50 results on '"Carl C. Ward"'
Search Results
2. Ligandability of E3 Ligases for Targeted Protein Degradation Applications
- Author
-
Daniel K. Nomura, Bridget P. Belcher, and Carl C. Ward
- Subjects
biology ,medicine.diagnostic_test ,Chemistry ,Proteolysis ,Druggability ,Computational biology ,Protein degradation ,Biochemistry ,Small molecule ,Article ,Ubiquitin ligase ,Ubiquitin ,Proteasome ,Proteome ,biology.protein ,medicine - Abstract
Targeted protein degradation (TPD) using Proteolysis Targeting Chimeras (PROTACs) and molecular glue degraders has arisen as a powerful therapeutic modality for eliminating disease-causing proteins from cells. PROTACs and molecular glue degraders employ heterobifunctional or monovalent small molecules, respectively, to chemically induce the proximity of target proteins with E3 ubiquitin ligases to ubiquitinate and degrade specific proteins via the proteasome. While TPD is an attractive therapeutic strategy for expanding the druggable proteome, only a relatively small number of E3 ligases out of the >600 E3 ligases encoded by the human genome have been exploited by small molecules for TPD applications. Here, we review the existing E3 ligases that have thus far been successfully exploited for TPD and discuss chemoproteomics-enabled covalent screening strategies for discovering new E3 ligase recruiters. We also provide a chemoproteomic map of reactive cysteines within hundreds of E3 ligases which may represent potential ligandable sites that can be pharmacologically interrogated to uncover additional E3 ligase recruiters.
- Published
- 2021
- Full Text
- View/download PDF
3. Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition
- Author
-
Carl C. Ward, James A. Olzmann, Roberto Zoncu, Charles A. Berdan, Hijai R. Shin, Clive Yik-Sham Chung, Daniel K. Nomura, and Breanna Ford
- Subjects
autophagy ,Vacuolar Proton-Translocating ATPases ,Biochemistry & Molecular Biology ,Proto-Oncogene Proteins c-akt ,Protein subunit ,Cellular homeostasis ,Guanosine ,mTORC1 ,Neurodegenerative ,Mechanistic Target of Rapamycin Complex 1 ,Article ,Cell Line ,Mice ,Medicinal and Biomolecular Chemistry ,03 medical and health sciences ,chemistry.chemical_compound ,Autophagy ,Animals ,Humans ,cysteine ,Molecular Biology ,activity-based protein profiling ,030304 developmental biology ,0303 health sciences ,Molecular Structure ,Activator (genetics) ,Kinase ,030302 biochemistry & molecular biology ,Cell Biology ,chemoproteomics ,3. Good health ,Cell biology ,v-ATPase ,Gene Expression Regulation ,chemistry ,Gene Knockdown Techniques ,covalent ligand ,lysosome ,Pyrazoles ,Biochemistry and Cell Biology ,ATP6V1A ,biological phenomena, cell phenomena, and immunity - Abstract
Autophagy is a lysosomal degradation pathway that eliminates aggregated proteins and damaged organelles to maintain cellular homeostasis. A major route for activating autophagy involves inhibition of the mTORC1 kinase, but current mTORC1-targeting compounds do not allow complete and selective mTORC1 blockade. Here, we have coupled screening of a covalent ligand library with activity-based protein profiling to discover EN6, a small-molecule in vivo activator of autophagy that covalently targets cysteine 277 in the ATP6V1A subunit of the lysosomal v-ATPase, which activates mTORC1 via the Rag guanosine triphosphatases. EN6-mediated ATP6V1A modification decouples the v-ATPase from the Rags, leading to inhibition of mTORC1 signaling, increased lysosomal acidification, and activation of autophagy. Consistently, EN6 clears TDP-43 aggregates, a causative agent in frontotemporal dementia, in a lysosome-dependent manner. Our results provide insight into how the v-ATPase regulates mTORC1, and reveal a unique approach for enhancing cellular clearance based on covalent inhibition of lysosomal mTORC1 signaling., Editorial Summary We report here a covalent ligand that targets C277 of ATP6V1A leading to enhanced v-ATPase activity, inhibition of mTORC1 signaling, increasesd lysosomal acidification, activation of autophagy, and clearance of toxic protein aggregates.
- Published
- 2019
- Full Text
- View/download PDF
4. Deubiquitinase-Targeting Chimeras for Targeted Protein Stabilization
- Author
-
Nathaniel J. Henning, Scott M. Brittain, Lynn M. McGregor, John A. Tallarico, Hesse M, Carl C. Ward, Bridget P. Belcher, Lydia Boike, Jessica N. Spradlin, Markus Schirle, Jeffery M. McKenna, Dustin Dovala, and Daniel K. Nomura
- Subjects
chemistry.chemical_compound ,Ubiquitin ,biology ,Chemistry ,OTUB1 ,Allosteric regulation ,Lumacaftor ,biology.protein ,Protein degradation ,Protein stabilization ,Ligand (biochemistry) ,Cell biology ,Deubiquitinating enzyme - Abstract
Targeted protein degradation is a powerful therapeutic modality that uses heterobifunctional small-molecules to induce proximity between E3 ubiquitin ligases and target proteins to ubiquitinate and degrade specific proteins of interest. However, many proteins are ubiquitinated and degraded to drive disease pathology; in these cases targeted protein stabilization (TPS), rather than degradation, of the actively degraded target using a small-molecule would be therapeutically beneficial. Here, we present the Deubiquitinase-Targeting Chimera (DUBTAC) platform for TPS of specific proteins. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48 ubiquitin-specific deubiquitinase OTUB1. We then developed a heterobifunctional DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-CFTR. We demonstrated proof-of-concept of TPS by showing that this DUBTAC robustly stabilized ΔF508-CFTR in human cystic fibrosis bronchial epithelial cells in an OTUB1-dependent manner. Our study underscores the utility of chemoproteomics-enabled covalent ligand discovery approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS.Editorial summaryWe have developed the Deubiquitinase Targeting Chimera (DUBTAC) platform for targeted protein stabilization. We have discovered a covalent recruiter against the deubiquitinase OTUB1 that we have linked to the mutant ΔF508-CFTR targeting cystic fibrosis drug Lumacaftor to stabilize mutant CFTR protein in cells.
- Published
- 2021
- Full Text
- View/download PDF
5. Screening a library of FDA-approved and bioactive compounds for antiviral activity against SARS-CoV-2
- Author
-
Sarah A. Stanley, Carl C. Ward, Thomas G.W. Graham, Xammy Nguyenla, Allison W. Roberts, Jessica N. Spradlin, Scott B. Biering, Teena Bajaj, Douglas M. Fox, Julien R. Stroumza, Eddie Wehri, Melanie Ott, Ursula Schulze-Gamen, Claire Dugast-Darzacq, Guillaume Golovkine, Julia Schaletzky, Daniel M. Fines, Ruchika Bajaj, Erik Van Dis, Dustin Dovala, Daniel K. Nomura, Lívia H. Yamashiro, and Niren Murthy
- Subjects
0301 basic medicine ,2019-20 coronavirus outbreak ,Proteases ,Coronavirus disease 2019 (COVID-19) ,Combination therapy ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,030106 microbiology ,synergy ,remdesivir ,Pharmacology ,Antiviral Agents ,Article ,Vaccine Related ,03 medical and health sciences ,Rare Diseases ,Biodefense ,Humans ,Medicine ,Pandemics ,Lung ,Repurposing ,drug repurposing ,SARS-CoV-2 ,business.industry ,Prevention ,COVID-19 ,Pneumonia ,antiviral ,Rapid identification ,Drug repositioning ,Orphan Drug ,Emerging Infectious Diseases ,Good Health and Well Being ,030104 developmental biology ,Infectious Diseases ,5.1 Pharmaceuticals ,Medical Microbiology ,Pneumonia & Influenza ,Development of treatments and therapeutic interventions ,Infection ,business ,B02 ,Biotechnology - Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 80 million cases and 1.7 million deaths to date while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.
- Published
- 2020
- Full Text
- View/download PDF
6. Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots
- Author
-
Allison M. Roberts, Carl C. Ward, and Daniel K. Nomura
- Subjects
0301 basic medicine ,Technology ,Proteome ,Protein Array Analysis ,Biomedical Engineering ,Bioengineering ,Computational biology ,Biology ,01 natural sciences ,Genome ,Article ,03 medical and health sciences ,Engineering ,Genetics ,Animals ,Humans ,010405 organic chemistry ,Human Genome ,Activity-based proteomics ,Proteins ,Biological Sciences ,Highly selective ,0104 chemical sciences ,Protein profiling ,Good Health and Well Being ,030104 developmental biology ,5.1 Pharmaceuticals ,Drug Design ,Proteins metabolism ,Human genome ,Generic health relevance ,Development of treatments and therapeutic interventions ,Biomarkers ,Biotechnology - Abstract
Despite the completion of human genome sequencing efforts nearly 15 years ago that brought with it the promise of genome-based discoveries that would cure human diseases, most protein targets that control human diseases have remained largely untranslated, in-part because they represent difficult protein targets to drug. In addition, many of these protein targets lack screening assays or accessible binding pockets, making the development of small-molecule modulators very challenging. Here, we discuss modern methods for activity-based protein profiling-based chemoproteomic strategies to map 'ligandable' hotspots in proteomes using activity and reactivity-based chemical probes to allow for pharmacological interrogation of these previously difficult targets. We will showcase several recent examples of how these technologies have been used to develop highly selective small-molecule inhibitors against disease-related protein targets.
- Published
- 2017
- Full Text
- View/download PDF
7. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication
- Author
-
Daniel K. Nomura, Zachary Brown, Mark P. Jedrychowski, Makoto Takahashi, Yoko Yokoyama, Rachana N. Pradhan, Hiroshi Karasawa, Carlos H.G. Sponton, Qiang Wang, Mitsuhiro Watanabe, Yumi Matsui, Yong Chen, Hiroki Taoka, Kenji Ikeda, Kazuki Tajima, Kosaku Shinoda, Carl C. Ward, Takeshi Yoneshiro, Shingo Kajimura, Lindsay S. Roberts, Junki Taura, Yasuo Oguri, and Takashi Hosono
- Subjects
medicine.medical_specialty ,Glucose uptake ,Biochemistry ,Transcriptome ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Mediator ,Adipose Tissue, Brown ,Phospholipid transfer protein ,Internal medicine ,Brown adipose tissue ,Genetics ,medicine ,Homeostasis ,Humans ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,Cholesterol ,Thermogenesis ,Articles ,Sphingolipid ,Lipids ,Endocrinology ,medicine.anatomical_structure ,Glucose ,chemistry ,Liver ,Energy Metabolism ,030217 neurology & neurosurgery - Abstract
While brown adipose tissue (BAT) is well-recognized for its ability to dissipate energy in the form of heat, recent studies suggest multifaced roles of BAT in the regulation of glucose and lipid homeostasis beyond stimulating thermogenesis. One of the functions involves interorgan communication with metabolic organs, such as the liver, through BAT-derived secretory factors, a.k.a., batokine. However, the identity and the roles of such mediators remain insufficiently understood. Here, we employed proteomics and transcriptomics in human thermogenic adipocytes and identified previously unappreciated batokines, including phospholipid transfer protein (PLTP). We found that increased circulating levels of PLTP, via systemic or BAT-specific overexpression, significantly improve glucose tolerance and insulin sensitivity, increased energy expenditure, and decrease the circulating levels of cholesterol, phospholipids, and sphingolipids. Such changes were accompanied by increased bile acids in the circulation, which in turn enhances glucose uptake and thermogenesis in BAT. Our data suggest that PLTP is a batokine that contributes to the regulation of systemic glucose and lipid homeostasis as a mediator of BAT-liver interorgan communication.
- Published
- 2019
8. Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications
- Author
-
Jason R. Thomas, Patrick Lee, Markus Schirle, Carl C. Ward, Scott M. Brittain, Jordan I. Kleinman, Daniel K. Nomura, Clive Yik-Sham Chung, Jeffrey Mckenna, Yana Petri, Kenneth Kim, and John A. Tallarico
- Subjects
0301 basic medicine ,Proteasome Endopeptidase Complex ,Ubiquitin-Protein Ligases ,Protein domain ,Cell Cycle Proteins ,Computational biology ,Protein degradation ,Ligands ,01 natural sciences ,Biochemistry ,Article ,Small Molecule Libraries ,03 medical and health sciences ,Structure-Activity Relationship ,Ubiquitin ,Protein Domains ,Coordination Complexes ,Humans ,Cysteine ,biology ,010405 organic chemistry ,RNF4 ,Drug discovery ,Chemistry ,Ubiquitination ,Nuclear Proteins ,General Medicine ,0104 chemical sciences ,Ubiquitin ligase ,Bromodomain ,Molecular Docking Simulation ,Zinc ,030104 developmental biology ,Proteasome ,Proteolysis ,biology.protein ,Molecular Medicine ,Protein Binding ,Transcription Factors - Abstract
Targeted protein degradation has arisen as a powerful strategy for drug discovery allowing the targeting of undruggable proteins for proteasomal degradation. This approach most often employs heterobifunctional degraders consisting of a protein-targeting ligand linked to an E3 ligase recruiter to ubiquitinate and mark proteins of interest for proteasomal degradation. One challenge with this approach, however, is that only a few E3 ligase recruiters currently exist for targeted protein degradation applications, despite the hundreds of known E3 ligases in the human genome. Here, we utilized activity-based protein profiling (ABPP)-based covalent ligand screening approaches to identify cysteine-reactive small-molecules that react with the E3 ubiquitin ligase RNF4 and provide chemical starting points for the design of RNF4-based degraders. The hit covalent ligand from this screen reacted with either of two zinc-coordinating cysteines in the RING domain, C132 and C135, with no effect on RNF4 activity. We further optimized the potency of this hit and incorporated this potential RNF4 recruiter into a bifunctional degrader linked to JQ1, an inhibitor of the BET family of bromodomain proteins. We demonstrate that the resulting compound CCW 28-3 is capable of degrading BRD4 in a proteasome- and RNF4-dependent manner. In this study, we have shown the feasibility of using chemoproteomics-enabled covalent ligand screening platforms to expand the scope of E3 ligase recruiters that can be exploited for targeted protein degradation applications.
- Published
- 2019
9. Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications
- Author
-
Clive Yik-Sham Chung, Jason R. Thomas, Daniel K. Nomura, Jeffrey Mckenna, Yana Petri, Jordan I. Kleinman, John A. Tallarico, Patrick Lee, Markus Schirle, Carl C. Ward, and Kenneth Kim
- Subjects
0303 health sciences ,BRD4 ,biology ,010405 organic chemistry ,Chemistry ,RNF4 ,Drug discovery ,Computational biology ,Protein degradation ,Ligand (biochemistry) ,01 natural sciences ,0104 chemical sciences ,Bromodomain ,Ubiquitin ligase ,03 medical and health sciences ,Proteasome ,biology.protein ,030304 developmental biology - Abstract
Targeted protein degradation has arisen as a powerful strategy for drug discovery allowing the targeting of undruggable proteins for proteasomal degradation. This approach most often employs heterobifunctional degraders consisting of a protein-targeting ligand linked to an E3 ligase recruiter to ubiquitinate and mark proteins of interest for proteasomal degradation. One challenge with this approach, however, is that only few E3 ligase recruiters currently exist for targeted protein degradation applications, despite the hundreds of known E3 ligases in the human genome. Here, we utilized activity-based protein profiling (ABPP)-based covalent ligand screening approaches to identify cysteine-reactive small-molecules that react with the E3 ubiquitin ligase RNF4 and provide chemical starting points for the design of RNF4-based degraders. The hit covalent ligand from this screen reacted with either of two zinc-coordinating cysteines in the RING domain, C132 and C135, with no effect on RNF4 activity. We further optimized the potency of this hit and incorporated this potential RNF4 recruiter into a bifunctional degrader linked to JQ1, an inhibitor of the BET family of bromodomain proteins. We demonstrate that the resulting compound CCW 28-3 is capable of degrading BRD4 in a proteasome- and RNF4-dependent manner. In this study, we have shown the feasibility of using chemoproteomics-enabled covalent ligand screening platforms to expand the scope of E3 ligase recruiters that can be exploited for targeted protein degradation applications.
