Glauch, Anastasia Maria Barbano, Saskia Philippen, F. Jonske, R. Cross, M. J. Larson, Lu Lu, T. Kittler, X. Bai, G. Neer, Alexander Fritz, A. Goldschmidt, D. van Eijk, Lenka Tomankova, Giovanni Renzi, D. Seckel, S. Fahey, Elisa Resconi, Alessio Porcelli, Claudio Kopper, Daniel Bindig, G. Krückl, Alejandro Diaz, C. Pérez de los Heros, E. O’Sullivan, Le Viet Nguyen, Wing Yan Ma, James DeLaunay, Marjon Moulai, R. G. Stokstad, K. Krings, M. Plum, P. B. Price, William Luszczak, M. Kauer, Suyong Choi, David Kappesser, S. E. Sanchez Herrera, Francesco Lucarelli, T. O. B. Schmidt, Tyce DeYoung, Chad Finley, Nathan Whitehorn, Immacolata Carmen Rea, Matti Jansson, D. Z. Besson, C. Walck, Thomas K. Gaisser, G. B. Yodh, A. Kyriacou, M. Silva, Najia Moureen Binte Amin, K.-H. Becker, Yiqian Xu, Qinrui Liu, J. Becker Tjus, T. Glüsenkamp, Subir Sarkar, Martina Karl, Matt Dunkman, Kendall Mahn, Christoph Tönnis, F. Huang, K. Meagher, Jochen M. Schneider, J. Stettner, T. R. Wood, Kurt Woschnagg, Paul Evenson, T. Palczewski, S. De Ridder, Y. L. Li, G. W. Sullivan, J. J. Beatty, Tianlu Yuan, Jeffrey Lazar, Chunfai Tung, James E. Braun, Alexander Trettin, E. Cheung, J. Werthebach, Thomas Stuttard, Mirco Hunnefeld, Marie Oehler, Alexander Sandrock, Elisa Lohfink, Thomas Meures, N. L. Strotjohann, M. A. Unland Elorrieta, M. Wallraff, Michael DuVernois, Benjamin Hokanson-Fasig, Felix Henningsen, Karl J. Clark, Simone Garrappa, Dmitry Chirkin, Sarah Pieper, D. Hebecker, Anatoli Fedynitch, K. Helbing, Chujie Chen, Dirk Ryckbosch, Joshua Hignight, M. Zöcklein, T. Grégoire, Timo Sturwald, J. C. Gallagher, Timo Karg, Gerald Przybylski, Federica Bradascio, Yang Lyu, Alexander Kappes, Alexander Burgman, M. Song, T. L. Carver, Paras Koundal, Mike Richman, Sarah Mancina, Paul Coppin, Anna Franckowiak, Tobias Hoinka, Vedant Basu, Steve Sclafani, F. McNally, A. R. Fazely, M. Usner, Grant Parker, R. Halliday, Stephan Meighen-Berger, K. D. de Vries, Gerrit Wrede, Andrea Turcati, J. van Santen, K. Hoshina, Glenn Spiczak, Thomas Huber, G. Momenté, Merlin Schaufel, A. Stößl, J. Kiryluk, K. Andeen, D. R. Nygren, Marek Kowalski, A. Weindl, Maryon Ahrens, Frederik Tenholt, R. Nagai, M. Medici, M. Rameez, Javier Gonzalez, Roxanne Turcotte, Alex Pizzuto, D. F. Cowen, Reina H. Maruyama, E. Pinat, N. Kulacz, U. Naumann, Martin Rongen, Ek Narayan Paudel, Allan Hallgren, Giorgio Maggi, K. Wiebe, A. Balagopal, Gary Binder, Zhedong Zhang, E. Unger, Simona Toscano, J. Auffenberg, Pablo Correa, Summer Blot, Brian Clark, C. De Clercq, P. Heix, K. Mase, P. Mallik, M. E. Huber, A. O'Murchadha, Marcos Santander, Ramesh Koirala, David A. Williams, L. Schumacher, Benedikt Riedel, S. Tilav, Max Renschler, D. Kang, D. J. Koskinen, Markus Ackermann, S. W. Barwick, L. Gerhardt, M. J. Weiss, E. Bourbeau, J. P. Yanez, Ben Smithers, Colin Turley, A. Olivas, S. Kopper, Spencer Griswold, I. Taboada, Michael O. Wolf, René Reimann, A. Haungs, M. Prado Rodriguez, Maria Tselengidou, D. Soldin, Nahee Park, Pranav Dave, K. Hultqvist, Darren Grant, E. Blaufuss, Mehmet Gunduz, Agnieszka Leszczyńska, R. C. Bay, M. Günder, Austin Schneider, Steven Robertson, Juan Carlos Diaz-Velez, Shefali Shefali, L. Classen, T. Stezelberger, Abdul Rehman, Carsten Rott, Y. Popovych, T. Kintscher, Frederik Hermann Lauber, Xianwu Xu, A. Terliuk, J. Sandroos, C. Bohm, Justin Lanfranchi, Christian Spiering, Justin Vandenbroucke, Abhishek Desai, S. C. Nowicki, Rasha Abbasi, B. J. Whelan, Jan Weldert, L. Halve, Philipp Eller, J. Felde, J. Buscher, D. Rysewyk Cantu, A. Obertacke Pollmann, J. L. Kelley, Markus Ahlers, Erik Ganster, Samvel Ter-Antonyan, Frank G. Schröder, J. Lünemann, N. van Eijndhoven, C. Haack, Emily Dvorak, Aaron Fienberg, Amirreza Raissi, Minjin Jeong, Chris Weaver, Stephanie Bron, C. J. Lozano Mariscal, H. Dujmovic, L. Rauch, S. Yoshida, Surujhdeo Seunarine, R. Snihur, Juanan Aguilar, Kael Hanson, A. Ishihara, Maximilian Meier, Paolo Desiati, Segev BenZvi, Spencer Klein, B. J. P. Jones, Andres Medina, Kara Hoffman, D. Mockler, Hershal Pandya, Daria Pankova, E. Friedman, Wolfgang Rhode, Robert Stein, L. Wills, P. Muth, R. Morse, Jakob Bottcher, T. Montaruli, Maximilian Karl Scharf, P. Peiffer, Ibrahim Safa, Damian Pieloth, Ali Kheirandish, W. Van Driessche, Jannes Brostean-Kaiser, M. U. Nisa, L. Köpke, T. Anderson, John Hardin, H. Schieler, Kirill Filimonov, Physics, Faculty of Sciences and Bioengineering Sciences, Vriendenkring VUB, and Elementary Particle Physics
- Subjects
Sterile neutrino ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,sterile [neutrino] ,01 natural sciences ,Cosmology ,IceCube ,High Energy Physics - Experiment ,Subatomär fysik ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,Astronomi, astrofysik och kosmologi ,Subatomic Physics ,TOOL ,Astronomy, Astrophysics and Cosmology ,atmosphere [muon] ,Muon neutrino ,Physics ,oscillation [neutrino] ,Astrophysics::Instrumentation and Methods for Astrophysics ,hep-ph ,neutrino: sterile ,mass difference [neutrino] ,ddc ,muon: atmosphere ,observatory ,High Energy Physics - Phenomenology ,Physique des particules élémentaires ,signature ,Particle physics ,data analysis method ,Scale (ratio) ,Astrophysics::High Energy Astrophysical Phenomena ,neutrino: mass difference ,FOS: Physical sciences ,IceCube Neutrino Observatory ,statistical analysis ,0103 physical sciences ,OSCILLATIONS ,ddc:530 ,010306 general physics ,hep-ex ,ICE ,High Energy Physics::Phenomenology ,neutrino: mixing angle ,CONVERSION ,Physics and Astronomy ,COSMOLOGY ,High Energy Physics::Experiment ,neutrino: oscillation ,BAYESIAN-INFERENCE ,mixing angle [neutrino] ,experimental results - Abstract
Physical review letters 125(14), 141801 (1-11) (2020). doi:10.1103/PhysRevLett.125.141801, The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100 eV$^2$. The best-fit point is found to be at sin$^2$($2θ_{24}$)=0.10 and $Δm_{41}^2$=4.5 eV$^2$, which is consistent with the no sterile neutrino hypothesis with a $p$ value of 8.0%., Published by APS, College Park, Md.
- Published
- 2020
- Full Text
- View/download PDF
20. IceCube-Gen2: The Window to the Extreme Universe
- Author
-
J. Kim, A. Gartner, A. Obertacke Pollmann, B. Hoffmann, J. L. Kelley, Markus Ahlers, Jenni Adams, Akimichi Taketa, D. van Eijk, Daniel Bindig, G. H. Collin, T. C. Arlen, Robert Lahmann, J. J. Beatty, Tianlu Yuan, U. Nauman, Azadeh Keivani, Y. L. Li, Karl J. Clark, T. Kintscher, M. Song, T. L. Carver, Paras Koundal, Michael Kovacevich, Christian Glaser, Frederik Hermann Lauber, T. Huege, Erik Ganster, Benedikt Riedel, D. Seckel, Anna Nelles, R. G. Stokstad, F. McNally, R. Maunu, M. Prado Rodriguez, Kayla Leonard, N. Kurahashi, James E. Braun, Amy Connolly, Samvel Ter-Antonyan, A. Terliuk, Justin Lanfranchi, Pranav Dave, Jannis Necker, C. Wendt, S. Wren, A. Sharma, Sukeerthi Dharani, David Vannerom, M. H. Shaevitz, Alexander Trettin, Reina H. Maruyama, Francis Halzen, J. Merz, K. Krings, Rasha Abbasi, Ben Smithers, Qinrui Liu, M. J. Larson, T. Anderson, Summer Blot, G. de Wasseige, I. Ansseau, D. Hebecker, Jorge Torres, Killian Holzapfel, Martina Karl, C. J. Lozano Mariscal, John Hardin, Jean Pierre Twagirayezu, Daniel García-Fernández, T. Stezelberger, S. Mandalia, E. O'Sullivan, R. Hoffmann, M. Plum, Juliana Stachurska, H. Dembinski, C. Pérez de los Heros, S. Márka, G. WSullivan, A. Haungs, Paul Coppin, Z. Griffith, J. C. Gallagher, Saskia Philippen, Federica Bradascio, Jochen M. Schneider, Srubabati Goswami, Andrea Turcati, Wing Yan Ma, Nahee Park, Y. Makino, Sarah Mancina, C. Walck, M. Kauer, Suyong Choi, Anna Franckowiak, Tobias Hoinka, Chad Finley, David Kappesser, T. Gregoire, Ella Roberts, J. van Santen, S. De Ridder, Jan Weldert, Chunfai Tung, F. Jonske, Ken'ichi Kin, L. Halve, Philipp Eller, K. Hultqvist, N. L. Strotjohann, H. Dujmovic, Vedant Basu, M. A. Unland Elorrieta, Alex Pizzuto, K. D. de Vries, I. CMariş, Gerrit Wrede, R. Gernhaeuser, Thomas Huber, Matti Jansson, Thomas K. Gaisser, M. Richman, Christoph Tönnis, James DeLaunay, Gary Binder, K.-H. Becker, Ek Narayan Paudel, Allan Hallgren, U. Latif, Hiroyuki Tanaka, I. Safa, Steve Sclafani, J. Kiryluk, K. Andeen, P. B. Price, H. Schieler, Kirill Filimonov, Segev BenZvi, Alexander Fritz, D. Z. Besson, Darren Grant, Marjon Moulai, Yiqian Xu, Felix Henningsen, S. Robertson, Aswathi Balagopal, Francesco Lucarelli, Pisin Chen, Matt Dunkman, Merlin Schaufel, Patrick Allison, Spencer Klein, Cosmin Deaconu, Tim Ruhe, A. Ludwig, George Japaridze, Javier Gonzalez, C. B. Krauss, Roxanne Turcotte, T. O. B. Schmidt, Simona Toscano, Roger Moore, P. Heix, R. S. Busse, Chujie Chen, Pablo Correa, L. Gerhard, S. De Kockere, J. Felde, Surujhdeo Seunarine, R. Snihur, J. Buscher, D. Rysewyk Cantu, A. Weindl, R. Hellauer, Giorgio Maggi, H. Niederhausen, Mauricio Bustamante, D. Southall, Julia Böttcher, J. Bourbeau, Lenka Tomankova, Maryon Ahrens, A. Burgman, Christopher Wiebusch, Darko Veberič, Juanan Aguilar, T. R. Wood, Christian Spiering, Frederik Tenholt, R. Nagai, L. Schumacher, C. De Clercq, Benjamin Hokanson-Fasig, L. V. Nguyen, C. Lagunas Gualda, K. Hughes, Kara Hoffman, C. Alispach, J. M. LoSecco, Joshua Hignight, K. Helbing, Timo Sturwald, Xinyue Kang, Richard Naab, Kunal Deoskar, Janet Conrad, Zackary Meyers, K. Meagher, Mehmet Gunduz, Agnieszka Leszczyńska, R. C. Bay, David A. Williams, Kurt Woschnagg, M. Zöcklein, M. Silva, Claudio Kopper, Eric Oberla, Ramesh Koirala, E. Cheung, Thomas Stuttard, Martin Rongen, Najia Moureen Binte Amin, R. Cross, Paul Evenson, A. Karle, Sebastian Böser, Seongjin In, Johannes Werthebach, J. P. Lazar, Markus Ackermann, Austin Schneider, Yang Lyu, Justin Vandenbroucke, Juan Carlos Diaz-Velez, Beverley A. Clark, Timo Karg, Sarah Pieper, Hershal Pandya, Wolfgang Rhode, Zhedong Zhang, P. Schlunder, A. Ishihara, Elisa Resconi, Subir Sarkar, William Luszczak, Clara E. Hill, Ava Ghadimi, Alessio Porcelli, Alan Coleman, J. Auffenberg, Grant Parker, Robert Stein, Dirk Ryckbosch, Benjamin Bastian, Anastasia Maria Barbano, Abhishek Desai, T. Kittler, J. Nam, P. Mallik, E. Blaufuss, S. Zierke, T. Stanev, M. Bohmer, Stephan Meighen-Berger, Simone Garrappa, P. Muth, Dmitry Chirkin, M. E. Huber, Marcos Santander, Christoph Raab, Nadège Iovine, J. Becker Tjus, L. Classen, Colin Turley, S. C. Nowicki, K. Farrag, M. Kleifges, O. Kalekin, A. Olivas, Alexander Kappes, D. Berley, G. C. Hill, Abigail G. Vieregg, Frank G. Schröder, D. Heinen, Erin Carnie-Bronca, N. Kulacz, D. Tosi, J. C. Hanson, Bunheng Ty, Ralph Engel, Moritz Kellermann, Gisela Anton, Elisa Lohfink, Elisa Bernardini, Damian Pieloth, Ali Kheirandish, Jan Soedingrekso, Giovanni Renzi, Michael DuVernois, Jannes Brostean-Kaiser, K. Wiebe, S. Fahey, A. R. Fazely, Tyce DeYoung, J. Lünemann, Thomas Ehrhardt, Nathan Whitehorn, Immacolata Carmen Rea, M. U. Nisa, Aaron Fienberg, Gerald Przybylski, G. Krückl, L. Papp, Amirreza Raissi, L. Köpke, Chris Weaver, R. Halliday, Alejandro Diaz, Stephanie Bron, S. Söldner-Rembold, James Pinfold, Ryan Burley, M. Riegel, H. Bagherpour, Stephanie Wissel, Olga Botner, Y. Pan, A. Steuer, S. Tilav, D. Kang, M. deWith, V. Baum, J. P. Yanez, I. Taboada, Stephen L. Hauser, Raamis Hussain, Michael O. Wolf, M. Stamatikos, John Evans, Shefali Shefali, Christoph Welling, Abdul Rehman, Carsten Rott, K. Tollefson, A. Goldschmidt, Y. Popovych, Troels Petersen, S. E. Sanchez Herrera, Simeon Reusch, S. Hickford, Xianwu Xu, J. Sandroos, C. Bohm, R. Joppe, Spencer Axani, Sebastian Baur, Carlos Arguelles, Jessie Micallef, Teppei Katori, K. Rawlins, James Madsen, Lu Lu, M. G. Aartsen, T. Glüsenkamp, M. Meier, Michael Campana, P. Sandstrom, Kendall Mahn, B. J. P. Jones, K. Hoshina, Glenn Spiczak, Andres Medina, G. Momenté, D. Mockler, M. Rameez, D. F. Cowen, Daria Pankova, E. Friedman, R. Morse, T. Montaruli, E. Unger, Maximilian Karl Scharf, P. Peiffer, J. Stettner, Gerrit Roellinghoff, Mirco Hunnefeld, Marie Oehler, Max Renschler, D. J. Koskinen, E. Bourbeau, Spencer Griswold, Maria Tselengidou, D. Soldin, Z. Márka, Minjin Jeong, L. Rauch, S. Yoshida, N. van Eijndhoven, C. Haack, Emily Dvorak, D. R. Nygren, Marek Kowalski, Kael Hanson, Paolo Desiati, J. Haugen, Lars Steffen Weinstock, Johan Wulff, Won Nam Kang, Timothyblake Watson, X. Bai, G. Neer, Konstancja Satalecka, Theo Glauch, U. Katz, Alexander Sandrock, Ilse Plaisier, K. Mase, D. B. Fox, Hermann Kolanoski, M. J. Weiss, Stef Verpoest, Imre Bartos, David J. Smith, S. Kopper, René Reimann, Leander Fischer, F. Huang, Matthias Vraeghe, Physics, Faculty of Sciences and Bioengineering Sciences, Vriendenkring VUB, and Elementary Particle Physics
