415 results on '"Cardarelli, M."'
Search Results
2. The use of micro-energy dispersive X-ray fluorescence spectrometry combined with a multivariate approach to determine element variation and distribution in tobacco seedlings exposed to arsenate
- Author
-
Capobianco, G., Brunetti, P., Bonifazi, G., Costantino, P., Cardarelli, M., and Serranti, S.
- Published
- 2018
- Full Text
- View/download PDF
3. Copper boosts the biostimulant activity of a vegetal-derived protein hydrolysate in basil: morpho-physiological and metabolomics insights
- Author
-
Rouphael, Y., Carillo, P., Ciriello, M., Formisano, L., El-Nakhel, C., Ganugi, P., Fiorini, Andrea, Miras Moreno, Maria Begona, Zhang, Leilei, Cardarelli, M., Lucini, Luigi, Colla, G., Fiorini A. (ORCID:0000-0002-5601-2954), Miras Moreno B. (ORCID:0000-0002-5931-355X), Zhang L., Lucini L. (ORCID:0000-0002-5133-9464), Rouphael, Y., Carillo, P., Ciriello, M., Formisano, L., El-Nakhel, C., Ganugi, P., Fiorini, Andrea, Miras Moreno, Maria Begona, Zhang, Leilei, Cardarelli, M., Lucini, Luigi, Colla, G., Fiorini A. (ORCID:0000-0002-5601-2954), Miras Moreno B. (ORCID:0000-0002-5931-355X), Zhang L., and Lucini L. (ORCID:0000-0002-5133-9464)
- Abstract
In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical–chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalan
- Published
- 2023
4. Plant biostimulants from seaweeds or vegetal proteins enhance the salinity tolerance in greenhouse lettuce by modulating plant metabolism in a distinctive manner
- Author
-
Rouphael, Y., Carillo, P., Garcia-Perez, P., Cardarelli, M., Senizza, Biancamaria, Miras Moreno, Maria Begona, Colla, G., Lucini, Luigi, Senizza B., Miras-Moreno B. (ORCID:0000-0002-5931-355X), Lucini L. (ORCID:0000-0002-5133-9464), Rouphael, Y., Carillo, P., Garcia-Perez, P., Cardarelli, M., Senizza, Biancamaria, Miras Moreno, Maria Begona, Colla, G., Lucini, Luigi, Senizza B., Miras-Moreno B. (ORCID:0000-0002-5931-355X), and Lucini L. (ORCID:0000-0002-5133-9464)
- Abstract
The use of plant biostimulants such as seaweed extracts (SWE) and protein hydrolysates (PH) has grown in the recent years due to their beneficial effects on yield under both optimal and sub-optimal conditions such as salt stress. The comprehension of the mode of action of these two important categories of biostimulants on plant performance will allow to use them more efficiently under different growth conditions. This study aimed to examine the efficacy of a seaweed and plant-based biostimulants on greenhouse lettuce (Lactuca sativa L.) grown under non-saline (0 mM NaCl) and saline conditions (40 mM NaCl) in terms of growth, yield, SPAD index, leaf mineral composition and metabolomic profiling. Shoot fresh weight of lettuce was reduced by 15.3% under 40 mM of NaCl. Nonetheless, it was boosted by both used biostimulants by 9 and 18%, on average, under 0 and 40 mM NaCl salinity, respectively. Na content under saline conditions was reduced in the presence of the biostimulants treatment, where PH reduced it significantly by 15.6% and SWE by 9.4%. On the other hand, Cl content was significantly reduced only under PH treatment. Both biostimulants elicited a broad metabolic reprogramming, involving the accumulation of stress-related compounds such as glucosinolates, terpenoid phytoalexins, and jasmonates. Interestingly, distinctive metabolomic signatures could be observed following the application of the different biostimulants under salinity conditions. In more detail, PH promoted the accumulation of glucosinolates and phytoalexins precursors, while SWE induced a down accumulation of secondary metabolites. Our findings indicate different processes being modulated by PH and SWE, with possible synergistic effects, thus paving the way towards integrated strategies to alleviate the detrimental effects of salinity in lettuce.
- Published
- 2022
5. Application of two mathematical methods for optimizing the macrocation proportions of hydroponically-grown tomatoes
- Author
-
Colla, G., Rouphael, Y., Cardarelli, M., Fanasca, S., and Fallovo, C.
- Published
- 2008
6. A Simple and Accurate Equation for Estimating Individual Leaf Area of Eggplant from Linear Measurements
- Author
-
Rivera, C. M., Rouphael, Y., Cardarelli, M., and Colla, G.
