1. Library of single-etch silicon nitride grating couplers for low-loss and fabrication-robust fiber-chip interconnection
- Author
-
Radovan Korček, David Medina Quiroz, Quentin Wilmart, Samson Edmond, Pavel Cheben, Laurent Vivien, Carlos Alonso-Ramos, and Daniel Benedikovič
- Subjects
Medicine ,Science - Abstract
Abstract Silicon nitride (Si3N4) waveguides become an appealing choice to realize complex photonic integrated circuits for applications in telecom/datacom transceivers, sensing, and quantum information sciences. However, compared to high-index-contrast silicon-on-insulator platform, the index difference between the Si3N4 waveguide core and its claddings is more moderate, which adversely affects the development of vertical grating-coupled optical interfaces. Si3N4 grating couplers suffer from the reduced strength, therefore it is more challenging to radiate all the waveguide power out of the grating within a beam size that is comparable to the mode field diameter of standard optical fibers. In this work, we present, by design and experiments, a library of low-loss and fabrication-tolerant surface grating couplers, operating at 1.55 μm wavelength range and standard SMF-28 fiber. Our designs are fabricated on 400 nm Si3N4 platform using single-etch fabrication and foundry-compatible low-pressure chemical vapor deposition wafers. Experimentally, the peak coupling loss of − 4.4 dB and − 3.9 dB are measured for uniform couplers, while apodized grating couplers yield fiber-chip coupling loss of − 2.9 dB, without the use of bottom mirrors, additional overlays, and multi-layered grating arrangements. Beside the single-hero demonstrations, over 130 grating couplers were realized and tested, showing an excellent agreement with finite difference time domain designs and fabrication-robust performance. Demonstrated grating couplers are promising for Si3N4 photonic chip prototyping by using standard optical fibers, leveraging low-cost and foundry-compatible fabrication technologies, essential for stable and reproducible large-volume device development.
- Published
- 2023
- Full Text
- View/download PDF