- Published
- 2018
- Full Text
- View/download PDF
10. Harnessing the Anti-Cancer Natural Product Nimbolide for Targeted Protein Degradation
- Author
-
Jessica N. Spradlin, Carl C. Ward, Daniel K. Nomura, Dirksen E. Bussiere, Lisha Ou, Thomas J. Maimone, Andrew Proudfoot, James A. Olzmann, Jason R. Thomas, Mikias Woldegiorgis, Markus Schirle, Xirui Hu, John A. Tallarico, Jeffrey Mckenna, Michael D. Jones, Elizabeth Ornelas, Scott M. Brittain, and Milton To
- Subjects
Druggability ,Drug Screening Assays ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,Ubiquitin ,law ,Phytogenic ,ZNF313 ,Cancer ,0303 health sciences ,RNF114 ,biology ,030302 biochemistry & molecular biology ,Cell biology ,Ubiquitin ligase ,5.1 Pharmaceuticals ,Female ,Development of treatments and therapeutic interventions ,Limonins ,Biochemistry & Molecular Biology ,Ubiquitin-Protein Ligases ,Cancer therapy ,Antineoplastic Agents ,Breast Neoplasms ,Protein degradation ,Article ,Medicinal and Biomolecular Chemistry ,03 medical and health sciences ,Breast Cancer ,medicine ,Humans ,ABPP ,Molecular Biology ,activity-based protein profiling ,Cell Proliferation ,030304 developmental biology ,Biological Products ,Natural product ,010405 organic chemistry ,Antitumor ,Cell Biology ,medicine.disease ,chemoproteomics ,Antineoplastic Agents, Phytogenic ,0104 chemical sciences ,Protein profiling ,nimbolide ,chemistry ,Proteolysis ,biology.protein ,Suppressor ,Biochemistry and Cell Biology ,degraders ,Drug Screening Assays, Antitumor ,Carrier Proteins ,targeted protein degradation - Abstract
Nimbolide, a terpenoid natural product derived from the Neem tree, impairs cancer pathogenicity across many types of human cancers; however, the direct targets and mechanisms by which nimbolide exerts its effects are poorly understood. Here, we used activity-based protein profiling (ABPP) chemoproteomic platforms to discover that nimbolide reacts with a novel functional cysteine crucial for substrate recognition in the E3 ubiquitin ligase RNF114. Nimbolide impairs breast cancer cell proliferation in-part by disrupting RNF114 substrate recognition, leading to inhibition of ubiquitination and degradation of the tumor-suppressors such as p21, resulting in their rapid stabilization. We further demonstrate that nimbolide can be harnessed to recruit RNF114 as an E3 ligase in targeted protein degradation applications and show that synthetically simpler scaffolds are also capable of accessing this unique reactive site. Our study highlights the utility of ABPP platforms in uncovering unique druggable modalities accessed by natural products for cancer therapy and targeted protein degradation applications.
- Published
- 2018
- Full Text
- View/download PDF
11. Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State
- Author
-
Leslie Magtanong, Gary J. Patti, Daniel K. Nomura, Kevin Cho, James A. Olzmann, Milton To, Amy Tarangelo, Pin-Joe Ko, Jennifer Yinuo Cao, Scott J. Dixon, Carl C. Ward, and Giovanni C. Forcina
- Subjects
Membrane lipids ,1.1 Normal biological development and functioning ,Clinical Biochemistry ,lipid droplet ,Oxidative phosphorylation ,Biology ,GPX4 ,01 natural sciences ,Biochemistry ,Cell Line ,Fatty Acids, Monounsaturated ,oleate ,Mice ,iron ,Underpinning research ,Lipid droplet ,MUFAs ,Drug Discovery ,Coenzyme A Ligases ,Animals ,Ferroptosis ,Molecular Biology ,Pharmacology ,chemistry.chemical_classification ,Reactive oxygen species ,Arachidonic Acid ,010405 organic chemistry ,Fatty Acids ,Cell Membrane ,food and beverages ,Lipid Droplets ,lipotoxicity ,Phospholipid Hydroperoxide Glutathione Peroxidase ,Lipids ,ferroptosis ,0104 chemical sciences ,Monounsaturated ,cell death ,chemistry ,Lipotoxicity ,Apoptosis ,Molecular Medicine ,lipids (amino acids, peptides, and proteins) ,Reactive Oxygen Species ,Oxidation-Reduction ,lipid ROS ,Polyunsaturated fatty acid - Abstract
Summary The initiation and execution of cell death can be regulated by various lipids. How the levels of environmental (exogenous) lipids impact cell death sensitivity is not well understood. We find that exogenous monounsaturated fatty acids (MUFAs) potently inhibit the non-apoptotic, iron-dependent, oxidative cell death process of ferroptosis. This protective effect is associated with the suppression of lipid reactive oxygen species (ROS) accumulation at the plasma membrane and decreased levels of phospholipids containing oxidizable polyunsaturated fatty acids. Treatment with exogenous MUFAs reduces the sensitivity of plasma membrane lipids to oxidation over several hours. This effect requires MUFA activation by acyl-coenzyme A synthetase long-chain family member 3 (ACSL3) and is independent of lipid droplet formation. Exogenous MUFAs also protect cells from apoptotic lipotoxicity caused by the accumulation of saturated fatty acids, but in an ACSL3-independent manner. Our work demonstrates that ACSL3-dependent MUFA activation promotes a ferroptosis-resistant cell state.
- Published
- 2018
12. Exogenous Monounsaturated Fatty Acids Suppress Non-Apoptotic Cell Death
- Author
-
James A. Olzmann, Jennifer Yinuo Cao, Gary J. Patti, Carl C. Ward, Scott J. Dixon, Pin-Joe Ko, Leslie Magtanong, Daniel K. Nomura, Kevin Cho, Amy Tarangelo, and Milton To
- Subjects
Programmed cell death ,Lipotoxicity ,Cell Death Process ,Apoptosis ,Chemistry ,Apoptotic cell death ,Extracellular ,lipids (amino acids, peptides, and proteins) ,Small molecule ,ACSL3 ,Cell biology - Abstract
The initiation and execution of cell death is regulated by various lipids. How the levels of environmental (exogenous) lipids impact cell death sensitivity is not well understood. Using a high-throughput lipid modulation screen we find that physiological levels of extracellular free fatty acids have diverse effects on non-apoptotic and apoptotic cell death induced by lethal small molecules and natural products. In particular, monounsaturated fatty acids (MUFAs) are found to suppress the non-apoptotic, iron-dependent cell death process of ferroptosis. This protective effect requires acyl-CoA synthetase long-chain family member 3 (ACSL3) and involves suppression of toxic lipid ROS accumulation specifically at the plasma membrane. Exogenous MUFAs also protect cells from apoptotic lipotoxicity caused by the accumulation of saturated fatty acids, but through a genetically distinct mechanism. Thus, MUFAs emerge as key lipid metabolites regulating both non-apoptotic and apoptotic cell death.
- Published
- 2018
- Full Text
- View/download PDF
13. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots
- Author
-
Carl C. Ward, Jordan I. Kleinman, and Daniel K. Nomura
- Subjects
0301 basic medicine ,Proteome ,Allosteric regulation ,Druggability ,Succinimides ,Biology ,Ligands ,01 natural sciences ,Biochemistry ,Article ,03 medical and health sciences ,Humans ,Reactivity (chemistry) ,Binding site ,Glutathione Transferase ,Binding Sites ,010405 organic chemistry ,Drug discovery ,Aldehyde Dehydrogenase, Mitochondrial ,Lysine ,Esters ,General Medicine ,Small molecule ,0104 chemical sciences ,030104 developmental biology ,Alkynes ,Molecular Probes ,Molecular Medicine ,Molecular probe - Abstract
Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.
- Published
- 2017
14. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products
- Author
-
Jordan I. Kleinman, Jessica N. Spradlin, Elizabeth A. Grossman, Daniel K. Nomura, Leslie A. Bateman, Carl C. Ward, Tucker R. Huffman, and David K. Miyamoto
- Subjects
0301 basic medicine ,Proteome ,Clinical Biochemistry ,Druggability ,Ligands ,Biochemistry ,chemistry.chemical_compound ,withaferin ,Drug Discovery ,Protein Phosphatase 2 ,Cancer ,Tumor ,Activity-based proteomics ,PP2A ,PPP2R1A ,5.1 Pharmaceuticals ,MCF-7 Cells ,Molecular Medicine ,Female ,Development of treatments and therapeutic interventions ,Signal Transduction ,Chemical biology ,chemical biology ,Antineoplastic Agents ,Breast Neoplasms ,Computational biology ,Biology ,Cell Line ,03 medical and health sciences ,Cell Line, Tumor ,Breast Cancer ,medicine ,Humans ,Chemoproteomics ,Amino Acid Sequence ,Cysteine ,Molecular Biology ,Withanolides ,activity-based protein profiling ,Cell Proliferation ,Pharmacology ,Biological Products ,Natural product ,covalent ligand discovery ,protein phosphatase 2A ,Protein phosphatase 2 ,medicine.disease ,chemoproteomics ,030104 developmental biology ,chemistry ,Withaferin A ,Proto-Oncogene Proteins c-akt - Abstract
Summary Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy.
- Published
- 2017
15. The Discovery of Human sORF‐Encoded Polypeptides (SEPs) in Cell Lines and Tissue
- Author
-
Carl C. Ward, Adam G. Schwaid, Manolis Kellis, Irwin Jungreis, Sarah A. Slavoff, Jiao Ma, John M. Neveu, Alan Saghatelian, and Bogdan Budnik
- Subjects
Genetics ,Computational biology ,Biology ,Bioinformatics ,Molecular Biology ,Biochemistry ,Biotechnology - Published
- 2015
- Full Text
- View/download PDF
16. Cellular behavior analysis from live-cell imaging of TCR T cell-cancer cell interactions.
- Author
-
Verma A, Yu C, Bachl S, Lopez I, Schwartz M, Moen E, Kale N, Ching C, Miller G, Dougherty T, Pao E, Graf W, Ward C, Jena S, Marson A, Carnevale J, Van Valen D, and Engelhardt BE
- Abstract
T cell therapies, such as chimeric antigen receptor (CAR) T cells and T cell receptor (TCR) T cells, are a growing class of anti-cancer treatments. However, expansion to novel indications and beyond last-line treatment requires engineering cells' dynamic population behaviors. Here we develop the tools for cellular behavior analysis of T cells from live-cell imaging, a common and inexpensive experimental setup used to evaluate engineered T cells. We first develop a state-of-the-art segmentation and tracking pipeline, Caliban , based on human-in-the-loop deep learning. We then build the Occident pipeline to collect a catalog of phenotypes that characterize cell populations, morphology, movement, and interactions in co-cultures of modified T cells and antigen-presenting tumor cells. We use Caliban and Occident to interrogate how interactions between T cells and cancer cells differ when beneficial knock-outs of RASA2 and CUL5 are introduced into TCR T cells. We apply spatiotemporal models to quantify T cell recruitment and proliferation after interactions with cancer cells. We discover that, compared to a safe harbor knockout control, RASA2 knockout T cells have longer interaction times with cancer cells leading to greater T cell activation and killing efficacy, while CUL5 knockout T cells have increased proliferation rates leading to greater numbers of T cells for hunting. Together, segmentation and tracking from Caliban and phenotype quantification from Occident enable cellular behavior analysis to better engineer T cell therapies for improved cancer treatment.
- Published
- 2024
- Full Text
- View/download PDF
17. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency.
- Author
-
Sun C, Seranova E, Cohen MA, Chipara M, Roberts J, Astuti D, Palhegyi AM, Acharjee A, Sedlackova L, Kataura T, Otten EG, Panda PK, Lara-Reyna S, Korsgen ME, Kauffman KJ, Huerta-Uribe A, Zatyka M, Silva LFSE, Torresi J, Zhang S, Hughes GW, Ward C, Kuechler ER, Cartwright D, Trushin S, Trushina E, Sahay G, Buganim Y, Lavery GG, Gsponer J, Anderson DG, Frickel EM, Rosenstock TR, Barrett T, Maddocks ODK, Tennant DA, Wang H, Jaenisch R, Korolchuk VI, and Sarkar S
- Subjects
- Humans, Neurons metabolism, Mitochondria metabolism, Autophagy, Niacinamide metabolism, NAD metabolism, Nicotinamide Mononucleotide metabolism
- Abstract
Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5
-/- ) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect., Competing Interests: Declaration of interests R.J. is cofounder of Fate Therapeutics, Fulcrum Therapeutics, and Omega Therapeutics and advisor to Dewpoint Therapeutics. E.S. is founder of NMN Bio Ltd. V.I.K. is a scientific advisor for Longaevus Technologies., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
18. Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex.
- Author
-
Lei Y, Cheng M, Li Z, Zhuang Z, Wu L, Sun Y, Han L, Huang Z, Wang Y, Wang Z, Xu L, Yuan Y, Liu S, Pan T, Xie J, Liu C, Volpe G, Ward C, Lai Y, Xu J, Wang M, Yu H, Sun H, Yu Q, Wu L, Wang C, Wong CW, Liu W, Xu L, Wei J, Chen D, Shang Z, Li G, Ma K, Cheng L, Ling F, Tan T, Chen K, Tasic B, Dean M, Ji W, Yang H, Gu Y, Esteban MA, Li Y, Chen A, Niu Y, Zeng H, Hou Y, Liu L, Liu S, and Xu X
- Subjects
- Animals, Female, Macaca fascicularis genetics, Gene Regulatory Networks, Chromatin genetics, Chromatin metabolism, Neurons metabolism, Prefrontal Cortex metabolism
- Abstract
Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell transcriptomic and chromatin accessibility (single-cell ATAC) data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult female cynomolgus monkey brain, and integrated this dataset with Stereo-seq (spatial enhanced resolution omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
19. Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line.