- Published
- 2007
7. Optimization of substrate composition for organic lettuce transplant production
- Author
-
Colla, G., Rouphael, Y., Cardarelli, M., Temperini, O., and Rea, E.
- Published
- 2007
8. Influence of Simulated Microgravity on Growth, Yield, and Quality of Leafy Vegetables: Lettuce and Rocket
- Author
-
Rivera, C. M., Battistelli, A., Moscatello, S., Proietti, S., Rouphael, Y., Cardarelli, M., and Colla, G.
- Published
- 2006
9. Anterior trans-frontal endoscopic management of colloid cyst: an effective, safe, and elegant way of treatment. Case series and technical note from a multicenter prospective study
- Author
-
Chibbaro, S., Champeaux, C., Poczos, P., Cardarelli, M., Di Rocco, F., Iaccarino, C., Servadei, F., Tigan, L., Chaussemy, D., George, B., Froelich, S., Kehrli, P., and Romano, A.
- Published
- 2014
- Full Text
- View/download PDF
10. Leaf area estimation of radish from simple linear measurements
- Author
-
Salerno, A., Rivera, C.M., Rouphael, Y., Colla, G., Cardarelli, M., Pierandrei, F., Rea, E., and Saccardo, F.
- Published
- 2005
11. Morphogenetic Genes in the T-DNA of Ri Plasmids
- Author
-
Costantino, P., Cardarelli, M., Capone, I., De Paolis, A., Filetici, P., Pomponi, M., Trovato, M., Herrmann, R. G., editor, and Larkins, B. A., editor
- Published
- 1991
- Full Text
- View/download PDF
12. Drip application of a biopolymer-based biostimulant enhances root growth and nutrient uptake of processing tomato
- Author
-
Colla, G., primary, Cardarelli, M., additional, Stefanoni, W., additional, Fiorillo, A., additional, Canaguier, R., additional, Mariotti, R., additional, Kyriacou, M.C., additional, and Rouphael, Y., additional
- Published
- 2021
- Full Text
- View/download PDF
13. The modulation of auxin-responsive genes, phytohormone profile, and metabolomic signature in leaves of tomato cuttings is specifically modulated by different protein hydrolysates
- Author
-
Buffagni, Valentina, Ceccarelli, A. V., Pii, Y., Miras Moreno, Maria Begona, Rouphael, Y., Cardarelli, M., Colla, G., Lucini, Luigi, Buffagni V., Miras-Moreno B. (ORCID:0000-0002-5931-355X), Lucini L. (ORCID:0000-0002-5133-9464), Buffagni, Valentina, Ceccarelli, A. V., Pii, Y., Miras Moreno, Maria Begona, Rouphael, Y., Cardarelli, M., Colla, G., Lucini, Luigi, Buffagni V., Miras-Moreno B. (ORCID:0000-0002-5931-355X), and Lucini L. (ORCID:0000-0002-5133-9464)
- Abstract
Protein hydrolysates (PHs) are employed in agriculture to increase the sustainability of farming systems, with positive results on crop productivity and response against environmental stressors. Nevertheless, the molecular mechanism(s) triggered by their specific activity is not clearly understood. In this work, five PHs obtained by enzymatic hydrolysis of different vegetal protein sources were tested for their root-promoting activity on tomato cuttings. All the treatments improved both root length and number when compared to negative controls. Distinctive metabolomic signatures were highlighted in response to treatments, indicating the triggering of different molecular processes in leaf tissues of tomato cuttings. PHs differentially modulated the biosynthesis of plant stress-protectants, such as alkaloids and phenylpropanoids. Moreover, metabolites involved in phytohormone biosynthesis were significantly impacted. In this context, a clear modulation of several compounds related to auxin homeostasis was observed. In addition, the differential modulation of SlIAA2 and SlIAA9 genes, which are involved in the IAA signalling pathway, might further suggest the auxin-like activity elicited by the PHs tested. Here we provide evidence that PHs can impact plant molecular level, positively affecting root development, most likely by affecting the signalling cascades activated in leaf tissues. The biostimulant activity was sustained by PH-specific response at the molecular level, likely ascribable to their heterogeneous botanical origins. In fact, our findings did not point out a clear universal response to PHs, and specific effects are to be investigated.