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Nuclear and High Energy Physics ,Active galactic nucleus ,010308 nuclear & particles physics ,High-energy astronomy ,Gravitational wave ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,FOS: Physical sciences ,Cosmic ray ,01 natural sciences ,Universe ,Neutron star ,0103 physical sciences ,Neutrino ,Neutrino astronomy ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,media_common - Abstract
The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the universe at the highest energies. IceCube-Gen2 is designed to: 1) Resolve the high-energy neutrino sky from TeV to EeV energies; 2) Investigate cosmic particle acceleration through multi-messenger observations; 3) Reveal the sources and propagation of the highest energy particles in the universe; 4) Probe fundamental physics with high-energy neutrinos. IceCube-Gen2 will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about \$350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy universe. This challenging mission can be fully addressed only in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years., Comment: 56 pages, 29 figures
- Published
- 2020
- Full Text
- View/download PDF
21. IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae
- Author
-
C. Haack, Immacolata Carmen Rea, Emily Dvorak, K.-H. Becker, K. Hoshina, Yiqian Xu, Matt Dunkman, K. Mase, Yuya Makino, Minjin Jeong, Timothyblake Watson, Thomas Meures, B. Relethford, E. Cheung, Saskia Philippen, M. J. Weiss, Konstancja Satalecka, Theo Glauch, L. Rauch, U. Katz, Thomas Stuttard, S. De Ridder, Jeffrey Lazar, P. B. Price, D. Heereman, S. Yoshida, D. B. Fox, S. Kopper, Sarah Pieper, K. Jero, N. L. Strotjohann, Hermann Kolanoski, Dirk Ryckbosch, Stef Verpoest, Colin Turley, Felix Henningsen, M. Zöcklein, René Reimann, C. Alispach, Lenka Tomankova, T. Grégoire, Timo Karg, A. Steuer, Stephan Meighen-Berger, Janet Conrad, Thomas Ehrhardt, Frank G. Schröder, A. R. Fazely, M. Silva, Francesco Lucarelli, Raamis Hussain, R. Cross, A. Obertacke Pollmann, E. Pinat, T. O. B. Schmidt, Johannes Werthebach, M. Usner, Kael Hanson, Karl J. Clark, Maximilian Meier, S. Hickford, R. Joppe, Delia Tosi, Sebastian Baur, Chujie Chen, A. Weindl, Maryon Ahrens, Frederik Tenholt, R. Nagai, K. Helbing, Won Nam Kang, X. Bai, G. Neer, Simona Toscano, P. Heix, R. Maunu, J. Lünemann, William Luszczak, S. Tilav, M. Medici, Christian Spiering, L. Wills, P. Muth, P. Schlunder, Daria Pankova, E. Friedman, R. S. Busse, M. Song, T. L. Carver, Mike Richman, Amirreza Raissi, Federica Bradascio, Alexander Burgman, T. R. Wood, Ramesh Koirala, J. P. Yanez, Karim Ghorbani, Spencer Axani, Christopher Wiebusch, Kunal Deoskar, Paolo Desiati, Chris Weaver, Stephanie Bron, Kurt Woschnagg, C. J. Lozano Mariscal, G. Merino, Tim Ruhe, Justin Vandenbroucke, H. Bagherpour, Alexander Sandrock, J. L. Kelley, Markus Ahlers, Martin Rongen, George Japaridze, Roger Moore, A. Ludwig, Olga Botner, Paul Evenson, M. G. Aartsen, N. Wandkowsky, H. Dujmovic, Merlin Schaufel, M. Stamatikos, E. Blaufuss, Ioana Codrina Maris, L. Wille, H. Niederhausen, Carlos Arguelles, Ibrahim Safa, V. Baum, Jessie Micallef, L. Classen, Damian Pieloth, Ali Kheirandish, N. Kurahashi, J. Bourbeau, D. Kang, Todor Stanev, K. Tollefson, Surujhdeo Seunarine, Albrecht Karle, D. van Eijk, Christoph Raab, Nadège Iovine, P. Mallik, Simone Garrappa, Dmitry Chirkin, S. C. Nowicki, W. Van Driessche, C. Wendt, Alexander Kappes, Erik Ganster, K. Mallot, R. Morse, James W. Wood, Z. Griffith, Jakob Bottcher, D. Berley, G. C. Hill, Bunheng Ty, R. Snihur, T. Montaruli, Jannes Brostean-Kaiser, Juanan Aguilar, G. de Wasseige, G. W. Sullivan, K. Rawlins, Donglian Xu, Seongjin In, B. J. P. Jones, Ralph Engel, Moritz Kellermann, Elisa Resconi, I. Taboada, Samvel Ter-Antonyan, Elisa Lohfink, James E. Braun, Gisela Anton, James Madsen, Lu Lu, Alessio Porcelli, T. Kintscher, Frederik Hermann Lauber, Giovanni Renzi, A. Goldschmidt, D. Hebecker, Qinrui Liu, R. Hoffmann, T. Glüsenkamp, Le Viet Nguyen, L. Köpke, D. Seckel, S. Fahey, Michael O. Wolf, Alexander Fritz, D. Z. Besson, Martina Karl, A. Wallace, A. Terliuk, Paul Coppin, Andrea Turcati, Justin Lanfranchi, J. van Santen, Mehr Nisa, Jochen M. Schneider, B. J. Whelan, Claudio Kopper, A. Ishihara, Tyce DeYoung, Andres Medina, Alexander Trettin, Nathan Whitehorn, Alex Pizzuto, D. R. Nygren, Gerald Przybylski, S. E. Sanchez Herrera, M. A. Unland Elorrieta, Gary Binder, R. Halliday, A. Haungs, C. Pérez de los Heros, K. Krings, D. Mockler, Nahee Park, K. Hultqvist, M. Wallraff, Darren Grant, Kendall Mahn, C. Walck, Alan Coleman, E. O’Sullivan, T. Anderson, Marek Kowalski, J. C. Gallagher, M. Plum, Subir Sarkar, Jan Weldert, Thomas K. Gaisser, G. B. Yodh, A. Kyriacou, Gerrit Wrede, K. Meagher, L. Halve, Philipp Eller, Thomas Huber, Allan Hallgren, Benjamin Hokanson-Fasig, Yang Lyu, Elisa Bernardini, J. Auffenberg, Chunfai Tung, J. Becker Tjus, J. Felde, J. Buscher, D. Rysewyk Cantu, Jenni Adams, P. Peiffer, Joshua Hignight, Timo Sturwald, H. Schieler, Kirill Filimonov, K. Wiebe, Steven Robertson, R. G. Stokstad, Segev BenZvi, Shefali Shefali, Spencer Klein, Abdul Rehman, Carsten Rott, Kara Hoffman, Javier Gonzalez, Roxanne Turcotte, Giorgio Maggi, Matthias Vraeghe, C. De Clercq, Hershal Pandya, Wolfgang Rhode, David A. Williams, Xianwu Xu, Robert Stein, J. Sandroos, Markus Ackermann, S. W. Barwick, C. Bohm, J. Kim, Daniel Bindig, K. D. de Vries, N. Kulacz, Brian Clark, Chad Finley, Christoph Tönnis, Pranav Dave, M. Günder, T. Stezelberger, G. H. Collin, Sarah Mancina, Anna Franckowiak, Tobias Hoinka, Kayla Leonard, Steve Sclafani, Jan Soedingrekso, Francis Halzen, J. Kiryluk, K. Andeen, I. Ansseau, G. Krückl, Juliana Stachurska, Alejandro Diaz, Pablo Correa, H. Dembinski, M. Kauer, Suyong Choi, David Kappesser, R. Hellauer, Matti Jansson, T. Palczewski, Sebastian Böser, Benjamin Bastian, Anastasia Maria Barbano, T. Kittler, B. Eberhardt, M. E. Huber, Marcos Santander, L. Gerhardt, A. Olivas, M. J. Larson, Wing Yan Ma, James DeLaunay, Marjon Moulai, J. J. Beatty, Tianlu Yuan, F. McNally, A. Stößl, Reina H. Maruyama, Summer Blot, F. Jonske, L. Schumacher, F. Huang, Mehmet Gunduz, Agnieszka Leszczyńska, R. C. Bay, Austin Schneider, Juan Carlos Diaz-Velez, Glenn Spiczak, G. Momenté, M. Rameez, D. F. Cowen, U. Naumann, E. Unger, A. O'Murchadha, Max Renschler, D. J. Koskinen, E. Bourbeau, Spencer Griswold, Maria Tselengidou, D. Soldin, J. Stettner, Mirco Hunnefeld, Marie Oehler, N. van Eijndhoven, Physics, Faculty of Sciences and Bioengineering Sciences, Vriendenkring VUB, and Elementary Particle Physics
- Subjects
010504 meteorology & atmospheric sciences ,High-energy astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Neutrino astronomy ,High energy astrophysics ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Pulsar ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Astronomy and Astrophysics ,Galactic plane ,COSMIC-RAYS ,CRAB-NEBULA ,Crab Nebula ,Physics and Astronomy ,13. Climate action ,Space and Planetary Science ,GALACTIC SOURCES ,DISCOVERY ,Physique des particules élémentaires ,High Energy Physics::Experiment ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,GAMMA-RAY EMISSION ,Lepton - Abstract
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray emitters. In the absence of any significant correlation, we set upper limits on the total neutrino emission from those PWNe and constraints on hadronic spectral components., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2020
- Full Text
- View/download PDF
22. Sterile Neutrinos in Astrophysical Neutrino Flavor
- Author
-
K Farrag, S. Mandalia, Jordi Salvado, Carlos Arguelles, Teppei Katori, and R. Khandelwal
- Subjects
Physics ,Particle physics ,Sterile neutrino ,Unitarity ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,High Energy Physics::Lattice ,Physics beyond the Standard Model ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Astronomy and Astrophysics ,Space (mathematics) ,01 natural sciences ,Neutrino detector ,Phase space ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Mixing (physics) - Abstract
In this paper, we study the effect of active-neutrino-sterile-neutrino mixing in the expected high-energy astrophysical neutrino flavor content. Non-unitarity in the measurement of the three-active neutrinos can be due to the existence of sterile neutrino states. We introduce the concept of the four-flavor tetrahedron in order to visualize the lack of unitarity in the astrophysical neutrino three-flavor triangle. We demonstrate that active-sterile neutrino mixings modify the allowed region of the astrophysical flavor ratio from the standard case. However, a projection of the four-flavor tetrahedron has restrictions of phase space similar to the three-flavor triangle. On the other hand, the initial presence of astrophysical sterile neutrinos drastically changes the scenario, and it allows an apparent unitarity violation in the three-flavor triangle space. Using current global fit constraints including the non-unitarity case, we also illustrate the allowed astrophysical neutrino flavor ratios. Thus, the measurement of the high-energy astrophyscal neutrino flavor content allows us to explore sterile neutrinos independently of the sterile neutrino mass scale. These are topics of investigation for current and future neutrino telescopes.
- Published
- 2020
- Full Text
- View/download PDF
23. Test of Lorentz Violation with Astrophysical Neutrino Flavor at IceCube
- Author
-
Carlos Arguelles, Teppei Katori, K Farrag, and S. Mandalia
- Subjects
Physics ,symbols.namesake ,Particle physics ,Astrophysics::High Energy Astrophysical Phenomena ,Lorentz transformation ,High Energy Physics::Phenomenology ,Astrophysics::Instrumentation and Methods for Astrophysics ,symbols ,High Energy Physics::Experiment ,Sensitivity (control systems) ,Neutrino - Abstract
Astrophysical high-energy neutrinos observed by IceCube are sensitive to small effects in a vacuum such as those motivated from quantum-gravity theories. Here, we discuss the potential sensitivity to Lorentz violation in the diffuse astrophysical neutrino data from IceCube. The estimated sensitivity reaches the Planck-scale physics motivated region providing IceCube with real discovery potential for Lorentz violation.