- Author
-
Boukaba A, Liu J, Ward C, Wu Q, Arnaoutov A, Liang J, Pugacheva EM, Dasso M, Lobanenkov V, Esteban M, and Strunnikov AV
- Subjects
- Cell Cycle Proteins genetics, Cell Cycle Proteins metabolism, Cell Line, Chromosomal Instability genetics, Chromosomal Proteins, Non-Histone, Chromosome Segregation, DNA-Binding Proteins metabolism, Humans, Male, Meiosis genetics, Nuclear Proteins metabolism, Phosphoproteins metabolism, RNA, Messenger, Cohesins, Ectopic Gene Expression, Neoplasms genetics
- Abstract
Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1. While the induction of the REC8 complex resulted in a mild mitotic phenotype, the expression of the RAD21L complex produced an arrested but viable cell pool, thus providing a source of DNA damage, mitotic chromosome missegregation, sporadic polyteny, and altered gene expression. We also found that genomic binding profiles of ectopically expressed meiotic cohesin complexes were reminiscent of their corresponding specific binding patterns in testis. Furthermore, meiotic cohesins were found to localize to the same sites as BORIS/CTCFL, rather than CTCF sites normally associated with the somatic cohesin complex. These findings highlight the existence of a germline epigenomic memory that is conserved in cells that normally do not express meiotic genes. Our results reveal a mechanism of action by unduly expressed meiotic cohesins that potentially links them to aneuploidy and chromosomal mutations in affected cells.
- Published
- 2022
- Full Text
- View/download PDF
20. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage.
- Author
-
Mazid MA, Ward C, Luo Z, Liu C, Li Y, Lai Y, Wu L, Li J, Jia W, Jiang Y, Liu H, Fu L, Yang Y, Ibañez DP, Lai J, Wei X, An J, Guo P, Yuan Y, Deng Q, Wang Y, Liu Y, Gao F, Wang J, Zaman S, Qin B, Wu G, Maxwell PH, Xu X, Liu L, Li W, and Esteban MA
- Subjects
- Humans, Chromosomal Proteins, Non-Histone genetics, Homeodomain Proteins genetics, Transcription Factors genetics, Embryo, Mammalian cytology, Embryonic Development, Pluripotent Stem Cells cytology, Zygote cytology
- Abstract
After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice
1,2 , demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3 , and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4 . DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2022
- Full Text
- View/download PDF
21. Cell transcriptomic atlas of the non-human primate Macaca fascicularis.
- Author
-
Han L, Wei X, Liu C, Volpe G, Zhuang Z, Zou X, Wang Z, Pan T, Yuan Y, Zhang X, Fan P, Guo P, Lai Y, Lei Y, Liu X, Yu F, Shangguan S, Lai G, Deng Q, Liu Y, Wu L, Shi Q, Yu H, Huang Y, Cheng M, Xu J, Liu Y, Wang M, Wang C, Zhang Y, Xie D, Yang Y, Yu Y, Zheng H, Wei Y, Huang F, Lei J, Huang W, Zhu Z, Lu H, Wang B, Wei X, Chen F, Yang T, Du W, Chen J, Xu S, An J, Ward C, Wang Z, Pei Z, Wong CW, Liu X, Zhang H, Liu M, Qin B, Schambach A, Isern J, Feng L, Liu Y, Guo X, Liu Z, Sun Q, Maxwell PH, Barker N, Muñoz-Cánoves P, Gu Y, Mulder J, Uhlen M, Tan T, Liu S, Yang H, Wang J, Hou Y, Xu X, Esteban MA, and Liu L
- Subjects
- Animals, Cell Communication, Receptors, Virus genetics, Wnt Signaling Pathway, Macaca fascicularis genetics, Transcriptome genetics
- Abstract
Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2022
- Full Text
- View/download PDF
22. Capture of the newly transcribed RNA interactome using click chemistry.
- Author
-
Guo X, Tariq M, Lai Y, Kanwal S, Lv Y, Wang X, Li N, Jiang M, Meng J, Hu J, Yuan J, Luo Z, Ward C, Volpe G, Wang D, Yin M, Qin B, Zhang B, Bao X, and Esteban MA
- Subjects
- Humans, Biotinylation, Proteomics methods, Transcription, Genetic, High-Throughput Nucleotide Sequencing methods, Click Chemistry methods, RNA-Binding Proteins metabolism, RNA metabolism, RNA chemistry
- Abstract
Application of synthetic nucleoside analogues to capture newly transcribed RNAs has unveiled key features of RNA metabolism. Whether this approach could be adapted to isolate the RNA-bound proteome (RNA interactome) was, however, unexplored. We have developed a new method (capture of the newly transcribed RNA interactome using click chemistry, or RICK) for the systematic identification of RNA-binding proteins based on the incorporation of 5-ethynyluridine into newly transcribed RNAs followed by UV cross-linking and click chemistry-mediated biotinylation. The RNA-protein adducts are then isolated by affinity capture using streptavidin-coated beads. Through high-throughput RNA sequencing and mass spectrometry, the RNAs and proteins can be elucidated globally. A typical RICK experimental procedure takes only 1 d, excluding the steps of cell preparation, 5-ethynyluridine labeling, validation (silver staining, western blotting, quantitative reverse-transcription PCR (qRT-PCR) or RNA sequencing (RNA-seq)) and proteomics. Major advantages of RICK are the capture of RNA-binding proteins interacting with any type of RNA and, particularly, the ability to discern between newly transcribed and steady-state RNAs through controlled labeling. Thanks to its versatility, RICK will facilitate the characterization of the total and newly transcribed RNA interactome in different cell types and conditions., (© 2021. Springer Nature Limited.)
- Published
- 2021
- Full Text
- View/download PDF
23. Transposable element sequence fragments incorporated into coding and noncoding transcripts modulate the transcriptome of human pluripotent stem cells.
- Author
-
Babarinde IA, Ma G, Li Y, Deng B, Luo Z, Liu H, Abdul MM, Ward C, Chen M, Fu X, Shi L, Duttlinger M, He J, Sun L, Li W, Zhuang Q, Tong G, Frampton J, Cazier JB, Chen J, Jauch R, Esteban MA, and Hutchins AP
- Subjects
- Cell Line, Humans, RNA, Untranslated genetics, RNA-Binding Proteins metabolism, Endogenous Retroviruses genetics, Long Interspersed Nucleotide Elements genetics, Pluripotent Stem Cells metabolism, Transcriptome
- Abstract
Transposable elements (TEs) occupy nearly 40% of mammalian genomes and, whilst most are fragmentary and no longer capable of transposition, they can nevertheless contribute to cell function. TEs within genes transcribed by RNA polymerase II can be copied as parts of primary transcripts; however, their full contribution to mature transcript sequences remains unresolved. Here, using long and short read (LR and SR) RNA sequencing data, we show that 26% of coding and 65% of noncoding transcripts in human pluripotent stem cells (hPSCs) contain TE-derived sequences. Different TE families are incorporated into RNAs in unique patterns, with consequences to transcript structure and function. The presence of TE sequences within a transcript is correlated with TE-type specific changes in its subcellular distribution, alterations in steady-state levels and half-life, and differential association with RNA Binding Proteins (RBPs). We identify hPSC-specific incorporation of endogenous retroviruses (ERVs) and LINE:L1 into protein-coding mRNAs, which generate TE sequence-derived peptides. Finally, single cell RNA-seq reveals that hPSCs express ERV-containing transcripts, whilst differentiating subpopulations lack ERVs and express SINE and LINE-containing transcripts. Overall, our comprehensive analysis demonstrates that the incorporation of TE sequences into the RNAs of hPSCs is more widespread and has a greater impact than previously appreciated., (© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2021
- Full Text
- View/download PDF
24. MYBL2 and ATM suppress replication stress in pluripotent stem cells.
- Author
-
Blakemore D, Vilaplana-Lopera N, Almaghrabi R, Gonzalez E, Moya M, Ward C, Murphy G, Gambus A, Petermann E, Stewart GS, and García P
- Subjects
- Ataxia Telangiectasia Mutated Proteins genetics, Ataxia Telangiectasia Mutated Proteins metabolism, DNA Damage, DNA Replication, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, Cell Cycle Proteins genetics, Cell Cycle Proteins metabolism, Pluripotent Stem Cells metabolism
- Abstract
Replication stress, a major cause of genome instability in cycling cells, is mainly prevented by the ATR-dependent replication stress response pathway in somatic cells. However, the replication stress response pathway in embryonic stem cells (ESCs) may be different due to alterations in cell cycle phase length. The transcription factor MYBL2, which is implicated in cell cycle regulation, is expressed a hundred to a thousand-fold more in ESCs compared with somatic cells. Here we show that MYBL2 activates ATM and suppresses replication stress in ESCs. Consequently, loss of MYBL2 or inhibition of ATM or Mre11 in ESCs results in replication fork slowing, increased fork stalling and elevated origin firing. Additionally, we demonstrate that inhibition of CDC7 activity rescues replication stress induced by MYBL2 loss and ATM inhibition, suggesting that uncontrolled new origin firing may underlie the replication stress phenotype resulting from loss/inhibition of MYBL2 and ATM. Overall, our study proposes that in addition to ATR, a MYBL2-MRN-ATM replication stress response pathway functions in ESCs to control DNA replication initiation and prevent genome instability., (©2021 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2021
- Full Text
- View/download PDF
25. Global Profiling of the Lysine Crotonylome in Different Pluripotent States.
- Author
-
Lv Y, Bu C, Meng J, Ward C, Volpe G, Hu J, Jiang M, Guo L, Chen J, Esteban MA, Bao X, and Cheng Z
- Subjects
- Animals, Chromatography, Liquid, Mice, Protein Processing, Post-Translational, Tandem Mass Spectrometry, Lysine metabolism, Proteome metabolism
- Abstract
Pluripotent stem cells (PSCs) can be expanded in vitro in different culture conditions, resulting in a spectrum of cell states with distinct properties. Understanding how PSCs transition from one state to another, ultimately leading to lineage-specific differentiation, is important for developmental biology and regenerative medicine. Although there is significant information regarding gene expression changes controlling these transitions, less is known about post-translational modifications of proteins. Protein crotonylation is a newly discovered post-translational modification where lysine residues are modified with a crotonyl group. Here, we employed affinity purification of crotonylated peptides and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to systematically profile protein crotonylation in mouse PSCs in different states including ground, metastable, and primed states, as well as metastable PSCs undergoing early pluripotency exit. We successfully identified 3628 high-confidence crotonylated sites in 1426 proteins. These crotonylated proteins are enriched for factors involved in functions/processes related to pluripotency such as RNA biogenesis, central carbon metabolism, and proteasome function. Moreover, we found that increasing the cellular levels of crotonyl-coenzyme A (crotonyl-CoA) through crotonic acid treatment promotes proteasome activity in metastable PSCs and delays their differentiation, consistent with previous observations showing that enhanced proteasome activity helps to sustain pluripotency. Our atlas of protein crotonylation will be valuable for further studies of pluripotency regulation and may also provide insights into the role of metabolism in other cell fate transitions., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
26. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma.
- Author
-
Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, Zhang Z, Xie J, Wang C, Chen D, Huang Y, Wei X, Shi Y, Zhao Z, Li Y, Guo Z, Yu Q, Xu L, Volpe G, Qiu S, Zhou J, Ward C, Sun H, Yin Y, Xu X, Wang X, Esteban MA, Yang H, Wang J, Dean M, Zhang Y, Liu S, Yang X, and Fan J
- Subjects
- CD8-Positive T-Lymphocytes immunology, Carcinoma, Hepatocellular genetics, Carcinoma, Hepatocellular immunology, Gene Expression Regulation, Neoplastic, Humans, Killer Cells, Natural immunology, Liver Neoplasms genetics, Liver Neoplasms immunology, Myeloid Cells metabolism, Neoplasm Recurrence, Local genetics, Neoplasm Recurrence, Local immunology, Phenotype, RNA-Seq, Tumor Microenvironment, Carcinoma, Hepatocellular pathology, Liver Neoplasms pathology, Neoplasm Recurrence, Local pathology, Single-Cell Analysis
- Abstract
Hepatocellular carcinoma (HCC) has high relapse and low 5-year survival rates. Single-cell profiling in relapsed HCC may aid in the design of effective anticancer therapies, including immunotherapies. We profiled the transcriptomes of ∼17,000 cells from 18 primary or early-relapse HCC cases. Early-relapse tumors have reduced levels of regulatory T cells, increased dendritic cells (DCs), and increased infiltrated CD8
+ T cells, compared with primary tumors, in two independent cohorts. Remarkably, CD8+ T cells in recurrent tumors overexpressed KLRB1 (CD161) and displayed an innate-like low cytotoxic state, with low clonal expansion, unlike the classical exhausted state observed in primary HCC. The enrichment of these cells was associated with a worse prognosis. Differential gene expression and interaction analyses revealed potential immune evasion mechanisms in recurrent tumor cells that dampen DC antigen presentation and recruit innate-like CD8+ T cells. Our comprehensive picture of the HCC ecosystem provides deeper insights into immune evasion mechanisms associated with tumor relapse., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2020 Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
27. Morphine leads to global genome changes in H3K27me3 levels via a Polycomb Repressive Complex 2 (PRC2) self-regulatory mechanism in mESCs.
- Author
-
Muñoa-Hoyos I, Halsall JA, Araolaza M, Ward C, Garcia I, Urizar-Arenaza I, Gianzo M, Garcia P, Turner B, and Subirán N
- Subjects
- Animals, Cell Cycle drug effects, DNA Methylation, Down-Regulation, Embryonic Development drug effects, Embryonic Development genetics, Epigenesis, Genetic, Female, Gene Expression, Genome genetics, Histones genetics, Mice, Morphine adverse effects, Narcotics adverse effects, Promoter Regions, Genetic drug effects, Transcription, Genetic drug effects, Histones drug effects, Morphine pharmacology, Mouse Embryonic Stem Cells drug effects, Narcotics pharmacology, Polycomb Repressive Complex 2 genetics
- Abstract
Background: Environmentally induced epigenetic changes can lead to health problems or disease, but the mechanisms involved remain unclear. Morphine can pass through the placental barrier leading to abnormal embryo development. However, the mechanism by which morphine causes these effects and how they sometimes persist into adulthood is not well known. To unravel the morphine-induced chromatin alterations involved in aberrant embryo development, we explored the role of the H3K27me3/PRC2 repressive complex in gene expression and its transmission across cellular generations in response to morphine., Results: Using mouse embryonic stem cells as a model system, we found that chronic morphine treatment induces a global downregulation of the histone modification H3K27me3. Conversely, ChIP-Seq showed a remarkable increase in H3K27me3 levels at specific genomic sites, particularly promoters, disrupting selective target genes related to embryo development, cell cycle and metabolism. Through a self-regulatory mechanism, morphine downregulated the transcription of PRC2 components responsible for H3K27me3 by enriching high H3K27me3 levels at the promoter region. Downregulation of PRC2 components persisted for at least 48 h (4 cell cycles) following morphine removal, though promoter H3K27me3 levels returned to control levels., Conclusions: Morphine induces targeting of the PRC2 complex to selected promoters, including those of PRC2 components, leading to characteristic changes in gene expression and a global reduction in H3K27me3. Following morphine removal, enhanced promoter H3K27me3 levels revert to normal sooner than global H3K27me3 or PRC2 component transcript levels. We suggest that H3K27me3 is involved in initiating morphine-induced changes in gene expression, but not in their maintenance. Model of Polycomb repressive complex 2 (PRC2) and H3K27me3 alterations induced by chronic morphine exposure. Morphine induces H3K27me3 enrichment at promoters of genes encoding core members of the PRC2 complex and is associated with their transcriptional downregulation.