- Published
- 2021
14. Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism
- Author
-
Ceccarelli, A. V., Miras Moreno, Maria Begona, Buffagni, Valentina, Senizza, Biancamaria, Pii, Y., Cardarelli, M., Rouphael, Y., Colla, G., Lucini, Luigi, Miras-Moreno B. (ORCID:0000-0002-5931-355X), Buffagni V., Senizza B., Lucini L. (ORCID:0000-0002-5133-9464), Ceccarelli, A. V., Miras Moreno, Maria Begona, Buffagni, Valentina, Senizza, Biancamaria, Pii, Y., Cardarelli, M., Rouphael, Y., Colla, G., Lucini, Luigi, Miras-Moreno B. (ORCID:0000-0002-5931-355X), Buffagni V., Senizza B., and Lucini L. (ORCID:0000-0002-5133-9464)
- Abstract
Despite the scientific evidence supporting their biostimulant activity, the molecular mechanism(s) underlying the activity of protein hydrolysates (PHs) and the specificity among different products are still poorly explored. This work tested five different protein hydrolysates, produced from different plant sources using the same enzymatic approach, for their ability to promote rooting in tomato cuttings following quick dipping. Provided that all the different PHs increased root length (45–93%) and some of them increased root number (37–56%), untargeted metabolomics followed by multivariate statistics and pathway analysis were used to unravel the molecular processes at the basis of the biostimulant activity. Distinct metabolomic signatures could be found in roots following the PHs treatments. In general, PHs shaped the phytohormone profile, modulating the complex interaction between cytokinins and auxins, an interplay playing a pivotal role in root development, and triggered a down accumulation of brassinosteroids. Concerning secondary metabolism, PHs induced the accumulation of aliphatic glucosinolates, alkaloids, and phenylpropanoids, potentially eliciting crop resilience to stress conditions. Here, we confirm that PHs may have a hormone-like activity, and that their application can modulate plant growth, likely interfering with signaling processes. Noteworthy, the heterogenicity of the botanical origin supported the distinctive and peculiar metabolomic responses we observed across the products tested. While supporting their biostimulant activity, these findings suggest that a generalized crop response to PHs cannot be defined and that specific effects are rather to be investigated.
- Published
- 2021
15. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks
- Author
-
Rouphael, Y., Cardarelli, M., Rea, E., and Colla, G.
- Published
- 2012
- Full Text
- View/download PDF
16. Protein hydrolysates as plant biostimulants in agriculture
- Author
-
Colla, G., Rouphael, Y., Cardarelli, M., Lucini, L., and Ertani, A.
- Published
- 2020
17. Current status of the multinational Arabidopsis community
- Author
-
Parry, Geraint, Provart, Nicholas J., Brady, Siobhan M., Uzilday, Baris, Adams, K., Araújo, W., Aubourg, S., Baginsky, S., Bakker, E., Bärenfaller, K., Batley, J., Beale, M., Beilstein, M., Belkhadir, Y., Berardini, T., Bergelson, J., Blanco-Herrera, F., Brady, S., Braun, Hans-Peter, Briggs, S., Brownfield, L., Cardarelli, M., Castellanos-Uribe, M., Coruzzi, G., Dassanayake, M., Jaeger, G.D., Dilkes, B., Doherty, C., Ecker, J., Edger, P., Edwards, D., Kasmi, F.E., Eriksson, M., Exposito-Alonso, M., Falter-Braun, P., Fernie, A., Ferro, M., Fiehn, O., Friesner, J., Greenham, K., Guo, Y., Hamann, T., Hancock, A., Hauser, M.-T., Heazlewood, J., Ho, C.-H., Hõrak, H., Huala, E., Hwang, I., Iuchi, S., Jaiswal, P., Jakobson, L., Jiang, Y., Jiao, Y., Jones, A., Kadota, Y., Khurana, J., Kliebenstein, D., Knee, E., Kobayashi, M., Koch, M., Krouk, G., Larson, T., Last, R., Lepiniec, L., Li, S., Lurin, C., Lysak, M., Maere, S., Malinowski, R., Maumus, F., May, S., Mayer, K., Mendoza-Cozatl, D., Mendoza-Poudereux, I., Meyers, B., Micol, J.L., Millar, H., Mock, H.-P., Mukhtar, K., Mukhtar, S., Murcha, M., Nakagami, H., Nakamura, Y., Nicolov, L., Nikolau, B., Nowack, M., Nunes-Nesi, A., Palmgren, M., Parry, G., Patron, N., Peck, S., Pedmale, U., Perrot-Rechenmann, C., Pieruschka, R., Pío-Beltrán, J., Pires, J.C., Provart, N., Rajjou, L., Reiser, L., Reumann, S., Rhee, S., Rigas, S., Rolland, N., Romanowski, A., Santoni, V., Savaldi-Goldstein, S., Schmitz, R., Schulze, W., Seki, M., Shimizu, K.K., Slotkin, K., Small, I., Somers, D., Sozzani, R., Spillane, C., Srinivasan, R., Taylor, N., Tello-Ruiz, M.