- Published
- 2020
- Full Text
- View/download PDF
24. A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017
- Author
-
Alexander Trettin, J. C. Gallagher, Gerrit Wrede, Federica Bradascio, S. Tilav, K. Rawlins, Alexander Burgman, C. J. Lozano Mariscal, K. Helbing, Thomas Huber, Ek Narayan Paudel, Allan Hallgren, J. P. Yanez, H. Dujmovic, D. Tosi, James Madsen, Lu Lu, P. Schlunder, Rasha Abbasi, B. J. Whelan, Won Nam Kang, D. Kang, Elisa Lohfink, X. Bai, I. Safa, A. Wallace, Surujhdeo Seunarine, R. Snihur, Juanan Aguilar, I. Taboada, Michael DuVernois, P. B. Price, Francesco Lucarelli, Merlin Schaufel, Michael O. Wolf, T. O. B. Schmidt, Sarah Mancina, Minjin Jeong, T. Glüsenkamp, Kurt Woschnagg, Simon Hauser, Paul Evenson, K. D. de Vries, Simone Garrappa, M. Meier, David Vannerom, Michael Campana, Dmitry Chirkin, Gerald Przybylski, Alexander Kappes, Jan Weldert, L. Halve, M. Ha Minh, Tobias Hoinka, R. Halliday, Antonio Augusto Alves Jr., A. Ishihara, K. Tollefson, A. Desai, Vedant Basu, Steve Sclafani, M. Stamatikos, B. J. P. Jones, Thomas Ehrhardt, J. Kiryluk, Alexander Sandrock, Kendall Mahn, Gisela Anton, Karl J. Clark, K. Andeen, Christian Haack, C. Pérez de los Heros, Jan Soedingrekso, Frank G. Schröder, Paras Koundal, Mike Richman, Andres Medina, Z. Griffith, A. Goldschmidt, George Japaridze, Saskia Philippen, Pablo Correa, D. Mockler, Simeon Reusch, Michael Kovacevich, Roger Moore, S. Yoshida, B. A. Clark, G. Krückl, Benjamin Hokanson-Fasig, D. Rysewyk Cantu, A. Obertacke Pollmann, U. Katz, K. Hoshina, D. Hebecker, J. Bourbeau, D. R. Nygren, Yang Lyu, Richard Naab, Grant Parker, Lenka Tomankova, Alejandro Diaz, N. van Eijndhoven, D. F. Cowen, Glenn Spiczak, Marek Kowalski, J. L. Kelley, Markus Ahlers, Spencer Axani, Aaron Fienberg, Daria Pankova, E. Friedman, M. Silva, Seongjin In, Elisa Resconi, Alessio Porcelli, E. O'Sullivan, Lisa Johanna Schumacher, Najia Moureen Binte Amin, C. Alispach, Amirreza Raissi, Janet Conrad, Stephanie Bron, Felix Henningsen, M. J. Larson, Le Viet Nguyen, Emily Dvorak, G. Momenté, M. Rameez, M. Prado Rodriguez, Pranav Dave, Carlos Arguelles, K. Wiebe, J. P. Lazar, Clara E. Hill, Erik Ganster, Shefali Shefali, Samvel Ter-Antonyan, A. Steuer, Chunfai Tung, D. B. Fox, Jessie Micallef, Chad Finley, Christoph Tönnis, Raamis Hussain, Abdul Rehman, Carsten Rott, Y. Popovych, K. Krings, Jenni Adams, K. Mase, Alexander A. Harnisch, S. Robertson, Joshua Hignight, R. Cross, Johannes Werthebach, Wing Yan Ma, James DeLaunay, Marjon Moulai, Simona Toscano, Benedikt Riedel, D. Seckel, M. Plum, Y. Makino, Alexander Fritz, D. Z. Besson, Javier Gonzalez, Roxanne Turcotte, M. J. Weiss, R. Morse, Jakob Bottcher, T. Montaruli, S. De Ridder, Xianwu Xu, J. Sandroos, Matthias Vraeghe, Christian Glaser, Brandom Pries, S. Hickford, Paul Coppin, Maximilian Karl Scharf, Xinyue Kang, Olga Botner, S. Kopper, J. Kim, René Reimann, Hermann Kolanoski, R. G. Stokstad, A. V. Balagopal, Andrea Turcati, J. Evans, C. De Clercq, Kael Hanson, U. Naumann, Claudio Kopper, A. Franckowiak, T. Stezelberger, Timo Karg, V. Baum, Leander Fischer, R. Joppe, Stef Verpoest, Jannis Necker, C. Lagunas Gualda, Chujie Chen, T. Gregoire, A. Weindl, Maryon Ahrens, Subir Sarkar, K. Meagher, William Luszczak, P. Peiffer, Daniel Bindig, G. H. Collin, Frederik Tenholt, R. Nagai, Johan Wulff, Timothyblake Watson, Paolo Desiati, C. Weaver, M. E. Huber, Sebastian Baur, Marcos Santander, Ramesh Koirala, Sebastian Fiedlschuster, Alan Coleman, David A. Williams, J. van Santen, J. Stettner, L. Gerhardt, A. Olivas, Konstancja Satalecka, E. Blaufuss, Alex Pizzuto, Markus Ackermann, Theo Glauch, S. W. Barwick, Elisa Bernardini, A. Kyriacou, L. Classen, Gary Binder, D. van Eijk, Sebastian Böser, F. Huang, Gerrit Roellinghoff, J. Becker Tjus, Mark Weyrauch, Kayla Leonard, Y. L. Li, Sukeerthi Dharani, Francis Halzen, J. Merz, Mirco Hunnefeld, Marie Oehler, I. Ansseau, Benjamin Bastian, Anastasia Maria Barbano, Juliana Stachurska, H. Dembinski, G. W. Sullivan, Max Renschler, James E. Braun, D. J. Koskinen, M. Kauer, Suyong Choi, E. Bourbeau, David Kappesser, Matti Jansson, N. Kurahashi, Spencer Griswold, Todor Stanev, C. Wendt, Maria Tselengidou, D. Soldin, Philipp Furst, Mehmet Gunduz, G. de Wasseige, R. Hoffmann, C. Walck, Thomas K. Gaisser, Agnieszka Leszczyńska, R. C. Bay, Tim Ruhe, Austin Schneider, A. Ludwig, H. Niederhausen, Juan Carlos Diaz-Velez, Ken'ichi Kin, J. J. Beatty, Tianlu Yuan, F. McNally, Emma C. Hettinger, Reina H. Maruyama, Summer Blot, Segev BenZvi, Spencer Klein, Kara Hoffman, Hershal Pandya, Wolfgang Rhode, Robert Stein, T. Anderson, John Hardin, Chiara Bellenghi, H. Schieler, Kirill Filimonov, Damian Pieloth, Ali Kheirandish, Jannes Brostean-Kaiser, Ben Smithers, M. U. Nisa, L. Köpke, Jean Pierre Twagirayezu, A. Haungs, Nahee Park, K. Hultqvist, Darren Grant, T. Kintscher, Frederik Hermann Lauber, Justin Lanfranchi, Christian Spiering, Justin Vandenbroucke, S. C. Nowicki, S. E. Sanchez Herrera, K.-H. Becker, Yiqian Xu, Matt Dunkman, Thomas Stuttard, Sarah Pieper, Dirk Ryckbosch, Stephan Meighen-Berger, Qinrui Liu, Martina Karl, Jochen M. Schneider, Srubabati Goswami, M. A. Unland Elorrieta, Martin Rongen, Zhedong Zhang, Ava Ghadimi, Franziska Tischbein, P. Mallik, P. Eller, Colin Turley, R. S. Busse, Christopher Wiebusch, Kunal Deoskar, A. Karle, Ioana Codrina Maris, Christoph Raab, Nadège Iovine, D. Berley, G. C. Hill, Bunheng Ty, Ralph Engel, Moritz Kellermann, Giovanni Renzi, S. Fahey, A. R. Fazely, Tyce DeYoung, Nathan Whitehorn, Immacolata Carmen Rea, Physics, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Vriendenkring VUB
- Subjects
010504 meteorology & atmospheric sciences ,High-energy astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,model [emission] ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,01 natural sciences ,law.invention ,IceCube Neutrino Observatory ,IceCube ,blazar ,law ,emission [gamma ray] ,0103 physical sciences ,Cosmic ray sources ,High-energy astrophysics ,Particle astrophysics ,energy: high [neutrino] ,Blazar ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,media_common ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Astroparticle physics ,Physics ,background ,Astronomy and Astrophysics ,Universe ,messenger ,observatory ,Space and Planetary Science ,ddc:520 ,time dependence ,acceleration [cosmic radiation] ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,Flare - Abstract
High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong variability, inducing a very prominent gamma-ray flare observed in 2015 June. This event motivated a dedicated study of the blazar, which consists of searching for a time-dependent neutrino signal correlated with the gamma-ray emission. No evidence for a time-dependent signal is found. Hence, an upper limit on the neutrino fluence is derived, allowing us to constrain a hadronic emission model.
- Published
- 2020
- Full Text
- View/download PDF
25. Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
- Author
-
A. O'Murchadha, D. J. Koskinen, Timothyblake Watson, Timo Karg, A. Kyriacou, E. Bourbeau, R. Maunu, C. Pérez de los Heros, T. Menne, Matthias Vraeghe, Maria Tselengidou, E. O’Sullivan, B. Relethford, J. Auffenberg, Raffaela Busse, D. Soldin, K. Rawlins, Claudio Kopper, J. Becker Tjus, Konstancja Satalecka, Subir Sarkar, Z. Griffith, Theo Glauch, R. Hellauer, K. Mallot, B. J. P. Jones, U. Katz, Minjin Jeong, James W. Wood, James Madsen, Thomas Meures, K. Hoshina, M. E. Huber, P. B. Price, Benjamin Hokanson-Fasig, N. L. Strotjohann, Segev BenZvi, Felix Henningsen, Glenn Spiczak, G. Momenté, M. Rameez, Lu Lu, Marcos Santander, R. Ström, Won Nam Kang, A. R. Fazely, H. Bagherpour, E. Pinat, P. Backes, X. Bai, D. van Eijk, Simona Toscano, D. F. Cowen, U. Naumann, K. D. de Vries, Spencer Klein, Andres Medina, Olga Botner, S. Tilav, E. Unger, L. Gerhardt, G. Neer, T. Kintscher, Francesco Lucarelli, Frederik Hermann Lauber, S. Hickford, A. Olivas, J. J. Beatty, Daniel Bindig, J. P. Yanez, N. Kulacz, G. H. Collin, Azadeh Keivani, T. Glüsenkamp, T. O. B. Schmidt, V. Baum, Teresa Montaruli, K. Jero, Tianlu Yuan, Sebastian Böser, C. Chen, Kara Hoffman, Kendall Mahn, K. Wiebe, J. Stettner, Hermann Kolanoski, A. Terliuk, S. Westerhoff, T. R. Wood, Justin Lanfranchi, R. Turcotte, K. Helbing, Yiqian Xu, Karl J. Clark, Matt Dunkman, Hrvoje Dujmovic, Sander Vanheule, Javier Gonzalez, L. Rauch, Anastasia Maria Barbano, Kurt Woschnagg, T. Kittler, G. W. Sullivan, Giorgio Maggi, James E. Braun, Alexander Sandrock, Thomas Ehrhardt, E. Cheung, Thomas Stuttard, H.-P. Bretz, Qinrui Liu, Martina Karl, M. Song, T. L. Carver, Mike Richman, Jochen M. Schneider, Paul Evenson, Hershal Pandya, C. De Clercq, Mirco Hunnefeld, Wolfgang Rhode, Dirk Ryckbosch, Nahee Park, K. Hultqvist, Stephan Meighen-Berger, Chunfai Tung, S. Yoshida, Elisa Bernardini, David A. Williams, Robert Stein, Lenka Tomankova, D. Hebecker, Karim Ghorbani, Spencer Axani, Simone Garrappa, Darren Grant, L. Wills, Markus Ackermann, S. W. Barwick, M. Stamatikos, D. Rysewyk, M. Silva, Kayla Leonard, M. J. Larson, M. A. Unland Elorrieta, Dmitry Chirkin, Sarah Mancina, Sarah Nowicki, Alexander Kappes, N. Kurahashi, Jenni Adams, I. Taboada, P. Peiffer, Joshua Hignight, Todor Stanev, C. Wendt, Paul Coppin, Michael O. Wolf, P. Nakarmi, Carlos Arguelles, J. P. A. M. de André, N. van Eijndhoven, C. Haack, Delia Tosi, Anna Franckowiak, Tobias Hoinka, Andrea Turcati, Jessie Micallef, A. Goldschmidt, Jung-Hyun Kim, Ibrahim Safa, Francis Halzen, P. Schlunder, G. de Wasseige, M. Wallraff, F. Huang, J. van Santen, A. Stößl, M. Börner, Steve Sclafani, Damian Pieloth, Ali Kheirandish, W. Van Driessche, J. Kiryluk, Alex Pizzuto, Daria Pankova, R. Hoffmann, E. Friedman, George Japaridze, Roger Moore, Gary Binder, Christian Spiering, D. R. Nygren, Reina H. Maruyama, I. Ansseau, K. Becker, Jan Soedingrekso, C. Walck, Marek Kowalski, Steven Robertson, Elisa Lohfink, K. Andeen, Jannes Brostean-Kaiser, Summer Blot, Thomas K. Gaisser, G. B. Yodh, J. Bourbeau, E. Jacobi, R. G. Stokstad, R. Nahnhauer, Gisela Anton, A. Stasik, Justin Vandenbroucke, Juliana Stachurska, H. Dembinski, Emily Dvorak, L. Köpke, Alexander Fritz, D. Z. Besson, Chad Finley, G. Krückl, L. Schumacher, Carsten Rott, Tim Ruhe, Colin Turley, C. Alispach, Seongjin In, Gerald Przybylski, Elisa Resconi, T. Anderson, M. G. Aartsen, Janet Conrad, Federica Bradascio, Alexander Burgman, Pablo Correa, H. Niederhausen, K. Mase, Yuya Makino, R. Cross, Xianwu Xu, Christoph Tönnis, J. Sandroos, Mehmet Gunduz, Johannes Werthebach, M. S. Sutherland, A. Ishihara, R. C. Bay, M. J. Weiss, Kirill Filimonov, Austin Schneider, J. C. Gallagher, Juan Carlos Diaz-Velez, M. Usner, S. Kopper, M. Leuermann, Gerrit Wrede, Kael Hanson, René Reimann, William Luszczak, Allan Hallgren, M. Kauer, Martin Rongen, Pranav Dave, Samridha Kunwar, D. Altmann, K. Meagher, David Kappesser, L. Wille, S. E. Sanchez Herrera, Maximilian Meier, T. Palczewski, Paolo Desiati, M. Günder, D. Heereman, T. Stezelberger, A. Steuer, B. Eberhardt, Raamis Hussain, J. Lünemann, Amirreza Raissi, Chris Weaver, Stephanie Bron, C. J. Lozano Mariscal, G. Merino, N. Wandkowsky, Surujhdeo Seunarine, R. Snihur, Juanan Aguilar, B. J. Whelan, Immacolata Carmen Rea, K. Krings, Jan Weldert, L. Halve, Philipp Eller, M. Plum, Ramesh Koirala, E. Blaufuss, J. Felde, Merlin Schaufel, L. Classen, A. Obertacke Pollmann, A. Wallace, J. L. Kelley, Da Xu, Markus Ahlers, James DeLaunay, Marjon Moulai, S. De Ridder, Christopher Wiebusch, Kunal Deoskar, M. Labare, A. Karle, Erik Ganster, Ioana Codrina Maris, Christian Bohm, Samvel Ter-Antonyan, Christoph Raab, Nadège Iovine, D. Berley, G. C. Hill, Bunheng Ty, Maryon Ahrens, Giovanni Renzi, D. Seckel, Frederik Tenholt, S. Fahey, R. Nagai, M. Medici, S. Miarecki, Tyce DeYoung, Nathan Whitehorn, Jeffrey Lazar, Physics, Faculty of Sciences and Bioengineering Sciences, Vriendenkring VUB, and Elementary Particle Physics
- Subjects
background [atmosphere] ,Physics::Instrumentation and Detectors ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,pole ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,IceCube Neutrino Observatory ,IceCube ,charged current ,High Energy Physics - Experiment (hep-ex) ,Neutrinos ,Point sources ,Veto techniques ,SEARCH ,TRACK RECONSTRUCTION ,0103 physical sciences ,supernova ,Muon neutrino ,atmosphere [muon] ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,neutrino muon ,Muon ,010308 nuclear & particles physics ,ICE ,Galactic Center ,High Energy Physics::Phenomenology ,Astronomy ,Astronomy and Astrophysics ,flux [neutrino] ,Galactic plane ,observatory ,Supernova ,Physics and Astronomy ,Sky ,energy [neutrino] ,gamma ray ,ddc:540 ,spectral ,High Energy Physics::Experiment ,galaxy ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere., 19 pages, 17 figures, 2 tables
- Published
- 2020
- Full Text
- View/download PDF
26. The Future of High-Energy Astrophysical Neutrino Flavor Measurements
- Author
-
Carlos Arguelles, Aaron C. Vincent, Mauricio Bustamante, Shirley Weishi Li, and Ningqiang Song
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Particle physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Flux ,FOS: Physical sciences ,Astronomy and Astrophysics ,01 natural sciences ,High Energy Physics - Phenomenology ,KM3NeT ,Pion ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Production (computer science) ,High Energy Physics::Experiment ,Neutrino ,Neutrino astronomy ,Neutrino oscillation ,Astrophysics - High Energy Astrophysical Phenomena ,Flavor ,Mixing (physics) - Abstract