- Published
- 2020
- Full Text
- View/download PDF
28. JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency.
- Author
-
Huang Y, Zhang H, Wang L, Tang C, Qin X, Wu X, Pan M, Tang Y, Yang Z, Babarinde IA, Lin R, Ji G, Lai Y, Xu X, Su J, Wen X, Satoh T, Ahmed T, Malik V, Ward C, Volpe G, Guo L, Chen J, Sun L, Li Y, Huang X, Bao X, Gao F, Liu B, Zheng H, Jauch R, Lai L, Pan G, Chen J, Testa G, Akira S, Hu J, Pei D, Hutchins AP, Esteban MA, and Qin B
- Subjects
- Animals, Catalysis, Cell Proliferation, Cellular Senescence, Demethylation, Enhancer Elements, Genetic genetics, Epithelial Cells metabolism, Fibroblasts cytology, Fibroblasts metabolism, Gene Expression Regulation, Developmental, Genome, Histones metabolism, Kruppel-Like Factor 4, Lysine metabolism, Mice, Models, Biological, Promoter Regions, Genetic, Transcriptional Activation genetics, Cellular Reprogramming, Jumonji Domain-Containing Histone Demethylases metabolism, Kruppel-Like Transcription Factors metabolism, Pluripotent Stem Cells cytology, Pluripotent Stem Cells metabolism
- Abstract
The interplay between the Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and transcriptional/epigenetic co-regulators in somatic cell reprogramming is incompletely understood. Here, we demonstrate that the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3 plays conflicting roles in mouse reprogramming. On one side, JMJD3 induces the pro-senescence factor Ink4a and degrades the pluripotency regulator PHF20 in a reprogramming factor-independent manner. On the other side, JMJD3 is specifically recruited by KLF4 to reduce H3K27me3 at both enhancers and promoters of epithelial and pluripotency genes. JMJD3 also promotes enhancer-promoter looping through the cohesin loading factor NIPBL and ultimately transcriptional elongation. This competition of forces can be shifted towards improved reprogramming by using early passage fibroblasts or boosting JMJD3's catalytic activity with vitamin C. Our work, thus, establishes a multifaceted role for JMJD3, placing it as a key partner of KLF4 and a scaffold that assists chromatin interactions and activates gene transcription.
- Published
- 2020
- Full Text
- View/download PDF
29. β-Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus.
- Author
-
Zhang M, Lai Y, Krupalnik V, Guo P, Guo X, Zhou J, Xu Y, Yu Z, Liu L, Jiang A, Li W, Abdul MM, Ma G, Li N, Fu X, Lv Y, Jiang M, Tariq M, Kanwal S, Liu H, Xu X, Zhang H, Huang Y, Wang L, Chen S, Babarinde IA, Luo Z, Wang D, Zhou T, Ward C, He M, Ibañez DP, Li Y, Zhou J, Yuan J, Feng Y, Arumugam K, Di Vicino U, Bao X, Wu G, Schambach A, Wang H, Sun H, Gao F, Qin B, Hutchins AP, Doble BW, Hartmann C, Cosma MP, Qin Y, Xu GL, Chen R, Volpe G, Chen L, Hanna JH, and Esteban MA
- Abstract
Mouse embryonic stem cells cultured with MEK (mitogen-activated protein kinase kinase) and GSK3 (glycogen synthase kinase 3) inhibitors (2i) more closely resemble the inner cell mass of preimplantation blastocysts than those cultured with SL [serum/leukemia inhibitory factor (LIF)]. The transcriptional mechanisms governing this pluripotent ground state are unresolved. Release of promoter-proximal paused RNA polymerase II (Pol2) is a multistep process necessary for pluripotency and cell cycle gene transcription in SL. We show that β-catenin, stabilized by GSK3 inhibition in medium with 2i, supplies transcriptional coregulators at pluripotency loci. This selectively strengthens pluripotency loci and renders them addicted to transcription initiation for productive gene body elongation in detriment to Pol2 pause release. By contrast, cell cycle genes are not bound by β-catenin, and proliferation/self-renewal remains tightly controlled by Pol2 pause release under 2i conditions. Our findings explain how pluripotency is reinforced in the ground state and also provide a general model for transcriptional resilience/adaptation upon network perturbation in other contexts., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
30. Generation of two LRRK2 homozygous knockout human induced pluripotent stem cell lines using CRISPR/Cas9.
- Author
-
Chen S, Luo Z, Ward C, Ibañez DP, Liu H, Zhong X, Sharma NK, Qin B, Fan W, and Wang D
- Subjects
- CRISPR-Cas Systems genetics, Cell Line, Humans, Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 genetics, Mutation, Induced Pluripotent Stem Cells metabolism, Parkinson Disease genetics
- Abstract
Mutations in the Leucine rich repeat kinase 2 (LRRK2) gene are found in both familial and sporadic Parkinson's disease (PD), and are also associated with immune-related disorders including Crohn's disease (CD) and leprosy. We have generated two homozygous LRRK2 knockout human induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 in a well-characterized human iPSC clone. The LRRK2 knockout cell lines retained normal morphology, gene expression, and the capacity to differentiate into cell types of the three germ layers. These cell lines are valuable for elucidating the role of LRRK2 in innate immunity and PD., Competing Interests: Declaration of Competing Interest The authors declare no competing interests., (Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
31. Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency.
- Author
-
Kanwal S, Guo X, Ward C, Volpe G, Qin B, Esteban MA, and Bao X
- Subjects
- Animals, Humans, Induced Pluripotent Stem Cells cytology, Induced Pluripotent Stem Cells metabolism, RNA, Long Noncoding genetics, Transcriptome, X Chromosome, Cellular Reprogramming genetics, Induced Pluripotent Stem Cells physiology, RNA, Long Noncoding physiology
- Abstract
The generation of induced pluripotent stem cells through somatic cell reprogramming requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased manner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown that the large-scale transcriptional changes observed during reprogramming also apply to long non-coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may not only help to improve this process but also have implications for studying cell plasticity in other contexts, such as development, aging, and cancer. In this review, we summarize the current progress made in profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation., (Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
32. mTORC1-PGC1 axis regulates mitochondrial remodeling during reprogramming.
- Author
-
Wang L, Xu X, Jiang C, Ma G, Huang Y, Zhang H, Lai Y, Wang M, Ahmed T, Lin R, Guo W, Luo Z, Li W, Zhang M, Ward C, Qian M, Liu B, Esteban MA, and Qin B
- Subjects
- Animals, Cell Differentiation, Cells, Cultured, Embryonic Stem Cells metabolism, Fibroblasts metabolism, Glycolysis, Mechanistic Target of Rapamycin Complex 1 genetics, Mice, Mice, Inbred ICR, Mitochondria metabolism, Mitochondrial Dynamics, Transcription Factors genetics, Cellular Reprogramming, Embryonic Stem Cells pathology, Fibroblasts pathology, Mechanistic Target of Rapamycin Complex 1 metabolism, Mitochondria pathology, Mitophagy, Transcription Factors metabolism
- Abstract
Metabolic reprogramming, hallmarked by enhanced glycolysis and reduced mitochondrial activity, is a key event in the early phase of somatic cell reprogramming. Although extensive work has been conducted to identify the mechanisms of mitochondrial remodeling in reprogramming, many questions remain. In this regard, different laboratories have proposed a role in this process for either canonical (ATG5-dependent) autophagy-mediated mitochondrial degradation (mitophagy), noncanonical (ULK1-dependent, ATG5-independent) mitophagy, mitochondrial fission or reduced biogenesis due to mTORC1 suppression. Clarifying these discrepancies is important for providing a comprehensive picture of metabolic changes in reprogramming. Yet, the comparison among these studies is difficult because they use different reprogramming conditions and mitophagy detection/quantification methods. Here, we have systematically explored mitochondrial remodeling in reprogramming using different culture media and reprogramming factor cocktails, together with appropriate quantification methods and thorough statistical analysis. Our experiments show lack of evidence for mitophagy in mitochondrial remodeling in reprogramming, and further confirm that the suppression of the mTORC1-PGC1 pathway drives this process. Our work helps to clarify the complex interplay between metabolic changes and nutrient sensing pathways in reprogramming, which may also shed light on other contexts such as development, aging and cancer., (© 2019 Federation of European Biochemical Societies.)
- Published
- 2020
- Full Text
- View/download PDF
33. Generation of a PARK2 homozygous knockout induced pluripotent stem cell line (GIBHi002-A-1) with two common isoforms abolished.
- Author
-
Zhang M, Ibañez DP, Fan W, Liu H, Zhong X, Wang X, Li Y, Md Abdul M, Li W, Li Y, Ward C, Chen S, Wang D, Qin B, Esteban MA, Zhao P, and Luo Z
- Subjects
- Adult, Cells, Cultured, Female, Homozygote, Humans, Induced Pluripotent Stem Cells metabolism, Kidney Tubules metabolism, Protein Isoforms, Young Adult, Cell Differentiation, Frameshift Mutation, Induced Pluripotent Stem Cells pathology, Kidney Tubules pathology, Parkinson Disease genetics, Parkinson Disease pathology, Ubiquitin-Protein Ligases genetics
- Abstract
Loss of function mutations in PARK2 (encoding PARKIN) cause autosomal recessive Parkinson's disease (PD), which often manifests at a juvenile age. Molecular and biochemical studies show that PARKIN functions as an E3 ubiquitin ligase controlling mitochondrial homeostasis. Yet, the exact mechanisms are unclear due to the use of sub-optimal models including cancer cells and fibroblasts. We have generated a PARK2 knockout (KO) isogenic cell line using a well-characterized induced pluripotent stem cell (iPSC) clone with good differentiation potential. This cell line lacks the expression of all PARKIN isoforms and is valuable for elucidating the role of PARK2 mutations in PD., (Copyright © 2019 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
34. Generation of an induced pluripotent stem cell line (GIBHi003-A) from a Parkinson's disease patient with mutant PINK1 (p. I368N).
- Author
-
Abdul MM, Ibañez DP, Zhao P, Liu H, Zhong X, Li Y, Zhang M, Li W, Li Y, Ward C, Chen S, Wang D, Qin B, Esteban MA, Wang X, Fan W, and Luo Z
- Subjects
- Cells, Cultured, Fibroblasts metabolism, Humans, Induced Pluripotent Stem Cells metabolism, Male, Middle Aged, Cell Differentiation, Fibroblasts pathology, Induced Pluripotent Stem Cells pathology, Mutation, Parkinson Disease genetics, Parkinson Disease pathology, Protein Kinases genetics
- Abstract
Familial Parkinson's disease (PD) can be caused by deleterious mutations in PINK1 (encoding PINK1) in an autosomal recessive manner. Functional studies suggest that PINK1 works as a regulator of mitochondrial homeostasis. However, how loss of PINK1 induces dopaminergic neuron degeneration is still unclear. Here, we have generated a patient-derived induced pluripotent stem cell (iPSC) line with mutant PINK1 (p. I368N). This cell line will facilitate PD disease modeling in vitro and can be used for generating isogenic cell lines through gene correction., (Copyright © 2019. Published by Elsevier B.V.)
- Published
- 2019
- Full Text
- View/download PDF
35. Dependence on Myb expression is attenuated in myeloid leukaemia with N-terminal CEBPA mutations.
- Author
-
Volpe G, Cauchy P, Walton DS, Ward C, Blakemore D, Bayley R, Clarke ML, Schmidt L, Nerlov C, Garcia P, Dumon S, Grebien F, and Frampton J
- Subjects
- Alleles, Animals, Apoptosis genetics, Cell Differentiation genetics, Cell Line, Tumor, Cell Survival genetics, Gene Expression Regulation, Neoplastic, Gene Knockdown Techniques, Mice, Phenotype, Protein Isoforms genetics, RNA, Small Interfering genetics, Transfection, CCAAT-Enhancer-Binding Proteins genetics, Leukemia, Myeloid, Acute genetics, Leukemia, Myeloid, Acute pathology, Mutation genetics, Proto-Oncogene Proteins c-myb genetics
- Abstract
Mutations at the N- or C-terminus of C/EBPα are frequent in acute myeloid leukaemia (AML) with normal karyotype. Here, we investigate the role of the transcription factor Myb in AMLs driven by different combinations of CEBPA mutations. Using knockdown of Myb in murine cell lines modelling the spectrum of CEBPA mutations, we show that the effect of reduced Myb depends on the mutational status of the two Cebpa alleles. Importantly, Myb knockdown fails to override the block in myeloid differentiation in cells with biallelic N-terminal C/EBPα mutations, demonstrating for the first time that the dependency on Myb is much lower in AML with this mutational profile. By comparing gene expression following Myb knockdown and chromatin immunoprecipitation sequencing data for the binding of C/EBPα isoforms, we provide evidence for a functional cooperation between C/EBPα and Myb in the maintenance of AML. This co-dependency breaks down when both alleles of CEBPA harbour N-terminal mutations, as a subset of C/EBPα-regulated genes only bind the short p30 C/EBPα isoform and, unlike other C/EBPα-regulated genes, do so without a requirement for Myb., (© 2019 Volpe et al.)
- Published
- 2019
- Full Text
- View/download PDF
36. Nuclear-cytoplasmic shuttling of class IIa histone deacetylases regulates somatic cell reprogramming.
- Author
-
Luo Z, Qing X, Benda C, Huang Z, Zhang M, Huang Y, Zhang H, Wang L, Lai Y, Ward C, Volpe G, Zhong X, Qin B, Zhuang Q, Esteban MA, and Li W
- Abstract
Class IIa histone deacetylases (HDACs) are a subfamily of HDACs with important functions in development and adult tissue homeostasis. As opposed to other HDACs, they lack catalytic function and bind transcription factors to recruit transcriptional co-regulators, mostly co-repressors such as nuclear receptor co-repressor (NCoR)/silencing mediator of retinoid and thyroid hormone receptor (SMRT). Class IIa HDACs enhance mouse somatic cell reprogramming to induced pluripotent stem cells (iPSCs) by repressing the function of the pro-mesenchymal transcription factor myocyte enhancer factor 2 (MEF2), which is upregulated during this process. Here, we describe, using HDAC4 and 7 as examples, that class IIa HDACs exhibit nuclear-cytoplasmic trafficking in reprogramming, being mostly cytoplasmic in donor fibroblasts and intermediate cells but translocating to the nucleus in iPSCs. Importantly, over-expressing a mutant form of HDAC4 or 7 that becomes trapped in the nucleus enhances the early phase of reprogramming but is deleterious afterwards. The latter effect is mediated through binding to the exogenous reprogramming factors at pluripotency loci, and the subsequent recruitment of NCoR/SMRT co-repressors. Thus, our findings uncover a context-dependent function of class IIa HDACs in reprogramming and further reinforce the idea that recruitment of co-repressors by the exogenous factors is a major obstacle for reactivating the pluripotency network in this process.
