Objectives: Primate leap performance varies with body size, where performance will be optimized in lightweight individuals due to the inverse relationship between force generation and body mass. With all other factors equal, it is less energetically costly to swing a light hindlimb than a heavier hindlimb. Previous work on the calcaneus of galagids hypothesized that bone volume in leaping galagids may be minimized to decrease overall hindlimb mass. We predict that (1) lighter taxa will exhibit relatively less calcaneal bone volume than heavier taxa, and (2) taxa that are high‐frequency leapers will exhibit relatively less bone volume than lower frequency leapers. Materials and Methods: Relationships among bone volume, body size, and leap frequency (high vs. low) were examined in a sample of 51 individuals from four genera of galagids (Euoticus, Galago, Galagoides, and Otolemur) that differ in the percentage of time engaged in leaping locomotion. Using μCT scans of calcanei, we quantified relative bone volume (BV/TV) of the distal calcaneal segment and predicted that it would vary with body size and frequency of leaping locomotion. Results: Phylogenetic generalized least squares (PGLS) regression models indicate that body size, but not leaping frequency, affects BV/TV in the distal calcaneus. Relative bone volume increases with body size, supporting our first hypothesis. Discussion: These results support previous work demonstrating a positive correlation between BV/TV and body size. With some exceptions, small galagids tend to have less BV/TV than larger galagids. Leaping frequency does not relate to BV/TV in this sample; larger taxonomic and/or behavioral sampling may provide additional insights. [ABSTRACT FROM AUTHOR]