We critically examine the ability of future neutrino telescopes, including Baikal-GVD, KM3NeT, P-ONE, TAMBO, and IceCube-Gen2, to determine the flavor composition of high-energy astrophysical neutrinos, ie, the relative number of $\nu_e$, $\nu_\mu$, and $\nu_\tau$, in light of improving measurements of the neutrino mixing parameters. Starting in 2020, we show how measurements by JUNO, DUNE, and Hyper-Kamiokande will affect our ability to determine the regions of flavor composition at Earth that are allowed by neutrino oscillations under different assumptions of the flavor composition that is emitted by the astrophysical sources. From 2020 to 2040, the error on inferring the flavor composition at the source will improve from $> 40\%$ to less than $6\%$. By 2040, under the assumption that pion decay is the principal production mechanism of high-energy astrophysical neutrinos, a sub-dominant mechanism could be constrained to contribute less than 20\% of the flux at 99.7\% credibility. These conclusions are robust in the nonstandard scenario where neutrino mixing is non-unitary, a scenario that is the target of next-generation experiments, in particular the IceCube-Upgrade. Finally, to illustrate the improvement in using flavor composition to test beyond-the-Standard-Model physics, we examine the possibility of neutrino decay and find that, by 2040, combined neutrino telescope measurements will be able to limit the decay rate of the heavier neutrinos to below $1.8\times 10^{-5} (m/\mathrm{eV})$~s$^{-1}$, at 95\% credibility., Comment: 27 pages, 13 figures, 3 tables. Happy holidays, ji\'e r\`i ku\`ai l\`e, joyeuses f\^tes, felices fiestas
- Published
- 2020
- Full Text
- View/download PDF
27. Dark Matter Annihilation to Neutrinos
- Author
-
Andrés Olivares-Del-Campo, Aaron C. Vincent, Alejandro Diaz, Carlos Arguelles, Ibrahim Safa, and Ali Kheirandish
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Annihilation ,010308 nuclear & particles physics ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,High Energy Physics::Phenomenology ,Massive particle ,General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,7. Clean energy ,01 natural sciences ,Universe ,Standard Model ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Orders of magnitude (time) ,0103 physical sciences ,Neutrino ,010306 general physics ,Astrophysics - High Energy Astrophysical Phenomena ,media_common - Abstract
We review the annihilation of dark matter into neutrinos over a range of dark matter masses from MeV$/c^2$ to ZeV$/c^2$. Thermally-produced models of dark matter are expected to self-annihilate to standard model products. As no such signal has yet been detected, we turn to neutrino detectors to constrain the ``most invisible channel.'' We review the experimental techniques that are used to detect neutrinos, and revisit the expected contributions to the neutrino flux at current and upcoming neutrino experiments. We place updated constraints on the dark matter self-annhilation cross section to neutrinos $\langle \sigma v \rangle$ using the most recently available data, and forecast the sensitivity of upcoming experiments such as Hyper-Kamiokande, DUNE, and IceCube Gen-2. Where possible, limits and projections are scaled to a single set of dark matter halo parameters for consistent comparison. We consider Galactic and extragalactic signals of $s$, $p$, and $d$-wave annihilation processes directly into neutrino pairs, yielding constraints that range from $\langle \sigma v \rangle \sim 2.5\times10^{-26}~{\rm cm}^3 {\rm s}^{-1}$ at 30 MeV$/c^2$ to $10^{-17}~{\rm cm}^3{\rm s}^{-1}$ at 10$^{11}$ GeV$/c^2$. Experiments that report directional and energy information of their events provide much stronger constraints, outlining the importance of making such data public., Comment: 30 pages, 8 figures. Accepted for publication in Reviews of Modern Physics
- Published
- 2019
28. Pulse Shape Particle Identification by a Single Large Hemispherical Photo-Multiplier Tube
- Author
-
P. Sandstrom, Spencer Axani, S. Samani, Carlos Arguelles, Teppei Katori, S. Mandalia, Z. Xie, Marjon Moulai, Bunheng Ty, Y. Li, and Janet Conrad
- Subjects
Photomultiplier ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Instrumentation ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,01 natural sciences ,Photocathode ,Particle identification ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,03 medical and health sciences ,0302 clinical medicine ,Optics ,0103 physical sciences ,Fermilab ,Mathematical Physics ,Event reconstruction ,Physics ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Pulse (physics) ,High Energy Physics::Experiment ,Neutrino ,business - Abstract
In neutrino experiments, hemispherical photomultiplier tubes (PMTs) are often used to cover large surfaces or volumes to maximize the photocathode coverage with a minimum number of channels. Instrumentation is often coarse, and neutrino event reconstruction and particle identification (PID) is usually done through the morphology of PMT hits. In future neutrino experiments, it may be desirable to perform PID from a few hits, or even a single hit, by utilizing pulse shape information. In this report, we study the principle of pulse shape PID using a single 10-inch hemispherical PMT in a spherical glass housing for future neutrino telescopes. We use the Fermilab Test Beam Facility (FTBF) MTest beamline to demonstrate that with pulse shape PID, statistical separation is possible to distinguish 2 GeV electrons from 8 GeV pions, where the total charge deposition is ~20 PE in our setup. Such techniques can be applied to future neutrino telescopes focusing on low energy physics, including the IceCube-Upgrade., 27 pages, 19 figures
- Published
- 2019
29. LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories
- Author
-
Janet Conrad, R. Cross, D. Hebecker, William Luszczak, K.-H. Becker, Yiqian Xu, Matt Dunkman, Ioana Codrina Maris, Thomas Stuttard, Christian Spiering, Thomas Ehrhardt, Sarah Pieper, A. Kyriacou, Ken'ichi Kin, Christoph Raab, Nadège Iovine, Dirk Ryckbosch, S. De Ridder, Stephan Meighen-Berger, D. Berley, G. C. Hill, Bunheng Ty, Paul Coppin, Justin Vandenbroucke, Andrea Turcati, J. Becker Tjus, J. J. Beatty, Christian Haack, Tianlu Yuan, M. J. Larson, Ralph Engel, Moritz Kellermann, F. McNally, Wing Yan Ma, Emma C. Hettinger, Reina H. Maruyama, A. Obertacke Pollmann, Summer Blot, Frank G. Schröder, U. Katz, Giovanni Renzi, Damian Pieloth, Ali Kheirandish, T. Gregoire, James DeLaunay, Marjon Moulai, S. Fahey, M. Kauer, Tyce DeYoung, Abhishek Desai, J. Werthebach, D. B. Fox, J. van Santen, J. L. Kelley, Markus Ahlers, Suyong Choi, Alex Pizzuto, Jannes Brostean-Kaiser, Nathan Whitehorn, Immacolata Carmen Rea, David Kappesser, Jan Soedingrekso, Brandom Pries, L. Schumacher, Maximilian Karl Scharf, S. C. Nowicki, Gary Binder, Karl J. Clark, D. van Eijk, Shefali Shefali, P. B. Price, Matti Jansson, A. Franckowiak, Hermann Kolanoski, M. U. Nisa, Mehmet Gunduz, Agnieszka Leszczyńska, R. C. Bay, Abdul Rehman, Francesco Lucarelli, Carsten Rott, Chujie Chen, Austin Schneider, George Japaridze, Juan Carlos Diaz-Velez, Roger Moore, L. Köpke, Mark Weyrauch, Stef Verpoest, Aaron Fienberg, Timo Karg, D. Tosi, Y. L. Li, Amirreza Raissi, T. O. B. Schmidt, Paras Koundal, Mike Richman, N. van Eijndhoven, Erik Ganster, Y. Makino, P. Peiffer, Johan Wulff, A. Weindl, Segev BenZvi, Elisa Lohfink, Timothyblake Watson, J. Bourbeau, Nora Valtonen-Mattila, Michael Kovacevich, M. E. Huber, Spencer Klein, Javier Gonzalez, Roxanne Turcotte, Maryon Ahrens, Samvel Ter-Antonyan, Kurt Woschnagg, Marcos Santander, Richard Naab, S. Tilav, Daria Pankova, L. Gerhardt, G. Krückl, Konstancja Satalecka, A. Olivas, Alexander Fritz, D. Z. Besson, Stephanie Bron, E. Friedman, Paul Evenson, Frederik Tenholt, R. Nagai, C. De Clercq, C. Lagunas Gualda, Y. Popovych, C. J. Lozano Mariscal, C. Weaver, Martin Rongen, Theo Glauch, Alejandro Diaz, Michael DuVernois, Seongjin In, Elisa Resconi, Alessio Porcelli, H. Dujmovic, Matthias Vraeghe, Rasha Abbasi, B. J. Whelan, Kara Hoffman, J. Kim, G. W. Sullivan, James E. Braun, T. Kintscher, Simone Garrappa, Xianwu Xu, J. Sandroos, Dmitry Chirkin, Alexander Kappes, K. Rawlins, J. P. Yanez, G. H. Collin, J. Evans, Alan Coleman, David A. Williams, Markus Ackermann, S. W. Barwick, Philipp Furst, Zhedong Zhang, Ava Ghadimi, F. Huang, Emily Dvorak, Hershal Pandya, Frederik Hermann Lauber, R. S. Busse, Surujhdeo Seunarine, R. Snihur, K. Tollefson, E. O'Sullivan, R. Morse, Jakob Bottcher, T. Montaruli, Jan Weldert, Wolfgang Rhode, Robert Stein, Alexander Trettin, N. Kurahashi, Christopher Wiebusch, Kunal Deoskar, Juanan Aguilar, L. Halve, Franziska Tischbein, Justin Lanfranchi, M. Ha Minh, C. Wendt, P. Mallik, M. Stamatikos, K. Meagher, C. Pérez de los Heros, Gerald Przybylski, A. Karle, James Madsen, Chad Finley, Daniel Bindig, R. Halliday, B. J. P. Jones, G. de Wasseige, A. Wallace, Kayla Leonard, Ben Smithers, P. Eller, Simeon Reusch, Lu Lu, T. Anderson, J. C. Gallagher, A. Sharma, Sukeerthi Dharani, Christoph Tönnis, R. Hoffmann, John Hardin, Jean Pierre Twagirayezu, A. Ishihara, Tim Ruhe, A. Haungs, Rui An, Nahee Park, A. Ludwig, Francis Halzen, J. Merz, D. Rysewyk Cantu, C. Walck, Elisa Bernardini, Gerrit Wrede, T. Stanev, K. Hultqvist, Benedikt Riedel, D. Seckel, K. Mase, Andres Medina, Darren Grant, Benjamin Hokanson-Fasig, I. Ansseau, D. Mockler, Thomas Huber, Thomas K. Gaisser, Chiara Bellenghi, Yang Lyu, T. Glüsenkamp, Grant Parker, Jenni Adams, M. Meier, Michael Campana, H. Niederhausen, H. Schieler, Ek Narayan Paudel, Allan Hallgren, Colin Turley, Saskia Philippen, Juliana Stachurska, H. Dembinski, K. Helbing, A. Steuer, Kendall Mahn, A. Goldschmidt, Alexander A. Harnisch, Kirill Filimonov, Kael Hanson, Spencer Axani, Christian Glaser, K. Wiebe, Barbara Skrzypek, S. E. Sanchez Herrera, Stephen L. Hauser, M. J. Weiss, R. G. Stokstad, Lenka Tomankova, Carlos Arguelles, Jessie Micallef, Jannis Necker, Raamis Hussain, D. Kang, M. Silva, I. Taboada, Najia Moureen Binte Amin, Federica Bradascio, Alexander Burgman, J. P. Lazar, Michael O. Wolf, M. Prado Rodriguez, Clara E. Hill, S. Kopper, Paolo Desiati, K. D. de Vries, S. Hickford, I. Safa, Pranav Dave, René Reimann, Merlin Schaufel, Minjin Jeong, Leander Fischer, Qinrui Liu, R. Joppe, Martina Karl, Jochen M. Schneider, Srubabati Goswami, M. A. Unland Elorrieta, Sebastian Baur, Sebastian Fiedlschuster, D. R. Nygren, Marek Kowalski, Olga Botner, V. Baum, T. Stezelberger, S. Yoshida, Won Nam Kang, Sarah Mancina, X. Bai, Tobias Hoinka, Vedant Basu, Steve Sclafani, J. Kiryluk, K. Andeen, A.A. Alves, Alexander Sandrock, Pablo Correa, B. A. Clark, P. Schlunder, Sebastian Böser, Benjamin Bastian, Anastasia Maria Barbano, Gisela Anton, Max Renschler, Chunfai Tung, D. J. Koskinen, S. Robertson, E. Bourbeau, Joshua Hignight, Spencer Griswold, Maria Tselengidou, D. Soldin, Ramesh Koirala, E. Blaufuss, L. Classen, K. Hoshina, Glenn Spiczak, G. Momenté, M. Rameez, D. F. Cowen, U. Naumann, David Vannerom, Le Viet Nguyen, K. Krings, J. Stettner, M. Plum, Gerrit Roellinghoff, Mirco Hunnefeld, Marie Oehler, Z. Griffith, Xinyue Kang, Claudio Kopper, Subir Sarkar, Felix Henningsen, A. R. Fazely, Simona Toscano, C. Alispach, Physics, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Vriendenkring VUB
- Subjects
Particle physics ,Physics::Instrumentation and Detectors ,Computer science ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,General Physics and Astronomy ,CHERENKOV LIGHT YIELD ,Weighting ,01 natural sciences ,High Energy Physics - Experiment ,010305 fluids & plasmas ,Standard Model ,High Energy Physics - Experiment (hep-ex) ,Neutrino interaction ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,010306 general physics ,Cherenkov radiation ,Event generator ,Neutrino generator ,Neutrino simulation ,Generator (computer programming) ,hep-ex ,Event (computing) ,ICE ,High Energy Physics::Phenomenology ,Detector ,hep-ph ,Computational Physics (physics.comp-ph) ,Quantitative Biology::Genomics ,High Energy Physics - Phenomenology ,physics.comp-ph ,Hardware and Architecture ,High Energy Physics::Experiment ,Neutrino ,Physics - Computational Physics ,Lepton - Abstract
We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples., Comment: 28 pages, 10 figures, 3 tables
- Published
- 2021
- Full Text
- View/download PDF
30. Dark matter neutrino scattering in the galactic centre with IceCube
- Author
-
Adam McMullen, Carlos Arguelles, Austin Schneider, and Aaron C. Vincent
- Subjects
Physics ,Elastic scattering ,Scattering ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,Dark matter ,Flux ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Neutrino scattering ,Cross section (physics) ,High Energy Physics::Experiment ,Neutrino ,Instrumentation ,Mathematical Physics - Abstract
While there is evidence for the existence of dark matter, its properties have yet to be discovered. Simultaneously, the nature of high-energy astrophysical neutrinos detected by IceCube remains unresolved. If dark matter and neutrinos are coupled to each other, they may exhibit a non-zero elastic scattering cross section. Such an interaction between an isotropic extragalactic neutrino flux and dark matter would be concentrated in the Galactic Centre, where the dark matter column density is greatest. This scattering would attenuate the flux of high-energy neutrinos, which could be observed in IceCube. Using the seven-year Medium Energy Starting Events, we perform an unbinned likelihood analysis, searching for a signal based on a possible dark matter-neutrino interaction scenario. We search for a suppression of the high-energy astrophysical neutrino flux in the direction of the Galactic Centre, and compare these constraints to complementary low-energy information from large scale structure surveys and the cosmic microwave background.