- Published
- 2019
- Full Text
- View/download PDF
37. In Vitro Screening Platforms for Identifying Autophagy Modulators in Mammalian Cells.
- Author
-
Seranova E, Ward C, Chipara M, Rosenstock TR, and Sarkar S
- Subjects
- Animals, Biological Assay instrumentation, Cell Culture Techniques instrumentation, Cell Line, Flow Cytometry instrumentation, Flow Cytometry methods, Genes, Reporter genetics, Humans, Luminescent Proteins chemistry, Luminescent Proteins genetics, Microscopy, Fluorescence instrumentation, Microscopy, Fluorescence methods, Microtubule-Associated Proteins, Sequestosome-1 Protein metabolism, Transfection instrumentation, Transfection methods, Autophagy physiology, Autophagy-Related Proteins metabolism, Biological Assay methods, Cell Culture Techniques methods
- Abstract
Autophagy is a vital homeostatic pathway essential for cellular survival and human health. It primarily functions as an intracellular degradation process for the turnover of aggregation-prone proteins and unwanted organelles. Dysregulation of autophagy underlying diverse human diseases reduces cell viability, whereas stimulation of autophagy is cytoprotective in a number of transgenic disease models including neurodegenerative disorders. Thus, therapeutic exploitation of autophagy is considered a potential treatment strategy in certain human diseases, and therefore, chemical inducers of autophagy have tremendous biomedical relevance. In this review, we describe the in vitro screening platforms to identify autophagy modulators in mammalian cells using various methodologies including fluorescence and high-content imaging, flow cytometry, fluorescence and luminescence detection by microplate reader, immunoblotting, and immunofluorescence. The commonly used autophagy reporters in these screening platforms are either based on autophagy marker like LC3 or autophagy substrate such as aggregation-prone proteins or p62/SQSTM1. The reporters and assays for monitoring autophagy are evolving over time to become more sensitive in measuring autophagic flux with the capability of high-throughput applications for drug discovery. Here we highlight these developments and also describe the stringent secondary autophagy assays for characterizing the autophagy modulators arising from the primary screen. Since autophagy is implicated in myriad human physiological and pathological conditions, these technologies will enable identifying novel chemical modulators or genetic regulators of autophagy that will be of biomedical and fundamental importance to human health.
- Published
- 2019
- Full Text
- View/download PDF
38. MYBL2 Supports DNA Double Strand Break Repair in Hematopoietic Stem Cells.
- Author
-
Bayley R, Blakemore D, Cancian L, Dumon S, Volpe G, Ward C, Almaghrabi R, Gujar J, Reeve N, Raghavan M, Higgs MR, Stewart GS, Petermann E, and García P
- Subjects
- Animals, Apoptosis, Biomarkers, Tumor metabolism, Cell Proliferation, Comet Assay, DNA Repair, Disease Progression, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Genotype, Humans, Kinetics, Mice, Mice, Inbred C57BL, Myelodysplastic Syndromes metabolism, Phosphorylation, Radiation, Ionizing, Cell Cycle Proteins metabolism, DNA Breaks, Double-Stranded, Hematopoietic Stem Cells metabolism, Trans-Activators metabolism
- Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by blood cytopenias that occur as a result of somatic mutations in hematopoietic stem cells (HSC). MDS leads to ineffective hematopoiesis, and as many as 30% of patients progress to acute myeloid leukemia (AML). The mechanisms by which mutations accumulate in HSC during aging remain poorly understood. Here we identify a novel role for MYBL2 in DNA double-strand break (DSB) repair in HSC. In patients with MDS, low MYBL2 levels associated with and preceded transcriptional deregulation of DNA repair genes. Stem/progenitor cells from these patients display dysfunctional DSB repair kinetics after exposure to ionizing radiation (IR). Haploinsufficiency of Mybl2 in mice also led to a defect in the repair of DSBs induced by IR in HSC and was characterized by unsustained phosphorylation of the ATM substrate KAP1 and telomere fragility. Our study identifies MYBL2 as a crucial regulator of DSB repair and identifies MYBL2 expression levels as a potential biomarker to predict cellular response to genotoxic treatments in MDS and to identify patients with defects in DNA repair. Such patients with worse prognosis may require a different therapeutic regimen to prevent progression to AML. Significance: These findings suggest MYBL2 levels may be used as a biological biomarker to determine the DNA repair capacity of hematopoietic stem cells from patients with MDS and as a clinical biomarker to inform decisions regarding patient selection for treatments that target DNA repair. Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/20/5767/F1.large.jpg Cancer Res; 78(20); 5767-79. ©2018 AACR ., (©2018 American Association for Cancer Research.)
- Published
- 2018
- Full Text
- View/download PDF
39. Publisher Correction: NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming.
- Author
-
Zhuang Q, Li W, Benda C, Huang Z, Ahmed T, Liu P, Guo X, Ibañez DP, Luo Z, Zhang M, Abdul MM, Yang Z, Yang J, Huang Y, Zhang H, Huang D, Zhou J, Zhong X, Zhu X, Fu X, Fan W, Liu Y, Xu Y, Ward C, Khan MJ, Kanwal S, Mirza B, Tortorella MD, Tse HF, Chen J, Qin B, Bao X, Gao S, Hutchins AP, and Esteban MA
- Abstract
In the version of this Article originally published, in Fig. 2c, the '+' sign and 'OSKM' were superimposed in the label '+OSKM'. In Fig. 4e, in the labels, all instances of 'Ant' should have been 'Anti-'. And, in Fig. 7a, the label '0.0' was misplaced; it should have been on the colour scale bar. These figures have now been corrected in the online versions.
- Published
- 2018
- Full Text
- View/download PDF
40. A Familial Hypercholesterolemia Human Liver Chimeric Mouse Model Using Induced Pluripotent Stem Cell-derived Hepatocytes.
- Author
-
Yang J, Wong LY, Tian XY, Wei R, Lai WH, Au KW, Luo Z, Ward C, Ho WI, Ibañez DP, Liu H, Bao X, Qin B, Huang Y, Esteban MA, and Tse HF
- Subjects
- Animals, Chimera metabolism, Disease Models, Animal, Humans, Hypercholesterolemia pathology, Hyperlipoproteinemia Type II pathology, Mice, Mutation, Hypercholesterolemia diagnosis, Hyperlipoproteinemia Type II diagnosis, Induced Pluripotent Stem Cells metabolism
- Abstract
Familial hypercholesterolemia (FH) is mostly caused by low-density lipoprotein receptor (LDLR) mutations and results in an increased risk of early-onset cardiovascular disease due to marked elevation of LDL cholesterol (LDL-C) in blood. Statins are the first line of lipid-lowering drugs for treating FH and other types of hypercholesterolemia, but new approaches are emerging, in particular PCSK9 antibodies, which are now being tested in clinical trials. To explore novel therapeutic approaches for FH, either new drugs or new formulations, we need appropriate in vivo models. However, differences in the lipid metabolic profiles compared to humans are a key problem of the available animal models of FH. To address this issue, we have generated a human liver chimeric mouse model using FH induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps). We used Ldlr
-/- /Rag2-/- /Il2rg-/- (LRG) mice to avoid immune rejection of transplanted human cells and to assess the effect of LDLR-deficient iHeps in an LDLR null background. Transplanted FH iHeps could repopulate 5-10% of the LRG mouse liver based on human albumin staining. Moreover, the engrafted iHeps responded to lipid-lowering drugs and recapitulated clinical observations of increased efficacy of PCSK9 antibodies compared to statins. Our human liver chimeric model could thus be useful for preclinical testing of new therapies to FH. Using the same protocol, similar human liver chimeric mice for other FH genetic variants, or mutations corresponding to other inherited liver diseases, may also be generated.- Published
- 2018
- Full Text
- View/download PDF
41. Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming.
- Author
-
Ward C, Volpe G, Cauchy P, Ptasinska A, Almaghrabi R, Blakemore D, Nafria M, Kestner D, Frampton J, Murphy G, Buganim Y, Kaji K, and García P
- Subjects
- Cellular Reprogramming, Epithelial-Mesenchymal Transition, Humans, Transfection, Cell Cycle Proteins genetics, Trans-Activators genetics
- Abstract
During somatic reprogramming, Yamanaka's pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process., (Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
42. Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion.
- Author
-
Sheriff L, Alanazi A, Ward LSC, Ward C, Munir H, Rayes J, Alassiri M, Watson SP, Newsome PN, Rainger GE, Kalia N, Frampton J, McGettrick HM, and Nash GB
- Subjects
- Animals, Humans, Mice, Blood Platelets metabolism, Cell Adhesion genetics, Mesenchymal Stem Cells metabolism
- Abstract
We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018;36:1062-1074., (© 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.)
- Published
- 2018
- Full Text
- View/download PDF
43. NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming.
- Author
-
Zhuang Q, Li W, Benda C, Huang Z, Ahmed T, Liu P, Guo X, Ibañez DP, Luo Z, Zhang M, Abdul MM, Yang Z, Yang J, Huang Y, Zhang H, Huang D, Zhou J, Zhong X, Zhu X, Fu X, Fan W, Liu Y, Xu Y, Ward C, Khan MJ, Kanwal S, Mirza B, Tortorella MD, Tse HF, Chen J, Qin B, Bao X, Gao S, Hutchins AP, and Esteban MA
- Subjects
- Acetylation, Animals, Gene Expression Regulation, Developmental, HEK293 Cells, Histone Deacetylases genetics, Histone Deacetylases metabolism, Histones metabolism, Humans, Kruppel-Like Factor 4, Kruppel-Like Transcription Factors genetics, Kruppel-Like Transcription Factors metabolism, Mice, Mice, Inbred ICR, Nuclear Receptor Co-Repressor 1 genetics, Nuclear Receptor Co-Repressor 2 genetics, Octamer Transcription Factor-3 genetics, Octamer Transcription Factor-3 metabolism, Protein Processing, Post-Translational, Proto-Oncogene Proteins c-myc genetics, SOXB1 Transcription Factors genetics, SOXB1 Transcription Factors metabolism, Signal Transduction, Time Factors, Cellular Reprogramming, Epigenesis, Genetic, Mouse Embryonic Stem Cells metabolism, Nuclear Receptor Co-Repressor 1 metabolism, Nuclear Receptor Co-Repressor 2 metabolism, Pluripotent Stem Cells metabolism, Proto-Oncogene Proteins c-myc metabolism
- Abstract
Somatic cell reprogramming by exogenous factors requires cooperation with transcriptional co-activators and co-repressors to effectively remodel the epigenetic environment. How this interplay is regulated remains poorly understood. Here, we demonstrate that NCoR/SMRT co-repressors bind to pluripotency loci to create a barrier to reprogramming with the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC), and consequently, suppressing NCoR/SMRT significantly enhances reprogramming efficiency and kinetics. The core epigenetic subunit of the NCoR/SMRT complex, histone deacetylase 3 (HDAC3), contributes to the effects of NCoR/SMRT by inducing histone deacetylation at pluripotency loci. Among the Yamanaka factors, recruitment of NCoR/SMRT-HDAC3 to genomic loci is mostly facilitated by c-MYC. Hence, we describe how c-MYC is beneficial for the early phase of reprogramming but deleterious later. Overall, we uncover a role for NCoR/SMRT co-repressors in reprogramming and propose a dual function for c-MYC in this process.
- Published
- 2018
- Full Text
- View/download PDF
44. Capturing the interactome of newly transcribed RNA.
- Author
-
Bao X, Guo X, Yin M, Tariq M, Lai Y, Kanwal S, Zhou J, Li N, Lv Y, Pulido-Quetglas C, Wang X, Ji L, Khan MJ, Zhu X, Luo Z, Shao C, Lim DH, Liu X, Li N, Wang W, He M, Liu YL, Ward C, Wang T, Zhang G, Wang D, Yang J, Chen Y, Zhang C, Jauch R, Yang YG, Wang Y, Qin B, Anko ML, Hutchins AP, Sun H, Wang H, Fu XD, Zhang B, and Esteban MA
- Subjects
- Animals, Embryonic Stem Cells cytology, Embryonic Stem Cells metabolism, HeLa Cells, High-Throughput Nucleotide Sequencing methods, Humans, Mass Spectrometry methods, Mice, Protein Interaction Maps, RNA genetics, RNA-Binding Proteins genetics, Uridine analogs & derivatives, Uridine chemistry, Click Chemistry methods, Proteome metabolism, RNA metabolism, RNA-Binding Proteins metabolism
- Abstract
We combine the labeling of newly transcribed RNAs with 5-ethynyluridine with the characterization of bound proteins. This approach, named capture of the newly transcribed RNA interactome using click chemistry (RICK), systematically captures proteins bound to a wide range of RNAs, including nascent RNAs and traditionally neglected nonpolyadenylated RNAs. RICK has identified mitotic regulators amongst other novel RNA-binding proteins with preferential affinity for nonpolyadenylated RNAs, revealed a link between metabolic enzymes/factors and nascent RNAs, and expanded the known RNA-bound proteome of mouse embryonic stem cells. RICK will facilitate an in-depth interrogation of the total RNA-bound proteome in different cells and systems.
- Published
- 2018
- Full Text
- View/download PDF
45. Prognostic significance of high GFI1 expression in AML of normal karyotype and its association with a FLT3-ITD signature.
- Author
-
Volpe G, Walton DS, Grainger DE, Ward C, Cauchy P, Blakemore D, Coleman DJL, Cockerill PN, Garcia P, and Frampton J
- Subjects
- Biomarkers, Tumor, Cell Line, Tumor, DNA-Binding Proteins metabolism, Gene Expression Profiling, Humans, Kaplan-Meier Estimate, Leukemia, Myeloid, Acute pathology, Patient Outcome Assessment, Prognosis, Transcription Factors metabolism, fms-Like Tyrosine Kinase 3 metabolism, DNA-Binding Proteins genetics, Gene Expression Regulation, Leukemic, Karyotype, Leukemia, Myeloid, Acute genetics, Leukemia, Myeloid, Acute mortality, Tandem Repeat Sequences, Transcription Factors genetics, fms-Like Tyrosine Kinase 3 genetics
- Abstract
Growth Factor Independence 1 (GFI1) is a transcriptional repressor that plays a critical role during both myeloid and lymphoid haematopoietic lineage commitment. Several studies have demonstrated the involvement of GFI1 in haematological malignancies and have suggested that low expression of GFI1 is a negative indicator of disease progression for both myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). In this study, we have stratified AML patients into those defined as having a normal karyotype (CN-AML). Unlike the overall pattern in AML, those patients with CN-AML have a poorer survival rate when GFI1 expression is high. In this group, high GFI1 expression is paralleled by higher FLT3 expression, and, even when the FLT3 gene is not mutated, exhibit a FLT3-ITD signature of gene expression. Knock-down of GFI1 expression in the human AML Fujioka cell line led to a decrease in the level of FLT3 RNA and protein and to the down regulation of FLT3-ITD signature genes, thus linking two major prognostic indicators for AML.
- Published
- 2017
- Full Text
- View/download PDF
46. Discovery of pan autophagy inhibitors through a high-throughput screen highlights macroautophagy as an evolutionarily conserved process across 3 eukaryotic kingdoms.