- Published
- 2021
- Full Text
- View/download PDF
31. Usability Study for a Community College Library Website: A Methodology for Large-Scale Data Gathering
- Author
-
Mark E. Eaton and Carlos Arguelles
- Subjects
Computer science ,business.industry ,Quantitative methodology ,05 social sciences ,050301 education ,Library website ,Usability ,Large scale data ,Library and Information Sciences ,Education ,World Wide Web ,0509 other social sciences ,Community college ,050904 information & library sciences ,business ,0503 education ,Web usability - Abstract
Usability studies (UX) are increasingly common in libraries. A UX methodology is a useful tool to support librarians’ decision-making processes during a Website (re)design. This article des...
- Published
- 2017
- Full Text
- View/download PDF
32. Dark gauge bosons: LHC signatures of non-abelian kinetic mixing
- Author
-
Xiao-Gang He, Carlos Arguelles, Tao Peng, Grigory Ovanesyan, Michael J. Ramsey-Musolf, Massachusetts Institute of Technology. Department of Nuclear Science and Engineering, and Arguelles Delgado, Carlos A
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Gauge boson ,010308 nuclear & particles physics ,Physics beyond the Standard Model ,High Energy Physics::Phenomenology ,Electroweak interaction ,FOS: Physical sciences ,01 natural sciences ,Dark photon ,lcsh:QC1-999 ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Gauge group ,0103 physical sciences ,Effective field theory ,010306 general physics ,Phenomenology (particle physics) ,lcsh:Physics ,Vacuum expectation value - Abstract
We consider non-abelian kinetic mixing between the Standard Model SU(2)[subscript L] and a dark sector U(1)′ gauge group associated with the presence of a scalar SU(2)[subscript L] triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by ≲4 GeV by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be O(1) while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelian mixing context., National Science Foundation (U.S.) (ANT-0937462), National Science Foundation (U.S.) (PHY-1306958), National Science Foundation (U.S.) (PHY-1505855), National Science Foundation (U.S.) (PHY-1505858), Shanghai Jiao Tong University. Shanghai Key Laboratory for Particle Physics and Cosmology (Grant 11DZ2260700)
- Published
- 2017
33. The IceCube realtime alert system
- Author
-
B. J. P. Jones, Chris Wendt, S. Hickford, D. Tosi, M. Day, R. Konietz, M. Vehring, S. Coenders, Joshua Hignight, Francis Halzen, Karim Ghorbani, S. Seunarine, G. Merino, Spencer Axani, I. Ansseau, N. Wandkowsky, S. Schoenen, J. Kiryluk, M. Wolf, F. Bos, A. Terliuk, Sally Robertson, G. Krückl, Carlos Arguelles, M. Song, T. L. Carver, Mike Richman, H. Dembinski, Sebastian Böser, D. Heereman, P. Schlunder, R. Nahnhauer, M. Lesiak-Bzdak, Gisela Anton, V. di Lorenzo, Allan Hallgren, J. Tatar, M. J. Larson, Jae Yool Kim, M. Kauer, L. Classen, Kurt Woschnagg, T. Menne, Paul Evenson, L. Brayeur, C. Finley, Juanan Aguilar, Jenni Adams, Hrvoje Dujmovic, Janet Conrad, B. Relethford, Ignacio Taboada, A. Obertacke Pollmann, K. Rawlins, M. G. Aartsen, Michael Sutherland, K. Mase, T. Kittler, S. Flis, P. Peiffer, R. Cross, K. D. de Vries, George Japaridze, S. De Ridder, Dirk Lennarz, Konstancja Satalecka, Theo Glauch, M. Rongen, Gabriel Collin, Dmitry Chirkin, A. Franckowiak, D. Z. Besson, Marjon Moulai, James Madsen, Lu Lu, R. Maunu, E. Friedman, Alexander Kappes, R. G. Stokstad, Markus Ahlers, J. Kunnen, Jay Gallagher, T. Ehrhardt, N. van Eijndhoven, M. N. Tobin, A. Meli, C.-C. Fösig, M. van Rossem, M. Vraeghe, C. Haack, K. Meagher, Elisa Resconi, A. Steuer, Teresa Montaruli, M. J. Weiss, N. Kurahashi, B. J. Whelan, Todor Stanev, R. Hellauer, D. Bose, Kendall Mahn, N. L. Strotjohann, J. P. Dumm, M. Relich, A. Olivas, K. Helbing, T. Palczewski, H. Pandya, M. Bissok, K. Jero, A. Wallace, R. Reimann, E. Vogel, Maryon Ahrens, U. Katz, J. C. Díaz-Vélez, S. Kopper, E. Woolsey, G. Binder, Joshua Pepper, H. Niederhausen, Dawn Williams, F. Huang, M. Leuermann, G. de Wasseige, A. Turcati, U. Naumann, E. Hansen, M. E. Huber, B. Eberhardt, M. S. Kim, Samvel Ter-Antonyan, Aya Ishihara, D. Bindig, E. Jacobi, Elisa Bernardini, Segev BenZvi, G. Maggi, T. Schmidt, L. Wille, Y. Xu, J. Lünemann, M. Kowalski, S. E. Sanchez Herrera, Azadeh Keivani, Frederik Tenholt, M. Rameez, M. Medici, L. Gerhardt, D. F. Cowen, Albrecht Karle, S. Euler, T. Fuchs, T. Karg, Ch. Weaver, Alexander Burgman, W. Kang, Z. Griffith, S. Miarecki, J. van Santen, Kael Hanson, Thomas Meures, K. Krings, K. Clark, D. V. Pankova, F. McNally, G. W. Sullivan, M. Casier, B. Riedel, D. R. Nygren, S. Bron, Steven W. Barwick, M. Tselengidou, Thomas K. Gaisser, G. B. Yodh, Spencer Klein, A. Stasik, Stijn Vanheule, Philipp Eller, Maximilian Meier, T. Ruhe, S. Wickmann, J. Auffenberg, D. Hebecker, Paolo Desiati, A. Sandrock, T. Glüsenkamp, Gerald Przybylski, Minjin Jeong, G. Neer, T. Kintscher, Hermann Kolanoski, M. Labare, M. Quinnan, M. Dunkman, J. Felde, H. Taavola, Stijn Blot, Christian Spiering, S. Yoshida, Xinhua Bai, T. Hansmann, R. Hoffmann, Javier Gonzalez, M. Mandelartz, E. Blaufuss, Kara Hoffman, E. Pinat, Olga Botner, K. Wiebe, P. B. Price, V. Baum, D. J. Koskinen, D. Ryckbosch, Simona Toscano, M. Voge, Markus Ackermann, Donglian Xu, J. Becker Tjus, Ö. Penek, D. Soldin, L. Rädel, J. Stettner, Justin Vandenbroucke, K. Hoshina, E. del Pino Rosendo, Subir Sarkar, Glenn Spiczak, S. Schöneberg, K. H. Becker, E. Unger, D. Berley, W. Giang, J. L. Lanfranchi, Wolfgang Rhode, J. L. Kelley, S. In, S. C. Nowicki, L. Gladstone, R. Koirala, Darren Grant, J. P. A. M. de André, C. Walck, Sarah Mancina, Frederik Hermann Lauber, M. Börner, Klas Hultqvist, M. Zoll, K. Andeen, S. Westerhoff, A. Christov, M. Wallraff, T. Stezelberger, E. Cheung, M. Usner, L. Sabbatini, B. Eichmann, H.-P. Bretz, S. Tilav, Christian Bohm, Aongus O'Murchadha, J. P. Yanez, Christoph Raab, G. C. Hill, L. Schumacher, C. Krüger, A. Goldschmidt, R. C. Bay, D. Seckel, S. Fahey, S. Kunwar, M. Archinger, A. R. Fazely, Tyce DeYoung, P. A. Toale, M. Kroll, C. Kopper, J. Braun, T. R. Wood, J. J. Beatty, A. Bernhard, D. Rysewyk, A. Stößl, Reina H. Maruyama, Christopher Wiebusch, J. Feintzeig, Carsten Rott, Xianwu Xu, J. Sandroos, D. Altmann, C. Pérez de los Heros, R. Ström, T. Kuwabara, L. Wills, Damian Pieloth, Ali Kheirandish, L. Köpke, G. Kohnen, T. Anderson, C. De Clercq, G. Tešić, Kirill Filimonov, Physics, Elementary Particle Physics, Faculty of Sciences and Bioengineering Sciences, and Vriendenkring VUB
- Subjects
HIGH-ENERGY NEUTRINOS ,TELESCOPE ,Astrophysics::High Energy Astrophysical Phenomena ,Multi-messenger astronomy ,Neutrino astronomy ,Neutrino detectors ,Transient sources ,Astronomy and Astrophysics ,pole ,FOS: Physical sciences ,01 natural sciences ,IceCube ,law.invention ,IceCube Neutrino Observatory ,Telescope ,SEARCHES ,CORE-COLLAPSE SUPERNOVAE ,law ,Observatory ,0103 physical sciences ,site ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,background ,Event (computing) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,PERFORMANCE ,sensitivity ,observatory ,Identification (information) ,electromagnetic ,Physics and Astronomy ,Neutrino detector ,ddc:540 ,High Energy Physics::Experiment ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,FOLLOW-UP - Abstract
Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceCube facilities in the north that have enabled this fast follow-up program to be developed. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries., Comment: 33 pages, 9 figures, Published in Astroparticle Physics
- Published
- 2017
- Full Text
- View/download PDF
34. Quest for new physics using astrophysical neutrino flavour in IceCube
- Author
-
S. Mandalia, K Farrag, Carlos Arguelles, and Teppei Katori
- Subjects
Physics ,Particle physics ,Planck scale ,Physics beyond the Standard Model ,Space time ,High Energy Physics::Phenomenology ,Flavour ,symbols.namesake ,symbols ,High Energy Physics::Experiment ,Anomaly (physics) ,Neutrino ,Flavor ,Mixing (physics) - Abstract
We have detected astrophysical neutrinos in IceCube that can be used to probe astrophysical sources at ultra high scales. Here we report a search for anomalous space time effects using astrophysical neutrino flavor data in IceCube. New effective operators are introduced to drive non-standard neutrino flavor mixing which modify the flavor ratios compared to standard cases. Using the High Energy Starting Events sample (HESE) 7.5-year data for this analysis, we found no evidence of such flavor anomalies. However, we are expecting to set limits from this new approach which goes far beyond any known techniques. Importantly, we achieve the necessary precision to probe new physics using neutrino flavor expected by Planck scale theories.
- Published
- 2019
- Full Text
- View/download PDF
35. Searches for Connections Between Dark Matter and Neutrinos with the IceCube High-Energy Starting Event Sample
- Author
-
Carlos Arguelles and Hrvoje Dujmovic
- Subjects
Physics ,High energy ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,Annihilation ,High Energy Physics - Phenomenology (hep-ph) ,Dark matter ,FOS: Physical sciences ,Astrophysics ,Neutrino ,High Energy Physics - Experiment - Abstract
The nature of dark matter remains one of the most important open questions in physics. Although dark matter effects have only been observed gravitationally, the order-one ratio between conventional matter and dark matter hints to a non-gravitational link between them. In this contribution, we search for such a link using the IceCube high-energy starting event (HESE) sample, which contains some of the highest energy neutrinos ever observed. These are dominated by a yet unidentified high-energy diffuse astrophysical component. Using these events we look for evidence of an excess due to dark matter decay or annihilation, and also for a novel signature due to high-energy neutrinos scattering with dark matter. Finally, in this contribution, we will summarize and highlight the complementarity between the obtained limits for these two scenarios., Presented at the 36th International Cosmic Ray Conference (ICRC 2019). See arXiv:1907.11699 for all IceCube contributions, 6 pages, 2 figures
- Published
- 2019
36. Tackling limited simulation and small signals
- Author
-
Carlos Arguelles, Austin Schneider, and Tianlu Yuan
- Subjects
High Energy Physics - Experiment (hep-ex) ,symbols.namesake ,Small data ,Computer science ,Physics - Data Analysis, Statistics and Probability ,symbols ,FOS: Physical sciences ,Probability and statistics ,Poisson distribution ,Algorithm ,Data Analysis, Statistics and Probability (physics.data-an) ,High Energy Physics - Experiment - Abstract
We present a new, analytic, Poisson likelihood derived, technique to account for the statistical uncertainties inherent in simulation samples of limited size. This method has better coverage properties than other techniques, is valid for small data samples, and maintains good computational performance., Comment: Proceedings of the 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A
- Published
- 2019
- Full Text
- View/download PDF
37. Fundamental Physics with High-Energy Astrophysical Neutrinos Today and in the Future
- Author
-
Sergio Palomares-Ruiz, Aaron C. Vincent, Carlos Arguelles, Ali Kheirandish, Jordi Salvado, and Mauricio Bustamante
- Subjects
Physics ,High energy ,Particle physics ,Astrophysics::High Energy Astrophysical Phenomena ,Physics beyond the Standard Model ,Fundamental physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,High Energy Physics::Experiment ,Observable universe ,Neutrino - Abstract
The astrophysical neutrinos discovered by IceCube have the highest detected neutrino energies --- from TeV to PeV --- and likely travel the longest distances --- up to a few Gpc, the size of the observable Universe. These features make them naturally attractive probes of fundamental particle-physics properties, possibly tiny in size, at energy scales unreachable by any other means. The decades before the IceCube discovery saw many proposals of particle-physics studies in this direction. Today, those proposals have become a reality, in spite of astrophysical unknowns. We will showcase examples of doing fundamental neutrino physics at these scales, including some of the most stringent tests of physics beyond the Standard Model. In the future, larger neutrino energies --- up to tens of EeV --- could be observed with larger detectors and further our reach.
- Published
- 2019
- Full Text
- View/download PDF
38. White Paper on New Opportunities at the Next-Generation Neutrino Experiments (Part 1: BSM Neutrino Physics and Dark Matter)
- Author
-
D. V. Forero, Seodong Shin, Pedro A. N. Machado, Jong-Chul Park, A. Sousa, N. Byrnes, W. Flanagan, I. Lepetic, Kevin J. Kelly, T. E. Coan, A. de Gouvea, Y. T. Tsai, J. Todd, A. Kubik, Kate Scholberg, R. P. Gandrajula, T. Boschi, J. Berger, Juergen Thomas, M. Bishai, Y. D. Tsai, Cen Zhang, Doojin Kim, Peter B. Denton, Karol Lang, Volodymyr Takhistov, Silvia Pascoli, A. Aurisano, Animesh Chatterjee, L. Rogers, B. Kayser, Joachim Kopp, Carlos Arguelles, Ibrahim Safa, S. Prakash, Austin Schneider, Alan Chodos, A. Hatzikoutelis, Y. Cui, Yicong Sui, Matheus Hostert, Brian Batell, F. Olness, A. De Roeck, G. Sinev, C. A. Moura, Ian M. Shoemaker, B. J. P. Jones, B. Smithers, and Jinhong Yu
- Subjects
Physics ,Particle physics ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,Physics beyond the Standard Model ,High intensity ,Dark matter ,CP violation ,High Energy Physics::Experiment ,Neutrino ,Tracking (particle physics) ,Neutrino oscillation - Abstract
With the advent of a new generation of neutrino experiments which leverage high-intensity neutrino beams for precision measurements, it is timely to explore physics topics beyond the standard neutrino-related physics. Given that the realm of beyond the standard model (BSM) physics has been mostly sought at high-energy regimes at colliders, such as the LHC at CERN, the exploration of BSM physics in neutrino experiments will enable complementary measurements at the energy regimes that balance that of the LHC. This is in concert with new ideas for high-intensity beams for fixed target and beam-dump experiments world-wide, e.g., those at CERN. The combination of the high intensity proton beam facilities and massive detectors for precision neutrino oscillation parameter measurements and for CP violation phase measurements will help make BSM physics reachable even in low energy regimes in accelerator based experiments. Large mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is conceivable that BSM topics in the next generation neutrino experiments could be the dominant physics topics in the foreseeable future, as the precision of the neutrino oscillation parameter and CPV measurements continues to improve. In this spirit, this white paper provides a review of the current landscape of BSM theory in neutrino experiments in two selected areas of the BSM topics - dark matter and neutrino related BSM - and summarizes the current results from existing neutrino experiments to set benchmarks for both theory and experiment. This paper then provides a review of upcoming neutrino experiments throughout the next 10 - 15 year time scale and their capabilities to set the foundation for potential reach in BSM physics in the two aforementioned themes.
- Published
- 2019
- Full Text
- View/download PDF
39. Neutrino Oscillations in a Quantum Processor
- Author
-
B. J. P. Jones and Carlos Arguelles
- Subjects
Physics ,Particle physics ,Emulation ,Sterile neutrino ,Quantum Physics ,Quantum decoherence ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,Complex system ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Neutrino oscillation ,Quantum Physics (quant-ph) ,Quantum computer - Abstract
Quantum computing technologies promise to revolutionize calculations in many areas of physics, chemistry, and data science. Their power is expected to be especially pronounced for problems where direct analogs of a quantum system under study can be encoded coherently within a quantum computer. A first step toward harnessing this power is to express the building blocks of known physical systems within the language of quantum gates and circuits. In this paper, we present a quantum calculation of an archetypal quantum system: neutrino oscillations. We define gate arrangements that implement the neutral lepton mixing operation and neutrino time evolution in two-, three-, and four-flavor systems. We then calculate oscillation probabilities by coherently preparing quantum states within the processor, time evolving them unitarily, and performing measurements in the flavor basis, with close analogy to the physical processes realized in neutrino oscillation experiments, finding excellent agreement with classical calculations. We provide recipes for modeling oscillation in the standard three-flavor paradigm as well as beyond-standard-model scenarios, including systems with sterile neutrinos, non-standard interactions, Lorentz symmetry violation, and anomalous decoherence., 11 pages, 4 figures. Updated version to match the published version
- Published
- 2019
40. Production of keV sterile neutrinos in supernovae: New constraints and gamma-ray observables
- Author
-
Carlos Arguelles, Joachim Kopp, Vedran Brdar, Massachusetts Institute of Technology. Department of Physics, and Massachusetts Institute of Technology. Laboratory for Nuclear Science
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Sterile neutrino ,Particle physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Solar neutrino ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,Solar neutrino problem ,Computer Science::Digital Libraries ,7. Clean energy ,01 natural sciences ,Cosmic neutrino background ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Neutrino detector ,0103 physical sciences ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino astronomy ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics - Abstract
We study the production of sterile neutrinos in supernovae, focusing in particular on the keV--MeV mass range, which is the most interesting range if sterile neutrinos are to account for the dark matter in the Universe. Focusing on the simplest scenario in which sterile neutrinos mixes only with muon or tau neutrino, we argue that the production of keV--MeV sterile neutrinos can be strongly enhanced by a Mikheyev--Smirnov--Wolfenstein (MSW) resonance, so that a substantial flux is expected to emerge from a supernova, even if vacuum mixing angles between active and sterile neutrinos are tiny. Using energetics arguments, this yields limits on the sterile neutrino parameter space that reach down to mixing angles of the order of $\sin^2 2\theta \lesssim 10^{-14}$ and are up to an order of magnitude stronger than those from X-ray observations. While supernova limits suffer from larger systematic uncertainties than X-ray limits they apply also to scenarios in which sterile neutrinos are not abundantly produced in the early Universe. We also compute the flux of $\mathcal{O}(\text{MeV})$ photons expected from the decay of sterile neutrinos produced in supernovae, but find that it is beyond current observational reach even for a nearby supernova., Comment: 10 pages, 9 figures. Matches version published in PRD
- Published
- 2019
- Full Text
- View/download PDF
41. Erratum to: Search for non-relativistic magnetic monopoles with IceCube
- Author
-
M. J. Larson, A. Olivas, M. Stamatikos, K. Mase, F. Huang, M. Quinnan, J. Blumenthal, L. Schulte, Olga Botner, V. Baum, L. Classen, A. Goldschmidt, M. W. E. Smith, J. A. Aguilar, K. Rawlins, J. Kiryluk, H. Landsman, James Madsen, L. Brayeur, I. Taboada, Dustin Hebecker, S. Flis, M. N. Tobin, O. Schulz, D. Z. Besson, Ch. Weaver, J. van Santen, A. Franckowiak, René Reimann, R. Nahnhauer, M. L. Benabderrahmane, Teresa Montaruli, P. Gretskov, K. Schatto, G. Kohnen, K. Krings, Oscar Macias, N. van Eijndhoven, C. Haack, J. C. Gallagher, A. O'Murchadha, M. Leuermann, L. Mohrmann, Surujhdeo Seunarine, J. Miller, Gary Binder, Axel Groß, Chad Finley, Nathan Whitehorn, Gerald Przybylski, M. Zoll, Allan Hallgren, S. Hussain, A. Kriesten, D. R. Nygren, J. P. A. M. de André, D. J. Koskinen, Takao Kuwabara, B. Christy, Sandro Kopper, Carlos Arguelles, M. Schmitz, J. Auffenberg, Seth M. Cohen, K. Jero, A. Ishihara, G. Kroll, T. Stanev, D. Berley, Matthias Wolf, G. C. Hill, J. C. Groh, A. Obertacke, Michael J. Baker, Maria Tselengidou, O. Jlelati, J. Feintzeig, L. Gladstone, Dirk Heinen, D. Seckel, S. Miarecki, S. Tilav, L. Rädel, R. Ström, Carsten Rott, M. Richman, A. Tamburro, A. R. Fazely, Tyce DeYoung, P. A. Toale, Javier Gonzalez, E. A. Strahler, M. Krasberg, M. Bissok, M. Vehring, A. Homeier, K.-H. Becker, Giorgio Maggi, N. Milke, C. Ha, R. Hellauer, E. Jacobi, George Japaridze, Timo Karg, Matt Dunkman, Xianwu Xu, T. Feusels, C. De Clercq, C. Bohm, Christopher Wiebusch, C. Kopper, G. Golup, T. Fischer-Wasels, Hermann Kolanoski, J. Daughhetee, A. Schukraft, S. Böser, David A. Williams, M. Casier, J. E. Jacobsen, Marcos Santander, J. Ziemann, S. Yoshida, C. Pérez de los Heros, Markus Ackermann, S. W. Barwick, Dirk Ryckbosch, Sally Robertson, L. Gerhardt, J. Lünemann, J. L. Kelley, Markus Ahlers, S. Euler, Thomas Meures, J. Leute, G. Tešić, Larissa Paul, F. Scheriau, R. C. Bay, Elisa Resconi, E. Unger, P. B. Price, Rezo Shanidze, Juan Carlos Diaz-Velez, B. Ruzybayev, H.-P. Bretz, M. Merck, N. L. Strotjohann, T. O. B. Schmidt, Kael Hanson, T. R. Wood, Frank McNally, Kurt Woschnagg, A. Christov, Albrecht Karle, T. Fuchs, Paul Evenson, C. Wendt, M. Day, A. Schönwald, Anatoli Fedynitch, D. Altmann, K. Wiebe, K. Meagher, Dmitry Chirkin, R. Hoffmann, Alexander Kappes, K. D. de Vries, R. Morse, C. Walck, R. Eagan, Thomas K. Gaisser, G. B. Yodh, Carl Pfendner, Paolo Desiati, E. Pinat, Samvel Ter-Antonyan, D. T. Grandmont, J. Becker Tjus, J. P. Rodrigues, Sofia Vallecorsa, B. J. Whelan, T. Stezelberger, Simona Toscano, K. Hoshina, S. M. Saba, Glenn Spiczak, B. Kaminsky, K. Clark, M. Kowalski, N. A. Stanisha, H. G. Sander, M. Danninger, D. F. Cowen, J. J. Beatty, Donglian Xu, S. Schoenen, U. Naumann, Mohamed Rameez, M. Lesiak-Bzdak, P. Redl, J. Posselt, Thorsten Glusenkamp, W. Huelsnitz, A. Stößl, M. G. Aartsen, Reina H. Maruyama, Xinhua Bai, R. Bruijn, D. Heereman, Kirill Filimonov, K. Helbing, Segev BenZvi, Spencer Klein, Kara Hoffman, A. H. Cruz Silva, Subir Sarkar, Wolfgang Rhode, A. Meli, P. Berghaus, J. Kläs, J. Kunnen, Damian Pieloth, A. M. Brown, L. Köpke, J. A. Goodman, M. Wellons, Dariusz Gora, Joshua Pepper, E. Middell, Elisa Bernardini, M. Ribordy, Jenni Adams, S. Hickford, R. G. Stokstad, Dennis Soldin, H. Taavola, E. Blaufuss, D. J. Boersma, J. C. Davis, K. Jagielski, S. De Ridder, M. Labare, S. Coenders, A. Bernhard, M. Kauer, D. Bose, T. Palczewski, B. Eberhardt, A. Tepe, H. S. Matis, Francis Halzen, P. Zarzhitsky, O. Fadiran, A. Haj Ismail, Matthias Vraeghe, M. Usner, C. Sheremata, P. O. Hulth, J. Eisch, S. Westerhoff, Björn Eichmann, J.-H. Köhne, H. Wissing, Daniel Bindig, T. C. Arlen, Hans Niederhausen, Naoko Kurahashi, Christian Spiering, S. Schöneberg, S. Odrowski, S. Zierke, A. Omairat, P. Hallen, K. Hultqvist, Darren Grant, M. Wallraff, M. Voge, Sarah Nowicki, Rasha Abbasi, J. Casey, Tim Ruhe, Benedikt Riedel, A. Stasik, K. Frantzen, F. Clevermann, Y. Sestayo, J. P. Yanez, and G. W. Sullivan
- Subjects
Physics ,Particle physics ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,Mean free path ,Nuclear Theory ,0103 physical sciences ,Magnetic monopole ,010306 general physics ,Nucleon ,01 natural sciences ,Engineering (miscellaneous) - Abstract
In the analyses, published in Ref. [1], the exclusion limits are calculated in dependence of the mean free path of the magnetic monopole - nucleon catalysis interaction.