- Author
-
Mishra P, Dauphinee AN, Ward C, Sarkar S, Gunawardena AHLAN, and Manjithaya R
- Subjects
- Amino Acid Chloromethyl Ketones pharmacology, Animals, Autophagosomes drug effects, Autophagosomes metabolism, Embryo, Mammalian cytology, Enzyme Assays, Eukaryotic Cells drug effects, Fibroblasts drug effects, Fibroblasts metabolism, HeLa Cells, Humans, Luciferases metabolism, Magnoliopsida drug effects, Mice, Models, Biological, Nitriles pharmacology, Saccharomyces cerevisiae drug effects, Saccharomyces cerevisiae metabolism, Small Molecule Libraries pharmacology, Sulfones pharmacology, Autophagy drug effects, Biological Evolution, Eukaryotic Cells metabolism, High-Throughput Screening Assays methods
- Abstract
Due to the involvement of macroautophagy/autophagy in different pathophysiological conditions such as infections, neurodegeneration and cancer, identification of novel small molecules that modulate the process is of current research and clinical interest. In this work, we developed a luciferase-based sensitive and robust kinetic high-throughput screen (HTS) of small molecules that modulate autophagic degradation of peroxisomes in the budding yeast Saccharomyces cerevisiae. Being a pathway-specific rather than a target-driven assay, we identified small molecule modulators that acted at key steps of autophagic flux. Two of the inhibitors, Bay11 and ZPCK, obtained from the screen were further characterized using secondary assays in yeast. Bay11 inhibited autophagy at a step before fusion with the vacuole whereas ZPCK inhibited the cargo degradation inside the vacuole. Furthermore, we demonstrated that these molecules altered the process of autophagy in mammalian cells as well. Strikingly, these molecules also modulated autophagic flux in a novel model plant, Aponogeton madagascariensis. Thus, using small molecule modulators identified by using a newly developed HTS autophagy assay, our results support that macroautophagy is a conserved process across fungal, animal and plant kingdoms.
- Published
- 2017
- Full Text
- View/download PDF
47. Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle.
- Author
-
Song Z, Moore DR, Hodson N, Ward C, Dent JR, O'Leary MF, Shaw AM, Hamilton DL, Sarkar S, Gangloff YG, Hornberger TA, Spriet LL, Heigenhauser GJ, and Philp A
- Subjects
- Adult, Cell Membrane metabolism, Dietary Carbohydrates administration & dosage, Dietary Proteins administration & dosage, Female, Humans, Male, Muscle Contraction, Protein Binding, Protein Transport, Young Adult, Eukaryotic Initiation Factor-3 metabolism, Lysosomal-Associated Membrane Protein 2 metabolism, Muscle, Skeletal metabolism, Ras Homolog Enriched in Brain Protein metabolism, Resistance Training methods, TOR Serine-Threonine Kinases metabolism, Tuberous Sclerosis Complex 2 Protein metabolism
- Abstract
The mechanistic target of rapamycin (mTOR) is a central mediator of protein synthesis in skeletal muscle. We utilized immunofluorescence approaches to study mTOR cellular distribution and protein-protein co-localisation in human skeletal muscle in the basal state as well as immediately, 1 and 3 h after an acute bout of resistance exercise in a fed (FED; 20 g Protein/40 g carbohydrate/1 g fat) or energy-free control (CON) state. mTOR and the lysosomal protein LAMP2 were highly co-localised in basal samples. Resistance exercise resulted in rapid translocation of mTOR/LAMP2 towards the cell membrane. Concurrently, resistance exercise led to the dissociation of TSC2 from Rheb and increased in the co-localisation of mTOR and Rheb post exercise in both FED and CON. In addition, mTOR co-localised with Eukaryotic translation initiation factor 3 subunit F (eIF3F) at the cell membrane post-exercise in both groups, with the response significantly greater at 1 h of recovery in the FED compared to CON. Collectively our data demonstrate that cellular trafficking of mTOR occurs in human muscle in response to an anabolic stimulus, events that appear to be primarily influenced by muscle contraction. The translocation and association of mTOR with positive regulators (i.e. Rheb and eIF3F) is consistent with an enhanced mRNA translational capacity after resistance exercise.
- Published
- 2017
- Full Text
- View/download PDF
48. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder.
- Author
-
Brown A, Patel S, Ward C, Lorenz A, Ortiz M, DuRoss A, Wieghardt F, Esch A, Otten EG, Heiser LM, Korolchuk VI, Sun C, Sarkar S, and Sahay G
- Subjects
- 2-Hydroxypropyl-beta-cyclodextrin pharmacology, Animals, Cells, Cultured, Drug Synergism, Fibroblasts drug effects, Intracellular Signaling Peptides and Proteins, Mice, Knockout, Models, Biological, Niemann-Pick C1 Protein, Proteins genetics, Cholesterol metabolism, Micelles, Niemann-Pick Disease, Type C drug therapy, Phosphatidylethanolamines pharmacology, Polyethylene Glycols pharmacology, Solvents pharmacology
- Abstract
2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1(-/-)) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1(-/-) cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders., Competing Interests: G.S., A.B. and C.S. have filed invention disclosure under OSU disc. no. 15–43 for nanoparticle based formulations for NPC disorder. Remaining authors declare no other competing financial interests.
- Published
- 2016
- Full Text
- View/download PDF
49. Autophagy, lipophagy and lysosomal lipid storage disorders.
- Author
-
Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, and Korolchuk VI
- Subjects
- Animals, Fatty Liver genetics, Fatty Liver metabolism, Fatty Liver pathology, Humans, Lipid Metabolism, Inborn Errors genetics, Lipid Metabolism, Inborn Errors pathology, Lysosomal Storage Diseases genetics, Lysosomal Storage Diseases pathology, Lysosomes pathology, Mechanistic Target of Rapamycin Complex 1, Multiprotein Complexes metabolism, Signal Transduction, TOR Serine-Threonine Kinases metabolism, Autophagy genetics, Lipid Metabolism genetics, Lipid Metabolism, Inborn Errors metabolism, Lysosomal Storage Diseases metabolism, Lysosomes metabolism
- Abstract
Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders., (Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
50. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).
- Author
-
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, Ait-Si-Ali S, Akematsu T, Akporiaye ET, Al-Rubeai M, Albaiceta GM, Albanese C, Albani D, Albert ML, Aldudo J, Algül H, Alirezaei M, Alloza I, Almasan A, Almonte-Beceril M, Alnemri ES, Alonso C, Altan-Bonnet N, Altieri DC, Alvarez S, Alvarez-Erviti L, Alves S, Amadoro G, Amano A, Amantini C, Ambrosio S, Amelio I, Amer AO, Amessou M, Amon A, An Z, Anania FA, Andersen SU, Andley UP, Andreadi CK, Andrieu-Abadie N, Anel A, Ann DK, Anoopkumar-Dukie S, Antonioli M, Aoki H, Apostolova N, Aquila S, Aquilano K, Araki K, Arama E, Aranda A, Araya J, Arcaro A, Arias E, Arimoto H, Ariosa AR, Armstrong JL, Arnould T, Arsov I, Asanuma K, Askanas V, Asselin E, Atarashi R, Atherton SS, Atkin JD, Attardi LD, Auberger P, Auburger G, Aurelian L, Autelli R, Avagliano L, Avantaggiati ML, Avrahami L, Awale S, Azad N, Bachetti T, Backer JM, Bae DH, Bae JS, Bae ON, Bae SH, Baehrecke EH, Baek SH, Baghdiguian S, Bagniewska-Zadworna A, Bai H, Bai J, Bai XY, Bailly Y, Balaji KN, Balduini W, Ballabio A, Balzan R, Banerjee R, Bánhegyi G, Bao H, Barbeau B, Barrachina MD, Barreiro E, Bartel B, Bartolomé A, Bassham DC, Bassi MT, Bast RC Jr, Basu A, Batista MT, Batoko H, Battino M, Bauckman K, Baumgarner BL, Bayer KU, Beale R, Beaulieu JF, Beck GR Jr, Becker C, Beckham JD, Bédard PA, Bednarski PJ, Begley TJ, Behl C, Behrends C, Behrens GM, Behrns KE, Bejarano E, Belaid A, Belleudi F, Bénard G, Berchem G, Bergamaschi D, Bergami M, Berkhout B, Berliocchi L, Bernard A, Bernard M, Bernassola F, Bertolotti A, Bess AS, Besteiro S, Bettuzzi S, Bhalla S, Bhattacharyya S, Bhutia SK, Biagosch C, Bianchi MW, Biard-Piechaczyk M, Billes V, Bincoletto C, Bingol B, Bird SW, Bitoun M, Bjedov I, Blackstone C, Blanc L, Blanco GA, Blomhoff HK, Boada-Romero E, Böckler S, Boes M, Boesze-Battaglia K, Boise LH, Bolino A, Boman A, Bonaldo P, Bordi M, Bosch J, Botana LM, Botti J, Bou G, Bouché M, Bouchecareilh M, Boucher MJ, Boulton ME, Bouret SG, Boya P, Boyer-Guittaut M, Bozhkov PV, Brady N, Braga VM, Brancolini C, Braus GH, Bravo-San Pedro JM, Brennan LA, Bresnick EH, Brest P, Bridges D, Bringer MA, Brini M, Brito GC, Brodin B, Brookes PS, Brown EJ, Brown K, Broxmeyer HE, Bruhat A, Brum PC, Brumell JH, Brunetti-Pierri N, Bryson-Richardson RJ, Buch S, Buchan AM, Budak H, Bulavin DV, Bultman SJ, Bultynck G, Bumbasirevic V, Burelle Y, Burke RE, Burmeister M, Bütikofer P, Caberlotto L, Cadwell K, Cahova M, Cai D, Cai J, Cai Q, Calatayud S, Camougrand N, Campanella M, Campbell GR, Campbell M, Campello S, Candau R, Caniggia I, Cantoni L, Cao L, Caplan AB, Caraglia M, Cardinali C, Cardoso SM, Carew JS, Carleton LA, Carlin CR, Carloni S, Carlsson SR, Carmona-Gutierrez D, Carneiro LA, Carnevali O, Carra S, Carrier A, Carroll B, Casas C, Casas J, Cassinelli G, Castets P, Castro-Obregon S, Cavallini G, Ceccherini I, Cecconi F, Cederbaum AI, Ceña V, Cenci S, Cerella C, Cervia D, Cetrullo S, Chaachouay H, Chae HJ, Chagin AS, Chai CY, Chakrabarti G, Chamilos G, Chan EY, Chan MT, Chandra D, Chandra P, Chang CP, Chang RC, Chang TY, Chatham JC, Chatterjee S, Chauhan S, Che Y, Cheetham ME, Cheluvappa R, Chen CJ, Chen G, Chen GC, Chen G, Chen H, Chen JW, Chen JK, Chen M, Chen M, Chen P, Chen Q, Chen Q, Chen SD, Chen S, Chen SS, Chen W, Chen WJ, Chen WQ, Chen W, Chen X, Chen YH, Chen YG, Chen Y, Chen Y, Chen Y, Chen YJ, Chen YQ, Chen Y, Chen Z, Chen Z, Cheng A, Cheng CH, Cheng H, Cheong H, Cherry S, Chesney J, Cheung CH, Chevet E, Chi HC, Chi SG, Chiacchiera F, Chiang HL, Chiarelli R, Chiariello M, Chieppa M, Chin LS, Chiong M, Chiu GN, Cho DH, Cho SG, Cho WC, Cho YY, Cho YS, Choi AM, Choi EJ, Choi EK, Choi J, Choi ME, Choi SI, Chou TF, Chouaib S, Choubey D, Choubey V, Chow KC, Chowdhury K, Chu CT, Chuang TH, Chun T, Chung H, Chung T, Chung YL, Chwae YJ, Cianfanelli V, Ciarcia R, Ciechomska IA, Ciriolo MR, Cirone M, Claerhout S, Clague MJ, Clària J, Clarke PG, Clarke R, Clementi E, Cleyrat C, Cnop M, Coccia EM, Cocco T, Codogno P, Coers J, Cohen EE, Colecchia D, Coletto L, Coll NS, Colucci-Guyon E, Comincini S, Condello M, Cook KL, Coombs GH, Cooper CD, Cooper JM, Coppens I, Corasaniti MT, Corazzari M, Corbalan R, Corcelle-Termeau E, Cordero MD, Corral-Ramos C, Corti O, Cossarizza A, Costelli P, Costes S, Cotman SL, Coto-Montes A, Cottet S, Couve E, Covey LR, Cowart LA, Cox JS, Coxon FP, Coyne CB, Cragg MS, Craven RJ, Crepaldi T, Crespo JL, Criollo A, Crippa V, Cruz MT, Cuervo AM, Cuezva JM, Cui T, Cutillas PR, Czaja MJ, Czyzyk-Krzeska MF, Dagda RK, Dahmen U, Dai C, Dai W, Dai Y, Dalby KN, Dalla Valle L, Dalmasso G, D'Amelio M, Damme M, Darfeuille-Michaud A, Dargemont C, Darley-Usmar VM, Dasarathy S, Dasgupta B, Dash S, Dass CR, Davey HM, Davids