- Published
- 2019
- Full Text
- View/download PDF
42. Combining Sterile Neutrino Fits to Short Baseline Data with IceCube Data
- Author
-
Carlos Arguelles, Marjon Moulai, G. H. Collin, Janet Conrad, Alejandro Diaz, Michael H. Shaevitz, Massachusetts Institute of Technology. Department of Physics, and Massachusetts Institute of Technology. Institute for Data, Systems, and Society
- Subjects
Physics ,Sterile neutrino ,Particle physics ,010308 nuclear & particles physics ,Null (mathematics) ,Sigma ,FOS: Physical sciences ,Baseline data ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Neutrino oscillation - Abstract
Recent global fits to short-baseline neutrino oscillation data have been performed finding preference for a sterile neutrino solution (3+1) over null. In the most recent iteration, it was pointed out that an unstable sterile neutrino (3+1+decay) may be a better description of the data. This is due to the fact that this model significantly reduces the tension between appearance and disappearance datasets. In this work, we add a 1-year IceCube dataset to the global fit obtaining new results for the standard 3+1 and 3+1+decay sterile neutrino scenarios. We find that the 3+1+decay model provides a better fit than the 3+1, even in the presence of IceCube, with reduced appearance to disappearance tension. The 3+1+decay model is a 5.4σ improvement over the null hypothesis and a 2.8σ improvement over the standard 3+1 model., NSF (Grant no. GRFP-1122374), NSF (Grant no. PHY-1707971), NSF (Grant no. PHY-1801996)
- Published
- 2019
- Full Text
- View/download PDF
43. Erratum to: Search for annihilating dark matter in the Sun with 3 years of IceCube data
- Author
-
B. Eichmann, H.-P. Bretz, L. Köpke, Christian Bohm, B. Relethford, Aongus O'Murchadha, Christoph Raab, Athina Meli, G. C. Hill, C. Krüger, T. R. Wood, Christopher Wiebusch, S. Fahey, M. Voge, A. R. Fazely, Aya Ishihara, Dennis Soldin, H. Taavola, E. Jacobi, G. Kohnen, L. Gladstone, P. A. Evenson, B. J. P. Jones, S. Euler, C. Pérez de los Heros, Logan Wille, P. Peiffer, M. Day, Matthew Relich, Sally Robertson, G. W. Sullivan, D. J. Koskinen, R. Koirala, J. Braun, D. Seckel, Albrecht Karle, B. Eberhardt, D. Bose, J. P. Dumm, S. Flis, Sebastian Böser, S. Miarecki, D. Z. Besson, P. Schlunder, D. Chirkin, Azadeh Keivani, T. Palczewski, D. V. Pankova, T. Stezelberger, B. Riedel, Matthias Wolf, A. Stasik, Matthew Weiss, Chad Finley, G. Krückl, Hermann Kolanoski, D. R. Nygren, Ö. Penek, S. Schöneberg, E. Vogel, K. Meagher, A. Turcati, T. Kittler, G. H. Collin, Marek Kowalski, J. Kim, E. Hansen, Matthias Huber, V. Baum, Gisela Anton, J. van Santen, C. Kopper, F. Tenholt, A. Stößl, J. A. Pepper, Kurt Becker, Kael Hanson, J. Feintzeig, N. van Eijndhoven, Dirk Ryckbosch, J. P. A. M. de André, Thomas Kintscher, G. Merino, N. Wandkowsky, J. C. Díaz-Vélez, S. Kopper, Janet Conrad, K. Jero, A. Christov, V. di Lorenzo, S. Wickmann, J. Auffenberg, D. Bindig, Jenni Adams, Dirk Lennarz, A. Steuer, Ignacio Taboada, D. Grant, D. Hebecker, H. Dujmovic, G. S. Japaridze, R. Nahnhauer, M. Quinnan, T. Meures, M. Vraeghe, A. Olivas, S. Schoenen, R. Cross, David Berley, M. Rongen, M. J. Larson, S. Bron, J. J. Beatty, C. Walck, G. Yodh, A. Burgman, D. Rysewyk, M. Börner, F. Huang, M. Song, T. L. Carver, Mike Richman, A. Bernhard, Steven W. Barwick, Juanan Aguilar, Stijn Blot, R. Hoffmann, Marjon Moulai, Chris Wendt, J. Becker Tjus, M. Bissok, J. Kunnen, K. Mase, C.-C. Fösig, E. Pinat, M. Labare, L. Gerhardt, R. Reimann, S. Tilav, Ch. Weaver, G. M. Spiczak, S. Hickford, R. Konietz, K. Rawlins, M. Vehring, G. T. Przybylski, M. van Rossem, Joeran Stettner, K. D. de Vries, T. Glüsenkamp, M. Kauer, Frank McNally, S. Westerhoff, Olga Botner, Elisa Resconi, Y. Xu, M. Rameez, Reina H. Maruyama, Joshua Hignight, James Madsen, K. Wiebe, Lu Lu, T. DeYoung, M. Zoll, Maryon Ahrens, K. Helbing, D. Heereman, H. Niederhausen, Francis Halzen, M. Dunkman, E. Unger, M. Medici, S. Coenders, E. Woolsey, G. Binder, Delia Tosi, S. Ter-Antonyan, R. Ström, Won Nam Kang, M. N. Tobin, Konstancja Satalecka, Theo Glauch, I. Ansseau, J. Lünemann, G. Neer, Teresa Montaruli, Elisa Bernardini, Timo Karg, M. Lesiak-Bzdak, Christian Spiering, E. Blaufuss, A. Terliuk, J. C. Gallagher, H. Dembinski, K. Krings, T. O. B. Schmidt, M. G. Aartsen, Klas Hultqvist, J. Kiryluk, S. C. Nowicki, Kendall Mahn, F. Bos, K. Andeen, S. De Ridder, Justin Vandenbroucke, Anna Franckowiak, Allan Hallgren, R. C. Bay, T. Anderson, C. De Clercq, M. Leuermann, Kurt Woschnagg, S. Yoshida, P. A. Toale, L. Brayeur, T. Hansmann, Karim Ghorbani, M. Casier, Spencer Axani, W. Giang, J. L. Lanfranchi, M. Archinger, T. Ehrhardt, C. Haack, Michael Sutherland, J. Tatar, S. Mancina, Carlos Arguelles, X. W. Xu, U. Naumann, M. Meier, N. Kurahashi, Todor Stanev, R. Hellauer, M. Jeong, G. de Wasseige, M. Tselengidou, Thomas K. Gaisser, P. Desiati, M. Mandelartz, F. Lauber, Lisa Johanna Schumacher, Javier Gonzalez, Giorgio Maggi, David A. Williams, Markus Ackermann, Carsten Rott, Alexander Kappes, Kirill Filimonov, Uli Katz, Segev BenZvi, A. Wallace, J. Sandroos, D. Altmann, S. Toscano, Spencer Klein, D. F. Cowen, L. Classen, Kara Hoffman, T. Ruhe, D. Pieloth, M. Kroll, Wolfgang Rhode, B. J. Whelan, S. In, L. Wills, Ali Kheirandish, T. Fuchs, L. Sabbatini, Takao Kuwabara, K. Clark, K. Hoshina, Stijn Vanheule, Philipp Eller, A. Sandrock, J. Felde, J. P. Yanez, H. Pandya, Xinhua Bai, A. Obertacke Pollmann, S. Kunwar, J. L. Kelley, M. Wallraff, Markus Ahlers, L. Rädel, R. G. Stokstad, A. Goldschmidt, S. E. Sanchez Herrera, E. Cheung, M. Usner, Elizabeth Friedman, R. Maunu, N. L. Strotjohann, Z. Griffith, Min Suk Kim, Donglian Xu, P. B. Price, G. Tešić, E. del Pino Rosendo, Subir Sarkar, Tobias Menne, S. Seunarine, Bron, Stéphanie, Carver, Tessa, Christov, Asen, Montaruli, Teresa, and Rameez, Mohamed
- Subjects
background [atmosphere] ,Particle physics ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,lcsh:Astrophysics ,ddc:500.2 ,01 natural sciences ,Signal ,horizon ,IceCube ,Subatomär fysik ,0103 physical sciences ,lcsh:QB460-466 ,Subatomic Physics ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,ddc:530 ,atmosphere [muon] ,010306 general physics ,detector [neutrino] ,mass [WIMP] ,Engineering (miscellaneous) ,Computer Science::Databases ,direct detection [dark matter] ,Physics ,Muon ,010308 nuclear & particles physics ,scattering ,sensitivity ,statistics ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Neutrino - Abstract
The European physical journal / C Particles and fields C 79(3), 214 (2019). doi:10.1140/epjc/s10052-019-6702-y, Published by Springer24928, Heidelberg
- Published
- 2019
- Full Text
- View/download PDF
44. Search for Lorentz Violation Using High-Energy Atmospheric Neutrinos In IceCube
- Author
-
Carlos Arguelles
- Subjects
Physics ,Particle physics ,High energy ,Lorentz transformation ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,symbols.namesake ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,symbols ,High Energy Physics::Experiment ,Neutrino - Abstract
High-energy atmospheric neutrinos observed by the IceCube Neutrino Observatory are extremely sensitive probes of Lorentz violation (LV). Here we report the result of analyzing two years of IceCube data in the search for LV. This analysis places some of the strongest constraints on LV when considering high-dimensional operators., Comment: 4 pages, 2 figures, presented at the Eighth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, May 12-16, 2019
- Published
- 2019
- Full Text
- View/download PDF
45. A binned likelihood for stochastic models
- Author
-
A. Schneider, Carlos Arguelles, and Tianlu Yuan
- Subjects
Nuclear and High Energy Physics ,Stochastic modelling ,Monte Carlo method ,Bayesian probability ,Complex system ,FOS: Physical sciences ,Unfolding ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Event-by-event fluctuation ,Frequentist inference ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,010308 nuclear & particles physics ,Probability and statistics ,Neutrino Detectors and Telescopes (experiments) ,Outcome (probability) ,Physics - Data Analysis, Statistics and Probability ,lcsh:QC770-798 ,Likelihood function ,Astrophysics - Instrumentation and Methods for Astrophysics ,Algorithm ,Data Analysis, Statistics and Probability (physics.data-an) - Abstract
Metrics of model goodness-of-fit, model comparison, and model parameter estimation are the main categories of statistical problems in science. Bayesian and frequentist methods that address these questions often rely on a likelihood function, which is the key ingredient in order to assess the plausibility of model parameters given observed data. In some complex systems or experimental setups, predicting the outcome of a model cannot be done analytically, and Monte Carlo techniques are used. In this paper, we present a new analytic likelihood that takes into account Monte Carlo uncertainties, appropriate for use in the large and small sample size limits. Our formulation performs better than semi-analytic methods, prevents strong claims on biased statements, and provides improved coverage properties compared to available methods., Comment: 18 pages, 7 figures, 2 tables, code can be found at https://github.com/austinschneider/MCLLH
- Published
- 2019
- Full Text
- View/download PDF
46. Time-integrated Neutrino Source Searches with 10 years of IceCube Data
- Author
-
Federica Bradascio, Alexander Burgman, Merlin Schaufel, Daria Pankova, E. Friedman, Claudio Kopper, Subir Sarkar, Chad Finley, J. J. Beatty, Tianlu Yuan, M. Kauer, D. Kang, Christoph Tönnis, Frank G. Schröder, Alexander Fritz, D. Z. Besson, K. Mase, Yuya Makino, R. Morse, Suyong Choi, I. Taboada, R. Maunu, David Kappesser, Michael O. Wolf, Minjin Jeong, Thomas Meures, N. L. Strotjohann, Felix Henningsen, A. R. Fazely, E. Pinat, Simona Toscano, P. Heix, K. Jero, Sander Vanheule, N. Kurahashi, Karl J. Clark, S. De Ridder, Z. Griffith, Jenni Adams, J. Lünemann, C. Pérez de los Heros, A. Obertacke Pollmann, Aswathi Balagopal, Saskia Philippen, D. Rysewyk, M. Song, T. L. Carver, Mike Richman, J. L. Kelley, Markus Ahlers, K. Meagher, F. McNally, M. J. Weiss, M. Labare, T. Palczewski, C. Wendt, E. O’Sullivan, S. Hickford, Jan Soedingrekso, M. Stamatikos, S. Kopper, René Reimann, A. O'Murchadha, Lenka Tomankova, Chunfai Tung, P. Peiffer, M. J. Larson, Pranav Dave, Timothyblake Watson, Erik Ganster, T. Menne, G. de Wasseige, B. Eberhardt, A. Stößl, L. Rauch, Benjamin Hokanson-Fasig, Yang Lyu, Samvel Ter-Antonyan, M. Silva, R. G. Stokstad, B. Relethford, S. Yoshida, Won Nam Kang, Amirreza Raissi, Chris Weaver, Stephanie Bron, Max Renschler, D. J. Koskinen, Wing Yan Ma, Tim Ruhe, B. J. P. Jones, R. Hoffmann, B. J. Whelan, X. Bai, G. Neer, E. Bourbeau, C. J. Lozano Mariscal, G. Merino, Reina H. Maruyama, James DeLaunay, C. Alispach, G. Krückl, Konstancja Satalecka, N. Wandkowsky, H. Dujmovic, Janet Conrad, K. Wiebe, Marjon Moulai, Summer Blot, Andres Medina, Theo Glauch, Jan Weldert, Thomas Ehrhardt, Spencer Griswold, Steven Robertson, Joshua Hignight, L. Halve, Philipp Eller, Shefali Shefali, D. Mockler, M. Günder, Alejandro Diaz, R. Cross, Timo Sturwald, H. Niederhausen, Kael Hanson, Surujhdeo Seunarine, R. Snihur, A. Weindl, Maria Tselengidou, D. Soldin, Johannes Werthebach, Carsten Rott, Juanan Aguilar, T. Stezelberger, R. Joppe, D. van Eijk, Joshua A. Wood, J. Felde, C. Walck, Jeffrey Lazar, R. Hellauer, J. Buscher, P. Schlunder, Maryon Ahrens, Alan Coleman, William Luszczak, Alexander Sandrock, Frederik Tenholt, R. Nagai, A. Goldschmidt, L. Schumacher, M. Zöcklein, Xianwu Xu, M. Medici, J. Sandroos, Timo Karg, T. Stanev, Maximilian Meier, Thomas K. Gaisser, G. B. Yodh, P. Steinmüller, F. Huang, G. H. Collin, Matthias Vraeghe, J. Stettner, J. Kim, Delia Tosi, U. Katz, Mehmet Gunduz, Agnieszka Leszczyńska, M. E. Huber, Marcos Santander, Paolo Desiati, S. E. Sanchez Herrera, R. C. Bay, K. D. de Vries, Sebastian Baur, Sebastian Böser, P. Backes, Gisela Anton, Elisa Bernardini, G. W. Sullivan, H. S. Matis, D. B. Fox, L. Gerhardt, A. Olivas, Austin Schneider, James E. Braun, N. van Eijndhoven, K. Helbing, C. Haack, Juan Carlos Diaz-Velez, H. Bagherpour, Benjamin Bastian, Anastasia Maria Barbano, T. Kittler, Daniel Bindig, Hermann Kolanoski, K. Becker, Emily Dvorak, N. Kulacz, Olga Botner, Kayla Leonard, D. R. Nygren, Javier Gonzalez, Roxanne Turcotte, Marek Kowalski, D. Hebecker, F. Jonske, Alexander Trettin, Giorgio Maggi, Mirco Hunnefeld, Marie Oehler, V. Baum, Sarah Mancina, Anna Franckowiak, Tobias Hoinka, Francis Halzen, J. Auffenberg, M. Börner, Steve Sclafani, J. Kiryluk, C. De Clercq, S. Tilav, I. Ansseau, Paul Coppin, Andrea Turcati, J. C. Gallagher, M. Leuermann, K. Andeen, Elisa Lohfink, J. P. Yanez, Gerrit Wrede, K. Hoshina, Thomas Huber, David A. Williams, Allan Hallgren, Juliana Stachurska, J. van Santen, H. Dembinski, Alex Pizzuto, Markus Ackermann, Glenn Spiczak, G. Momenté, M. G. Aartsen, Pablo Correa, S. W. Barwick, M. Rameez, D. F. Cowen, Gary Binder, Gerald Przybylski, U. Naumann, R. Halliday, George Japaridze, Roger Moore, E. Unger, A. Kyriacou, J. Bourbeau, K. Krings, Seongjin In, Elisa Resconi, Yiqian Xu, Matt Dunkman, Alessio Porcelli, M. Plum, J. Becker Tjus, E. Cheung, Ramesh Koirala, Thomas Stuttard, Dirk Ryckbosch, Stephan Meighen-Berger, K. Tollefson, E. Blaufuss, Albrecht Karle, Qinrui Liu, T. Glüsenkamp, L. Classen, Martina Karl, Jochen M. Schneider, M. A. Unland Elorrieta, D. Heereman, M. Wallraff, A. Steuer, Raamis Hussain, Colin Turley, T. Anderson, Immacolata Carmen Rea, Andreas Haungs, A. Ishihara, K. Mallot, H. Schieler, Kirill Filimonov, Segev BenZvi, T. Kintscher, M. Usner, Frederik Hermann Lauber, Spencer Klein, A. Terliuk, Justin Lanfranchi, Kara Hoffman, Julia Böttcher, Christian Spiering, Hershal Pandya, Wolfgang Rhode, Robert Stein, Justin Vandenbroucke, L. Wills, P. Muth, Ioana Codrina Maris, S. C. Nowicki, Christian Bohm, Ibrahim Safa, Damian Pieloth, Ali Kheirandish, W. Van Driessche, Nahee Park, K. Hultqvist, Darren Grant, Jannes Brostean-Kaiser, Christoph Raab, Nadège Iovine, M. U. Nisa, L. Köpke, D. Berley, G. C. Hill, Bunheng Ty, Ralph Engel, Giovanni Renzi, K. Rawlins, D. Seckel, S. Fahey, Tyce DeYoung, Nathan Whitehorn, Martin Rongen, R. S. Busse, Christopher Wiebusch, Kunal Deoskar, James Madsen, Lu Lu, L. Wille, Teresa Montaruli, Kendall Mahn, P. B. Price, Francesco Lucarelli, T. O. B. Schmidt, C. Chen, Karim Ghorbani, Spencer Axani, T. R. Wood, Carlos Arguelles, Jessie Micallef, P. Mallik, Kurt Woschnagg, Paul Evenson, Simone Garrappa, Dmitry Chirkin, Alexander Kappes, A. Wallace, Da Xu, Physics, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Vriendenkring VUB
- Subjects
background [atmosphere] ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,IceCube ,particle source [neutrino] ,TRACK RECONSTRUCTION ,0103 physical sciences ,ddc:530 ,atmosphere [muon] ,010306 general physics ,Astrophysics::Galaxy Astrophysics ,media_common ,astro-ph.HE ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Muon ,Astrophysics::Instrumentation and Methods for Astrophysics ,Northern Hemisphere ,Astronomy ,Galaxy ,messenger ,Physics and Astronomy ,Sky ,correlation ,time dependence ,upgrade ,galaxy ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,statistical - Abstract
Physical review letters 124(5), 051103 (1-9) (2020). doi:10.1103/PhysRevLett.124.051103, This paper presents the results from point-like neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a point-like source looking for an excess of clustered neutrino events with energies typically above $\sim1\,$TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the Northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of $2.9\,\sigma$ after accounting for statistical trials. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the Northern catalog are inconsistent with background at 3.3$\,\sigma$ significance. These results, all based on searches for a cumulative neutrino signal integrated over the ten years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector., Published by APS, College Park, Md.
- Published
- 2019
- Full Text
- View/download PDF
47. Publisher Correction: Detection of a particle shower at the Glashow resonance with IceCube
- Author
-
Jeffrey Lazar, George Japaridze, Roger Moore, M. Zöcklein, D. B. Fox, Timo Karg, Federica Bradascio, Alexander Burgman, S. Sarkar, J. Bourbeau, J. S. Gallagher, Richard Naab, Jan Soedingrekso, Merlin Schaufel, Seongjin In, J. A. Aguilar, Hermann Kolanoski, Elisa Resconi, M. Kauer, M. E. Huber, Marcos Santander, Le Viet Nguyen, D. Kang, Sarah Mancina, Stef Verpoest, Anna Franckowiak, Tobias Hoinka, Alexander Trettin, Aswathi Balagopal, L. Gerhardt, A. Porcelli, K. Krings, Vedant Basu, A. Schneider, Suyong Choi, G. Krückl, David Kappesser, Steve Sclafani, Alan Coleman, Gerrit Wrede, I. Taboada, Dustin Hebecker, Thomas Huber, B. J. P. Jones, A. Olivas, Frank G. Schröder, Ek Narayan Paudel, Allan Hallgren, Sandro Kopper, R. Maunu, Tim Ruhe, Matti Jansson, Thomas Ehrhardt, S. H. Robertson, Christian Haack, A. Kyriacou, C. S. Hill, B. J. Whelan, David Vannerom, Joanna Kiryluk, J. Auffenberg, K. Hoshina, Glenn Spiczak, Pablo Correa, B. A. Clark, G. Momenté, Shefali Shefali, K. Filimonov, D. F. Cowen, Martin Unland Elorrieta, S. De Ridder, A. Wallace, U. Naumann, A. Goldschmidt, Christoph Tönnis, T. Anderson, John Hardin, Mohamed Rameez, Abdul Rehman, Jan Weldert, E. Unger, L. Halve, Thorsten Glusenkamp, Carsten Rott, R. Hellauer, Y. Popovych, Joonghan Kim, Elisa Bernardini, K. Woschnagg, Z. Griffith, M. Kowalski, Etienne Bourbeau, Maria Prado Rodriguez, K. Rawlins, I. C. Mariş, A. O. Pollmann, Chiara Bellenghi, Daria Pankova, E. Friedman, Timothy W. Schmidt, D. Tosi, Chujie Chen, K. Tollefson, Max Renschler, D. J. Koskinen, Elisa Lohfink, Jenni Adams, Xinyue Kang, H. Schieler, Surujhdeo Seunarine, A. Weindl, Johan Wulff, Timothyblake Watson, J. Felde, K. Helbing, David R. Williams, P. Schlunder, Claudio Kopper, Maryon Ahrens, J. Buscher, Spencer Griswold, James DeLaunay, C. Bohm, C. Alispach, James Madsen, Frederik Tenholt, Raffaela Busse, M. Richman, Roxanne Turcotte, Benjamin Bastian, Anastasia Maria Barbano, Maria Tselengidou, Marjon Moulai, M. Medici, Xu X. W., Anatoli Fedynitch, C. H. Wiebusch, Simeon Reusch, Markus Ahlers, S. Hickford, Lu Lu, Cristina Lagunas Gualda, P. B. Price, Michael DuVernois, K. Meagher, T. Kittler, Paul Coppin, Andrea Turcati, C. Pérez de los Heros, Konstancja Satalecka, Theo Glauch, Francesco Lucarelli, S. Böser, Ramesh Koirala, R. G. Stokstad, Jannis Necker, Robert A. Cross, J. van Santen, K. D. de Vries, J. Stettner, Johannes Werthebach, L. Schumacher, A. Ishihara, C. De Clercq, N. L. Strotjohann, Karen Andeen, N. Kulacz, Gerald Przybylski, Michael J Larson, Teresa Montaruli, Felix Henningsen, T. R. Wood, E. Blaufuss, Alex Pizzuto, Michael Campana, Cristian Jesus Lozano Mariscal, Kendall Mahn, A. Steuer, Erik Ganster, T. Kintscher, Markus Ackermann, S. W. Barwick, Gerrit Roellinghoff, William Luszczak, Hershal Pandya, Alexander Fritz, Pranav Dave, A. R. Fazely, J. L. Kelley, Sebastian Sanchez Herrera, Benjamin Hokanson-Fasig, T. Stanev, Paul Evenson, L. Classen, N. Wandkowsky, Wolfgang Rhode, R. Morse, Jakob Bottcher, Mirco Hunnefeld, Marie Oehler, Julia Becker Tjus, Samvel Ter-Antonyan, Robert Stein, Hrvoje Dujmovic, Frederik Hermann Lauber, Yang Lyu, Stephen L. Hauser, S. Tilav, Grant Parker, G. H. Collin, Saskia Philippen, C. Wendt, Gary Binder, Simona Toscano, P. Heix, S. Y. BenZvi, Raamis Hussain, P. Muth, C. B. Finley, T. Stezelberger, A. Desai, Simone Garrappa, Feifei Huang, Dmitry Chirkin, Gisela Anton, Spencer Axani, Andrew Ludwig, A. Terliuk, G. de Wasseige, K. Wiebe, R. Hoffmann, Kayla Leonard, Alexander Kappes, G. Maggi, C. Walck, J. Lünemann, D. Z. Besson, Carlos Arguelles, Sukeerthi Dharani, Justin Lanfranchi, Francis Halzen, J. Merz, J. G. Gonzalez, Jessie Micallef, Ibrahim Safa, Damian Pieloth, M. U. Nisa, Thomas K. Gaisser, R. Engel, K.-H. Becker, Yiqian Xu, Matt Dunkman, R. Joppe, I. Ansseau, Christian Spiering, Aaron Fienberg, M. Silva, Najia Moureen Binte Amin, Juliana Stachurska, Lenka Tomankova, Amirreza Raissi, Mehmet Gunduz, Chris Weaver, Stephanie Bron, Justin Vandenbroucke, Frank McNally, Chunfai Tung, Colin Turley, Jannes Brostean-Kaiser, E. Cheung, Thomas Stuttard, M. Plum, Sarah Pieper, Maximilian Karl Scharf, A. Kheirandish, Dirk Ryckbosch, M. Stamatikos, Stephan Meighen-Berger, Joakim Sandroos, Y. L. Li, Devyn Rysewyk Cantu, Daniela Mockler, Agnieszka Leszczyńska, Martin Wolf, P. Peiffer, R. C. Bay, Joshua Hignight, Timo Sturwald, R. Halliday, Ben Smithers, Jean Pierre Twagirayezu, L. Köpke, A. Haungs, Nahee Park, K. Hultqvist, Darren Grant, Sarah Nowicki, Ryo Nagai, J. P. Yanez, H. Bagherpour, M. G. Aartsen, K. D. Hoffman, S. Baur, Olga Botner, V. Baum, G. W. Sullivan, James E. Braun, Juan Carlos Diaz-Velez, Erin O'Sullivan, Sreetama Goswami, F. Jonske, Ken'ichi Kin, J. J. Beatty, Tianlu Yuan, H. Dembinski, Reina H. Maruyama, Summer Blot, Naoko Kurahashi, Qinrui Liu, S. R. Klein, Martina Karl, Jochen M. Schneider, Martin Rongen, Zhedong Zhang, Ava Ghadimi, P. Mallik, Hans Niederhausen, K. Mase, Yuya Makino, Karl J. Clark, Alberto Martin Gago Medina, M. J. Weiss, René Reimann, Leander Fischer, D. van Eijk, Christoph Raab, Nadège Iovine, M. Song, D. Berley, G. C. Hill, T. L. Carver, Paras Koundal, Bunheng Ty, Woosik Kang, Kael Hanson, Moritz Kellermann, Giovanni Renzi, D. Seckel, S. Fahey, D. R. Nygren, Tyce DeYoung, Nathan Whitehorn, Immacolata Carmen Rea, Jan Conrad, Ma W. Y., Michael Kovacevich, X. Bai, G. Neer, A. Diaz, Robert Snihur, Philipp Eller, Alexander Sandrock, Kunal Deoskar, A. Karle, Rasha Abbasi, Maximilian Meier, Paolo Desiati, Matthias Vraeghe, Minjin Jeong, L. Rauch, D. Soldin, S. Yoshida, Daniel Bindig, N. van Eijndhoven, Timothée Grégoire, Emily Dvorak, M. Relich, Benedikt Riedel, and U. Katz
- Subjects
Physics ,Particle physics ,Multidisciplinary ,Particle shower ,Glashow resonance - Published
- 2021
- Full Text
- View/download PDF
48. Curriculum-Integrated Information Literacy (CIIL) in a Community College Nursing Program: A Practical Model
- Author
-
Carlos Arguelles
- Subjects
030504 nursing ,Process (engineering) ,Information literacy ,05 social sciences ,Lifelong learning ,Education ,03 medical and health sciences ,Nursing ,Blueprint ,Informatics ,ComputingMilieux_COMPUTERSANDEDUCATION ,Curriculum development ,Nurse education ,Sociology ,0509 other social sciences ,050904 information & library sciences ,0305 other medical science ,Curriculum - Abstract
This article describes a strategy to integrate information literacy into the curriculum of a nursing program in a community college. The model is articulated in four explained phases: preparatory, planning, implementation, and evaluation. It describes a collaborative process encouraging librarians to work with nursing faculty, driving students to acquire information literacy competencies, to use information resources as part of their learning process, and to be lifelong learners. The literature reviews the evolution of the concept of informatics in nursing practice and the different blueprints organized to attain information literacy competencies. It also describes studies that have included these competencies into nursing curriculum.
- Published
- 2016
- Full Text
- View/download PDF
49. New opportunities at the next-generation neutrino experiments I: BSM neutrino physics and dark matter
- Author
-
A. Sousa, A. Hatzikoutelis, Doojin Kim, Y. Cui, B. Kayser, Yicong Sui, A. De Roeck, M. Bishai, G. Sinev, Silvia Pascoli, I. Lepetic, A. de Gouvea, W. Flanagan, B. J. P. Jones, A. Chatterjee, Kevin J. Kelly, D. V. Forero, N. Byrnes, Seodong Shin, Cen Zhang, Ben Smithers, S. Prakash, Volodymyr Takhistov, Ian M. Shoemaker, Brian Batell, Pedro A. N. Machado, Yu-Dai Tsai, Jong-Chul Park, M. Hostert, Jinhong Yu, L. Rogers, Carlos Arguelles, Juergen Thomas, Austin Schneider, Karol Lang, F. I. Olness, Peter B. Denton, C. A. Moura, A. Aurisano, Joachim Kopp, Kate Scholberg, J. Berger, R. Gandrajula, Alan Chodos, Ibrahim Safa, J. Todd, Y. T. Tsai, A. Kubik, T. Boschi, and T. E. Coan
- Subjects
Physics ,Particle physics ,Sterile neutrino ,Physics beyond the Standard Model ,Dark matter ,General Physics and Astronomy ,Scale (descriptive set theory) ,Tracking (particle physics) ,01 natural sciences ,0103 physical sciences ,Deep Underground Neutrino Experiment ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Neutrino oscillation - Abstract
The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the foreseeable future, as the precision of the neutrino oscillation parameter and CPV measurements continue to improve.This paper provides a review of the current landscape of BSM theory in neutrino experiments in two selected areas of the BSM topics—dark matter and neutrino related BSM—and summarizes the current results from existing neutrino experiments to set benchmarks for both theory and experiment. This paper then provides a review of upcoming neutrino experiments throughout the next 10 to 15 year time scale and their capabilities to set the foundation for potential reach in BSM physics in the two aforementioned themes. An important outcome of this paper is to ensure theoretical and simulation tools exist to carry out studies of these new areas of physics, from the first day of the experiments, such as Deep Underground Neutrino Experiment in the U.S. and Hyper-Kamiokande Experiment in Japan.
- Published
- 2020
- Full Text
- View/download PDF
50. χaroν: a tool for neutrino flux generation from WIMPs
- Author
-
Jeffrey Lazar, Carlos Arguelles, Ali Kheirandish, and Qinrui Liu
- Subjects
Physics ,Annihilation ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Electroweak interaction ,Dark matter ,Astronomy and Astrophysics ,Observable universe ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Standard Model ,Galactic halo ,High Energy Physics - Phenomenology ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Indirect searches for signatures of corpuscular dark matter have been performed using all cosmic messengers: gamma rays, cosmic rays, and neutrinos. The search for dark matter from neutrinos is of particular importance since they are the only courier that can reach detectors from dark matter processes in dense environments, such as the core of the Sun or Earth, or from the edge of the observable Universe. In this work, we introduce $\chi$aro$\nu$, a software package that, in the spirit of its mythological Greek namesake $\chi \acute\alpha \rho \omega \nu $, bridges the dark sector and Standard Model by predicting neutrino fluxes from different celestial dark matter agglomerations. The flux at the point of production is either computed internally by $\chi$aro$\nu$ or is taken from user supplied tables. $\chi$aro$\nu$ then propagates this flux through vacuum or dense media and returns the expected neutrino yield at an observer's location. In developing $\chi$aro$\nu$, we have revisited and updated the production of neutrinos in dense media, updated the propagation of high-energy neutrinos, and studied the sources of uncertainty in neutrino transport. This package is coupled to a new calculation that includes electroweak corrections resulting in the most up-to-date and complete repository of neutrino fluxes from dark matter decay and annihilation over the energy range of 1 GeV to 10 PeV coming from the Earth, the Sun, and the Galactic halo., Comment: 29 pages, 12 figures, code available at: https://github.com/IceCubeOpenSource/charon - comments received are addressed
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.