LM, Dávila D, Davis RJ, Dawson TM, Dawson VL, Daza P, de Belleroche J, de Figueiredo P, de Figueiredo RC, de la Fuente J, De Martino L, De Matteis A, De Meyer GR, De Milito A, De Santi M, de Souza W, De Tata V, De Zio D, Debnath J, Dechant R, Decuypere JP, Deegan S, Dehay B, Del Bello B, Del Re DP, Delage-Mourroux R, Delbridge LM, Deldicque L, Delorme-Axford E, Deng Y, Dengjel J, Denizot M, Dent P, Der CJ, Deretic V, Derrien B, Deutsch E, Devarenne TP, Devenish RJ, Di Bartolomeo S, Di Daniele N, Di Domenico F, Di Nardo A, Di Paola S, Di Pietro A, Di Renzo L, DiAntonio A, Díaz-Araya G, Díaz-Laviada I, Diaz-Meco MT, Diaz-Nido J, Dickey CA, Dickson RC, Diederich M, Digard P, Dikic I, Dinesh-Kumar SP, Ding C, Ding WX, Ding Z, Dini L, Distler JH, Diwan A, Djavaheri-Mergny M, Dmytruk K, Dobson RC, Doetsch V, Dokladny K, Dokudovskaya S, Donadelli M, Dong XC, Dong X, Dong Z, Donohue TM Jr, Doran KS, D'Orazi G, Dorn GW 2nd, Dosenko V, Dridi S, Drucker L, Du J, Du LL, Du L, du Toit A, Dua P, Duan L, Duann P, Dubey VK, Duchen MR, Duchosal MA, Duez H, Dugail I, Dumit VI, Duncan MC, Dunlop EA, Dunn WA Jr, Dupont N, Dupuis L, Durán RV, Durcan TM, Duvezin-Caubet S, Duvvuri U, Eapen V, Ebrahimi-Fakhari D, Echard A, Eckhart L, Edelstein CL, Edinger AL, Eichinger L, Eisenberg T, Eisenberg-Lerner A, Eissa NT, El-Deiry WS, El-Khoury V, Elazar Z, Eldar-Finkelman H, Elliott CJ, Emanuele E, Emmenegger U, Engedal N, Engelbrecht AM, Engelender S, Enserink JM, Erdmann R, Erenpreisa J, Eri R, Eriksen JL, Erman A, Escalante R, Eskelinen EL, Espert L, Esteban-Martínez L, Evans TJ, Fabri M, Fabrias G, Fabrizi C, Facchiano A, Færgeman NJ, Faggioni A, Fairlie WD, Fan C, Fan D, Fan J, Fang S, Fanto M, Fanzani A, Farkas T, Faure M, Favier FB, Fearnhead H, Federici M, Fei E, Felizardo TC, Feng H, Feng Y, Feng Y, Ferguson TA, Fernández ÁF, Fernandez-Barrena MG, Fernandez-Checa JC, Fernández-López A, Fernandez-Zapico ME, Feron O, Ferraro E, Ferreira-Halder CV, Fesus L, Feuer R, Fiesel FC, Filippi-Chiela EC, Filomeni G, Fimia GM, Fingert JH, Finkbeiner S, Finkel T, Fiorito F, Fisher PB, Flajolet M, Flamigni F, Florey O, Florio S, Floto RA, Folini M, Follo C, Fon EA, Fornai F, Fortunato F, Fraldi A, Franco R, Francois A, François A, Frankel LB, Fraser ID, Frey N, Freyssenet DG, Frezza C, Friedman SL, Frigo DE, Fu D, Fuentes JM, Fueyo J, Fujitani Y, Fujiwara Y, Fujiya M, Fukuda M, Fulda S, Fusco C, Gabryel B, Gaestel M, Gailly P, Gajewska M, Galadari S, Galili G, Galindo I, Galindo MF, Galliciotti G, Galluzzi L, Galluzzi L, Galy V, Gammoh N, Gandy S, Ganesan AK, Ganesan S, Ganley IG, Gannagé M, Gao FB, Gao F, Gao JX, García Nannig L, García Véscovi E, Garcia-Macía M, Garcia-Ruiz C, Garg AD, Garg PK, Gargini R, Gassen NC, Gatica D, Gatti E, Gavard J, Gavathiotis E, Ge L, Ge P, Ge S, Gean PW, Gelmetti V, Genazzani AA, Geng J, Genschik P, Gerner L, Gestwicki JE, Gewirtz DA, Ghavami S, Ghigo E, Ghosh D, Giammarioli AM, Giampieri F, Giampietri C, Giatromanolaki A, Gibbings DJ, Gibellini L, Gibson SB, Ginet V, Giordano A, Giorgini F, Giovannetti E, Girardin SE, Gispert S, Giuliano S, Gladson CL, Glavic A, Gleave M, Godefroy N, Gogal RM Jr, Gokulan K, Goldman GH, Goletti D, Goligorsky MS, Gomes AV, Gomes LC, Gomez H, Gomez-Manzano C, Gómez-Sánchez R, Gonçalves DA, Goncu E, Gong Q, Gongora C, Gonzalez CB, Gonzalez-Alegre P, Gonzalez-Cabo P, González-Polo RA, Goping IS, Gorbea C, Gorbunov NV, Goring DR, Gorman AM, Gorski SM, Goruppi S, Goto-Yamada S, Gotor C, Gottlieb RA, Gozes I, Gozuacik D, Graba Y, Graef M, Granato GE, Grant GD, Grant S, Gravina GL, Green DR, Greenhough A, Greenwood MT, Grimaldi B, Gros F, Grose C, Groulx JF, Gruber F, Grumati P, Grune T, Guan JL, Guan KL, Guerra B, Guillen C, Gulshan K, Gunst J, Guo C, Guo L, Guo M, Guo W, Guo XG, Gust AA, Gustafsson ÅB, Gutierrez E, Gutierrez MG, Gwak HS, Haas A, Haber JE, Hadano S, Hagedorn M, Hahn DR, Halayko AJ, Hamacher-Brady A, Hamada K, Hamai A, Hamann A, Hamasaki M, Hamer I, Hamid Q, Hammond EM, Han F, Han W, Handa JT, Hanover JA, Hansen M, Harada M, Harhaji-Trajkovic L, Harper JW, Harrath AH, Harris AL, Harris J, Hasler U, Hasselblatt P, Hasui K, Hawley RG, Hawley TS, He C, He CY, He F, He G, He RR, He XH, He YW, He YY, Heath JK, Hébert MJ, Heinzen RA, Helgason GV, Hensel M, Henske EP, Her C, Herman PK, Hernández A, Hernandez C, Hernández-Tiedra S, Hetz C, Hiesinger PR, Higaki K, Hilfiker S, Hill BG, Hill JA, Hill WD, Hino K, Hofius D, Hofman P, Höglinger GU, Höhfeld J, Holz MK, Hong Y, Hood DA, Hoozemans JJ, Hoppe T, Hsu C, Hsu CY, Hsu LC, Hu D, Hu G, Hu HM, Hu H, Hu MC, Hu YC, Hu ZW, Hua F, Hua Y, Huang C, Huang HL, Huang KH, Huang KY, Huang S, Huang S, Huang WP, Huang YR, Huang Y, Huang Y, Huber TB, Huebbe P, Huh WK, Hulmi JJ, Hur GM, Hurley JH, Husak Z, Hussain SN, Hussain S, Hwang JJ, Hwang S, Hwang TI, Ichihara A, Imai Y, Imbriano C, Inomata M, Into T, Iovane V, Iovanna JL, Iozzo RV, Ip NY, Irazoqui JE, Iribarren P, Isaka Y, Isakovic AJ, Ischiropoulos H, Isenberg JS, Ishaq M, Ishida H, Ishii I, Ishmael JE, Isidoro C, Isobe K, Isono E, Issazadeh-Navikas S, Itahana K, Itakura E, Ivanov AI, Iyer AK, Izquierdo JM, Izumi Y, Izzo V, Jäättelä M, Jaber N, Jackson DJ, Jackson WT, Jacob TG, Jacques TS, Jagannath C, Jain A, Jana NR, Jang BK, Jani A, Janji B, Jannig PR, Jansson PJ, Jean S, Jendrach M, Jeon JH, Jessen N, Jeung EB, Jia K, Jia L, Jiang H, Jiang H, Jiang L, Jiang T, Jiang X, Jiang X, Jiang X, Jiang Y, Jiang Y, Jiménez A, Jin C, Jin H, Jin L, Jin M, Jin S, Jinwal UK, Jo EK, Johansen T, Johnson DE, Johnson GV, Johnson JD, Jonasch E, Jones C, Joosten LA, Jordan J, Joseph AM, Joseph B, Joubert AM, Ju D, Ju J, Juan HF, Juenemann K, Juhász G, Jung HS, Jung JU, Jung YK, Jungbluth H, Justice MJ, Jutten B, Kaakoush NO, Kaarniranta K, Kaasik A, Kabuta T, Kaeffer B, Kågedal K, Kahana A, Kajimura S, Kakhlon O, Kalia M, Kalvakolanu DV, Kamada Y, Kambas K, Kaminskyy VO, Kampinga HH, Kandouz M, Kang C, Kang R, Kang TC, Kanki T, Kanneganti TD, Kanno H, Kanthasamy AG, Kantorow M, Kaparakis-Liaskos M, Kapuy O, Karantza V, Karim MR, Karmakar P, Kaser A, Kaushik S, Kawula T, Kaynar AM, Ke PY, Ke ZJ, Kehrl JH, Keller KE, Kemper JK, Kenworthy AK, Kepp O, Kern A, Kesari S, Kessel D, Ketteler R, Kettelhut Ido C, Khambu B, Khan MM, Khandelwal VK, Khare S, Kiang JG, Kiger AA, Kihara A, Kim AL, Kim CH, Kim DR, Kim DH, Kim EK, Kim HY, Kim HR, Kim JS, Kim JH, Kim JC, Kim JH, Kim KW, Kim MD, Kim MM, Kim PK, Kim SW, Kim SY, Kim YS, Kim Y, Kimchi A, Kimmelman AC, Kimura T, King JS, Kirkegaard K, Kirkin V, Kirshenbaum LA, Kishi S, Kitajima Y, Kitamoto K, Kitaoka Y, Kitazato K, Kley RA, Klimecki WT, Klinkenberg M, Klucken J, Knævelsrud H, Knecht E, Knuppertz L, Ko JL, Kobayashi S, Koch JC, Koechlin-Ramonatxo C, Koenig U, Koh YH, Köhler K, Kohlwein SD, Koike M, Komatsu M, Kominami E, Kong D, Kong HJ, Konstantakou EG, Kopp BT, Korcsmaros T, Korhonen L, Korolchuk VI, Koshkina NV, Kou Y, Koukourakis MI, Koumenis C, Kovács AL, Kovács T, Kovacs WJ, Koya D, Kraft C, Krainc D, Kramer H, Kravic-Stevovic T, Krek W, Kretz-Remy C, Krick R, Krishnamurthy M, Kriston-Vizi J, Kroemer G, Kruer MC, Kruger R, Ktistakis NT, Kuchitsu K, Kuhn C, Kumar AP, Kumar A, Kumar A, Kumar D, Kumar D, Kumar R, Kumar S, Kundu M, Kung HJ, Kuno A, Kuo SH, Kuret J, Kurz T, Kwok T, Kwon TK, Kwon YT, Kyrmizi I, La Spada AR, Lafont F, Lahm T, Lakkaraju A, Lam T, Lamark T, Lancel S, Landowski TH, Lane DJ, Lane JD, Lanzi C, Lapaquette P, Lapierre LR, Laporte J, Laukkarinen J, Laurie GW, Lavandero S, Lavie L, LaVoie MJ, Law BY, Law HK, Law KB, Layfield R, Lazo PA, Le Cam L, Le Roch KG, Le Stunff H, Leardkamolkarn V, Lecuit M, Lee BH, Lee CH, Lee EF, Lee GM, Lee HJ, Lee H, Lee JK, Lee J, Lee JH, Lee JH, Lee M, Lee MS, Lee PJ, Lee SW, Lee SJ, Lee SJ, Lee SY, Lee SH, Lee SS, Lee SJ, Lee S, Lee YR, Lee YJ, Lee YH, Leeuwenburgh C, Lefort S, Legouis R, Lei J, Lei QY, Leib DA, Leibowitz G, Lekli I, Lemaire SD, Lemasters JJ, Lemberg MK, Lemoine A, Leng S, Lenz G, Lenzi P, Lerman LO, Lettieri Barbato D, Leu JI, Leung HY, Levine B, Lewis PA, Lezoualc'h F, Li C, Li F, Li FJ, Li J, Li K, Li L, Li M, Li M, Li Q, Li R, Li S, Li W, Li W, Li X, Li Y, Lian J, Liang C, Liang Q, Liao Y, Liberal J, Liberski PP, Lie P, Lieberman AP, Lim HJ, Lim KL, Lim K, Lima RT, Lin CS, Lin CF, Lin F, Lin F, Lin FC, Lin K, Lin KH, Lin PH, Lin T, Lin WW, Lin YS, Lin Y, Linden R, Lindholm D, Lindqvist LM, Lingor P, Linkermann A, Liotta LA, Lipinski MM, Lira VA, Lisanti MP, Liton PB, Liu B, Liu C, Liu CF, Liu F, Liu HJ, Liu J, Liu JJ, Liu JL, Liu K, Liu L, Liu L, Liu Q, Liu RY, Liu S, Liu S, Liu W, Liu XD, Liu X, Liu XH, Liu X, Liu X, Liu X, Liu Y, Liu Y, Liu Z, Liu Z, Liuzzi JP, Lizard G, Ljujic M, Lodhi IJ, Logue SE, Lokeshwar BL, Long YC, Lonial S, Loos B, López-Otín C, López-Vicario C, Lorente M, Lorenzi PL, Lõrincz P, Los M, Lotze MT, Lovat PE, Lu B, Lu B, Lu J, Lu Q, Lu SM, Lu S, Lu Y, Luciano F, Luckhart S, Lucocq JM, Ludovico P, Lugea A, Lukacs NW, Lum JJ, Lund AH, Luo H, Luo J, Luo S, Luparello C, Lyons T, Ma J, Ma Y, Ma Y, Ma Z, Machado J, Machado-Santelli GM, Macian F, MacIntosh GC, MacKeigan JP, Macleod KF, MacMicking JD, MacMillan-Crow LA, Madeo F, Madesh M, Madrigal-Matute J, Maeda A, Maeda T, Maegawa G, Maellaro E, Maes H, Magariños M, Maiese K, Maiti TK, Maiuri L, Maiuri MC, Maki CG, Malli R, Malorni W, Maloyan A, Mami-Chouaib F, Man N, Mancias JD, Mandelkow EM, Mandell MA, Manfredi AA, Manié SN, Manzoni C, Mao K, Mao Z, Mao ZW, Marambaud P, Marconi AM, Marelja Z, Marfe G, Margeta M, Margittai E, Mari M, Mariani FV, Marin C, Marinelli S, Mariño G, Markovic I, Marquez R, Martelli AM, Martens S, Martin KR, Martin SJ, Martin S, Martin-Acebes MA, Martín-Sanz P, Martinand-Mari C, Martinet W, Martinez J, Martinez-Lopez N, Martinez-Outschoorn U, Martínez-Velázquez M, Martinez-Vicente M, Martins WK, Mashima H, Mastrianni JA, Matarese G, Matarrese P, Mateo R, Matoba S, Matsumoto N, Matsushita T, Matsuura A, Matsuzawa T, Mattson MP, Matus S, Maugeri N, Mauvezin C, Mayer A, Maysinger D, Mazzolini GD, McBrayer MK, McCall K, McCormick C, McInerney GM, McIver SC, McKenna S, McMahon JJ, McNeish IA, Mechta-Grigoriou F, Medema JP, Medina DL, Megyeri K, Mehrpour M, Mehta JL, Mei Y, Meier UC, Meijer AJ, Meléndez A, Melino G, Melino S, de Melo EJ, Mena MA, Meneghini MD, Menendez JA, Menezes R, Meng L, Meng LH, Meng S, Menghini R, Menko AS, Menna-Barreto RF, Menon MB, Meraz-Ríos MA, Merla G, Merlini L, Merlot AM, Meryk A, Meschini S, Meyer JN, Mi MT, Miao CY, Micale L, Michaeli S, Michiels C, Migliaccio AR, Mihailidou AS, Mijaljica D, Mikoshiba K, Milan E, Miller-Fleming L, Mills GB, Mills IG, Minakaki G, Minassian BA, Ming XF, Minibayeva F, Minina EA, Mintern JD, Minucci S, Miranda-Vizuete A, Mitchell CH, Miyamoto S, Miyazawa K, Mizushima N, Mnich K, Mograbi B, Mohseni S, Moita LF, Molinari M, Molinari M, Møller AB, Mollereau B, Mollinedo F, Mongillo M, Monick MM, Montagnaro S, Montell C, Moore DJ, Moore MN, Mora-Rodriguez R, Moreira PI, Morel E, Morelli MB, Moreno S, Morgan MJ, Moris A, Moriyasu Y, Morrison JL, Morrison LA, Morselli E, Moscat J, Moseley PL, Mostowy S, Motori E, Mottet D, Mottram JC, Moussa CE, Mpakou VE, Mukhtar H, Mulcahy Levy JM, Muller S, Muñoz-Moreno R, Muñoz-Pinedo C, Münz C, Murphy ME, Murray JT, Murthy A, Mysorekar IU, Nabi IR, Nabissi M, Nader GA, Nagahara Y, Nagai Y, Nagata K, Nagelkerke A, Nagy P, Naidu SR, Nair S, Nakano H, Nakatogawa H, Nanjundan M, Napolitano G, Naqvi NI, Nardacci R, Narendra DP, Narita M, Nascimbeni AC, Natarajan R, Navegantes LC, Nawrocki ST, Nazarko TY, Nazarko VY, Neill T, Neri LM, Netea MG, Netea-Maier RT, Neves BM, Ney PA, Nezis IP, Nguyen HT, Nguyen HP, Nicot AS, Nilsen H, Nilsson P, Nishimura M, Nishino I, Niso-Santano M, Niu H, Nixon RA, Njar VC, Noda T, Noegel AA, Nolte EM, Norberg E, Norga KK, Noureini SK, Notomi S, Notterpek L, Nowikovsky K, Nukina N, Nürnberger T, O'Donnell VB, O'Donovan T, O'Dwyer PJ, Oehme I, Oeste CL, Ogawa M, Ogretmen B, Ogura Y, Oh YJ, Ohmuraya M, Ohshima T, Ojha R, Okamoto K, Okazaki T, Oliver FJ, Ollinger K, Olsson S, Orban DP, Ordonez P, Orhon I, Orosz L, O'Rourke EJ, Orozco H, Ortega AL, Ortona E, Osellame LD, Oshima J, Oshima S, Osiewacz HD, Otomo T, Otsu K, Ou JH, Outeiro TF, Ouyang DY, Ouyang H, Overholtzer M, Ozbun MA, Ozdinler PH, Ozpolat B, Pacelli C, Paganetti P, Page G, Pages G, Pagnini U, Pajak B, Pak SC, Pakos-Zebrucka K, Pakpour N, Palková Z, Palladino F, Pallauf K, Pallet N, Palmieri M, Paludan SR, Palumbo C, Palumbo S, Pampliega O, Pan H, Pan W, Panaretakis T, Pandey A, Pantazopoulou A, Papackova Z, Papademetrio DL, Papassideri I, Papini A, Parajuli N, Pardo J, Parekh VV, Parenti G, Park JI, Park J, Park OK, Parker R, Parlato R, Parys JB, Parzych KR, Pasquet JM, Pasquier B, Pasumarthi KB, Patschan D, Patterson C, Pattingre S, Pattison S, Pause A, Pavenstädt H, Pavone F, Pedrozo Z, Peña FJ, Peñalva MA, Pende M, Peng J, Penna F, Penninger JM, Pensalfini A, Pepe S, Pereira GJ, Pereira PC, Pérez-de la Cruz V, Pérez-Pérez ME, Pérez-Rodríguez D, Pérez-Sala D, Perier C, Perl A, Perlmutter DH, Perrotta I, Pervaiz S, Pesonen M, Pessin JE, Peters GJ, Petersen M, Petrache I, Petrof BJ, Petrovski G, Phang JM, Piacentini M, Pierdominici M, Pierre P, Pierrefite-Carle V, Pietrocola F, Pimentel-Muiños FX, Pinar M, Pineda B, Pinkas-Kramarski R, Pinti M, Pinton P, Piperdi B, Piret JM, Platanias LC, Platta HW, Plowey ED, Pöggeler S, Poirot M, Polčic P, Poletti A, Poon AH, Popelka H, Popova B, Poprawa I, Poulose SM, Poulton J, Powers SK, Powers T, Pozuelo-Rubio M, Prak K, Prange R, Prescott M, Priault M, Prince S, Proia RL, Proikas-Cezanne T, Prokisch H, Promponas VJ, Przyklenk K, Puertollano R, Pugazhenthi S, Puglielli L, Pujol A, Puyal J, Pyeon D, Qi X, Qian WB, Qin ZH, Qiu Y, Qu Z, Quadrilatero J, Quinn F, Raben N, Rabinowich H, Radogna F, Ragusa MJ, Rahmani M, Raina K, Ramanadham S, Ramesh R, Rami A, Randall-Demllo S, Randow F, Rao H, Rao VA, Rasmussen BB, Rasse TM, Ratovitski EA, Rautou PE, Ray SK, Razani B, Reed BH, Reggiori F, Rehm M, Reichert AS, Rein T, Reiner DJ, Reits E, Ren J, Ren X, Renna M, Reusch JE, Revuelta JL, Reyes L, Rezaie AR, Richards RI, Richardson DR, Richetta C, Riehle MA, Rihn BH, Rikihisa Y, Riley BE, Rimbach G, Rippo MR, Ritis K, Rizzi F, Rizzo E, Roach PJ, Robbins J, Roberge M, Roca G, Roccheri MC, Rocha S, Rodrigues CMP, Rodríguez CI, de Cordoba SR, Rodriguez-Muela N, Roelofs J, Rogov VV, Rohn TT, Rohrer B, Romanelli D, Romani L, Romano PS, Roncero MI, Rosa JL, Rosello A, Rosen KV, Rosenstiel P, Rost-Roszkowska M, Roth KA, Roué G, Rouis M, Rouschop KM, Ruan DT, Ruano D, Rubinsztein DC, Rucker EB 3rd, Rudich A, Rudolf E, Rudolf R, Ruegg MA, Ruiz-Roldan C, Ruparelia AA, Rusmini P, Russ DW, Russo GL, Russo G, Russo R, Rusten TE, Ryabovol V, Ryan KM, Ryter SW, Sabatini DM, Sacher M, Sachse C, Sack MN, Sadoshima J, Saftig P, Sagi-Eisenberg R, Sahni S, Saikumar P, Saito T, Saitoh T, Sakakura K, Sakoh-Nakatogawa M, Sakuraba Y, Salazar-Roa M, Salomoni P, Saluja AK, Salvaterra PM, Salvioli R, Samali A, Sanchez AM, Sánchez-Alcázar JA, Sanchez-Prieto R, Sandri M, Sanjuan MA, Santaguida S, Santambrogio L, Santoni G, Dos Santos CN, Saran S, Sardiello M, Sargent G, Sarkar P, Sarkar S, Sarrias MR, Sarwal MM, Sasakawa C, Sasaki M, Sass M, Sato K, Sato M, Satriano J, Savaraj N, Saveljeva S, Schaefer L, Schaible UE, Scharl M, Schatzl HM, Schekman R, Scheper W, Schiavi A, Schipper HM, Schmeisser H, Schmidt J, Schmitz I, Schneider BE, Schneider EM, Schneider JL, Schon EA, Schönenberger MJ, Schönthal AH, Schorderet DF, Schröder B, Schuck S, Schulze RJ, Schwarten M, Schwarz TL, Sciarretta S, Scotto K, Scovassi AI, Screaton RA, Screen M, Seca H, Sedej S, Segatori L, Segev N, Seglen PO, Seguí-Simarro JM, Segura-Aguilar J, Seki E, Sell C, Seiliez I, Semenkovich CF, Semenza GL, Sen U, Serra AL, Serrano-Puebla A, Sesaki H, Setoguchi T, Settembre C, Shacka JJ, Shajahan-Haq AN, Shapiro IM, Sharma S, She H, Shen CK, Shen CC, Shen HM, Shen S, Shen W, Sheng R, Sheng X, Sheng ZH, Shepherd TG, Shi J, Shi Q, Shi Q, Shi Y, Shibutani S, Shibuya K, Shidoji Y, Shieh JJ, Shih CM, Shimada Y, Shimizu S, Shin DW, Shinohara ML, Shintani M, Shintani T, Shioi T, Shirabe K, Shiri-Sverdlov R, Shirihai O, Shore GC, Shu CW, Shukla D, Sibirny AA, Sica V, Sigurdson CJ, Sigurdsson EM, Sijwali PS, Sikorska B, Silveira WA, Silvente-Poirot S, Silverman GA, Simak J, Simmet T, Simon AK, Simon HU, Simone C, Simons M, Simonsen A, Singh R, Singh SV, Singh SK, Sinha D, Sinha S, Sinicrope FA, Sirko A, Sirohi K, Sishi BJ, Sittler A, Siu PM, Sivridis E, Skwarska A, Slack R, Slaninová I, Slavov N, Smaili SS, Smalley KS, Smith DR, Soenen SJ, Soleimanpour SA, Solhaug A, Somasundaram K, Son JH, Sonawane A, Song C, Song F, Song HK, Song JX, Song W, Soo KY, Sood AK, Soong TW, Soontornniyomkij V, Sorice M, Sotgia F, Soto-Pantoja DR, Sotthibundhu A, Sousa MJ, Spaink HP, Span PN, Spang A, Sparks JD, Speck PG, Spector SA, Spies CD, Springer W, Clair DS, Stacchiotti A, Staels B, Stang MT, Starczynowski DT, Starokadomskyy P, Steegborn C, Steele JW, Stefanis L, Steffan J, Stellrecht CM, Stenmark H, Stepkowski TM, Stern ST, Stevens C, Stockwell BR, Stoka V, Storchova Z, Stork B, Stratoulias V, Stravopodis DJ, Strnad P, Strohecker AM, Ström AL, Stromhaug P, Stulik J, Su YX, Su Z, Subauste CS, Subramaniam S, Sue CM, Suh SW, Sui X, Sukseree S, Sulzer D, Sun FL, Sun J, Sun J, Sun SY, Sun Y, Sun Y, Sun Y, Sundaramoorthy V, Sung J, Suzuki H, Suzuki K, Suzuki N, Suzuki T, Suzuki YJ, Swanson MS, Swanton C, Swärd K, Swarup G, Sweeney ST, Sylvester PW, Szatmari Z, Szegezdi E, Szlosarek PW, Taegtmeyer H, Tafani M, Taillebourg E, Tait SW, Takacs-Vellai K, Takahashi Y, Takáts S, Takemura G, Takigawa N, Talbot NJ, Tamagno E, Tamburini J, Tan CP, Tan L, Tan ML, Tan M, Tan YJ, Tanaka K, Tanaka M, Tang D, Tang D, Tang G, Tanida I, Tanji K, Tannous BA, Tapia JA, Tasset-Cuevas I, Tatar M, Tavassoly I, Tavernarakis N, Taylor A, Taylor GS, Taylor GA, Taylor JP, Taylor MJ, Tchetina EV, Tee AR, Teixeira-Clerc F, Telang S, Tencomnao T, Teng BB, Teng RJ, Terro F, Tettamanti G, Theiss AL, Theron AE, Thomas KJ, Thomé MP, Thomes PG, Thorburn A, Thorner J, Thum T, Thumm M, Thurston TL, Tian L, Till A, Ting JP, Titorenko VI, Toker L, Toldo S, Tooze SA, Topisirovic I, Torgersen ML, Torosantucci L, Torriglia A, Torrisi MR, Tournier C, Towns R, Trajkovic V, Travassos LH, Triola G, Tripathi DN, Trisciuoglio D, Troncoso R, Trougakos IP, Truttmann AC, Tsai KJ, Tschan MP, Tseng YH, Tsukuba T, Tsung A, Tsvetkov AS, Tu S, Tuan HY, Tucci M, Tumbarello DA, Turk B, Turk V, Turner RF, Tveita AA, Tyagi SC, Ubukata M, Uchiyama Y, Udelnow A, Ueno T, Umekawa M, Umemiya-Shirafuji R, Underwood BR, Ungermann C, Ureshino RP, Ushioda R, Uversky VN, Uzcátegui NL, Vaccari T, Vaccaro MI, Váchová L, Vakifahmetoglu-Norberg H, Valdor R, Valente EM, Vallette F, Valverde AM, Van den Berghe G, Van Den Bosch L, van den Brink GR, van der Goot FG, van der Klei IJ, van der Laan LJ, van Doorn WG, van Egmond M, van Golen KL, Van Kaer L, van Lookeren Campagne M, Vandenabeele P, Vandenberghe W, Vanhorebeek I, Varela-Nieto I, Vasconcelos MH, Vasko R, Vavvas DG, Vega-Naredo I, Velasco G, Velentzas AD, Velentzas PD, Vellai T, Vellenga E, Vendelbo MH, Venkatachalam K, Ventura N, Ventura S, Veras PS, Verdier M, Vertessy BG, Viale A, Vidal M, Vieira HL, Vierstra RD, Vigneswaran N, Vij N, Vila M, Villar M, Villar VH, Villarroya J, Vindis C, Viola G, Viscomi MT, Vitale G, Vogl DT, Voitsekhovskaja OV, von Haefen C, von Schwarzenberg K, Voth DE, Vouret-Craviari V, Vuori K, Vyas JM, Waeber C, Walker CL, Walker MJ, Walter J, Wan L, Wan X, Wang B, Wang C, Wang CY, Wang C, Wang C, Wang C, Wang D, Wang F, Wang F, Wang G, Wang HJ, Wang H, Wang HG, Wang H, Wang HD, Wang J, Wang J, Wang M, Wang MQ, Wang PY, Wang P, Wang RC, Wang S, Wang TF, Wang X, Wang XJ, Wang XW, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang YJ, Wang Y, Wang Y, Wang YT, Wang Y, Wang ZN, Wappner P, Ward C, Ward DM, Warnes G, Watada H, Watanabe Y, Watase K, Weaver TE, Weekes CD, Wei J, Weide T, Weihl CC, Weindl G, Weis SN, Wen L, Wen X, Wen Y, Westermann B, Weyand CM, White AR, White E, Whitton JL, Whitworth AJ, Wiels J, Wild F, Wildenberg ME, Wileman T, Wilkinson DS, Wilkinson S, Willbold D, Williams C, Williams K, Williamson PR, Winklhofer KF, Witkin SS, Wohlgemuth SE, Wollert T, Wolvetang EJ, Wong E, Wong GW, Wong RW, Wong VK, Woodcock EA, Wright KL, Wu C, Wu D, Wu GS, Wu J, Wu J, Wu M, Wu M, Wu S, Wu WK, Wu Y, Wu Z, Xavier CP, Xavier RJ, Xia GX, Xia T, Xia W, Xia Y, Xiao H, Xiao J, Xiao S, Xiao W, Xie CM, Xie Z, Xie Z, Xilouri M, Xiong Y, Xu C, Xu C, Xu F, Xu H, Xu H, Xu J, Xu J, Xu J, Xu L, Xu X, Xu Y, Xu Y, Xu ZX, Xu Z, Xue Y, Yamada T, Yamamoto A, Yamanaka K, Yamashina S, Yamashiro S, Yan B, Yan B, Yan X, Yan Z, Yanagi Y, Yang DS, Yang JM, Yang L, Yang M, Yang PM, Yang P, Yang Q, Yang W, Yang WY, Yang X, Yang Y, Yang Y, Yang Z, Yang Z, Yao MC, Yao PJ, Yao X, Yao Z, Yao Z, Yasui LS, Ye M, Yedvobnick B, Yeganeh B, Yeh ES, Yeyati PL, Yi F, Yi L, Yin XM, Yip CK, Yoo YM, Yoo YH, Yoon SY, Yoshida K, Yoshimori T, Young KH, Yu H, Yu JJ, Yu JT, Yu J, Yu L, Yu WH, Yu XF, Yu Z, Yuan J, Yuan ZM, Yue BY, Yue J, Yue Z, Zacks DN, Zacksenhaus E, Zaffaroni N, Zaglia T, Zakeri Z, Zecchini V, Zeng J, Zeng M, Zeng Q, Zervos AS, Zhang DD, Zhang F, Zhang G, Zhang GC, Zhang H, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang J, Zhang JP, Zhang L, Zhang L, Zhang L, Zhang L, Zhang MY, Zhang X, Zhang XD, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhao M, Zhao WL, Zhao X, Zhao YG, Zhao Y, Zhao Y, Zhao YX, Zhao Z, Zhao ZJ, Zheng D, Zheng XL, Zheng X, Zhivotovsky B, Zhong Q, Zhou GZ, Zhou G, Zhou H, Zhou SF, Zhou XJ, Zhu H, Zhu H, Zhu WG, Zhu W, Zhu XF, Zhu Y, Zhuang SM, Zhuang X, Ziparo E, Zois CE, Zoladek T, Zong WX, Zorzano A, and Zughaier SM
- Subjects
- Animals, Biological Assay methods, Computer Simulation, Humans, Autophagy physiology, Biological Assay standards
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.