-K., Thelen, J., Tohge, T., Town, C., Toyoda, T., Uzilday, B., Peer, Y.V.D., Wijk, K., Gillhaussen, P.V., Walley, J., Ware, D., Weckwerth, W., Whitelegge, J., Wienkoop, S., Wright, C., Wrzaczek, M., Yamazaki, M., Yanovsky, M., Žárský, V., Zhong, X., Biological Systems Engineering, Organisms and Environment Research Division, Cardiff School of Biosciences, Cardiff University, University of Toronto, University of California [Davis] (UC Davis), University of California, Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany, Department of Ecology and Evolution [Chicago], University of Chicago, Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Unité de recherche en génomique végétale (URGV), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Rothamsted Research, Biotechnology and Biological Sciences Research Council (BBSRC), University of Arizona, Gregor Mendel Institute (GMI) - Vienna Biocenter (VBC), Austrian Academy of Sciences (OeAW), University of California (UC), Center for Genomics and Systems Biology, Department of Biology [New York], New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU)-New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU), Flanders Institute for Biotechnology, National Center for Atmospheric Research [Boulder] (NCAR), Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Agricultural Sustainability Institute and Department of Neurobiology, Physiology, and Behavior, Norwegian University of Science and Technology (NTNU), University of Melbourne, King Abdullah University of Science and Technology (KAUST), University of Chinese Academy of Sciences [Beijing] (UCAS), The Sainsbury Laboratory [Norwich] (TSL), IBM Research – Tokyo, University Medical Center Groningen [Groningen] (UMCG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre for Novel Agricultural Products, Department of Biology, University of York [York, UK], Biologie des Semences (LBS), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G), Sichuan University [Chengdu] (SCU), Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Department of Plant Systems Biology, Unité de Recherche Génomique Info (URGI), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Nottingham, UK (UON), Institute of Bioinformatics and System Biology (IBIS), Helmholtz Zentrum München = German Research Center for Environmental Health, Saint Mary's University [Halifax], Max Planck Institute for Plant Breeding Research (MPIPZ), National Institute of Genetics (NIG), University of Copenhagen = Københavns Universitet (UCPH), Division of Biology [La Jolla], University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), Earlham Institute [Norwich], Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, University of Missouri [Columbia] (Mizzou), University of Missouri System, Institut Jean-Pierre Bourgin (IJPB), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Department of Plant Biology, Carnegie Institution for Science, Dynamique du protéome et biogenèse du chloroplaste (ChloroGenesis), Physiologie cellulaire et végétale (LPCV), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Plateforme de Spectrométrie de Masse Protéomique - Mass Spectrometry Proteomics Platform (MSPP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Plant Systems Biology, Institute of Physiology and Biotechnology of plants, RIKEN Center for Sustainable Resource Science [Yokohama] (RIKEN CSRS), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Unité de recherche Génétique et amélioration des plantes (GAP), Institut National de la Recherche Agronomique (INRA), Department of Biology, Duke University, Genetics and Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland [Galway] (NUI Galway), Universidade Federal de São Paulo, RIKEN Plant Science Center and RIKEN Bioinformatics and Systems Engineering Division, Cold Spring Harbor Laboratory (CSHL), University of Vienna [Vienna], University of California [Los Angeles] (UCLA), Department of Plant Molecular Biology, Université de Lausanne = University of Lausanne (UNIL), UKRI-BBSRC grant BB/M004376/1, HHMI Faculty Scholar Fellowship, Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 118Z137, UK Research & Innovation (UKRI) Biotechnology and Biological Sciences Research Council (BBSRC) BB/M004376/1, Sainsbury Lab, Norwich Research Park, Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Helmholtz-Zentrum München (HZM), University of Copenhagen = Københavns Universitet (KU), University of California-University of California, Carnegie Institution for Science [Washington], Université de Lausanne (UNIL), Ege Üniversitesi, Organismal and Evolutionary Biology Research Programme, Plant Biology, Viikki Plant Science Centre (ViPS), Receptor-Ligand Signaling Group, University of Zurich, Parry, Geraint, Provart, Nicholas J, and Brady, Siobhan M
- Subjects
0106 biological sciences ,Arabidopsis thaliana ,[SDV]Life Sciences [q-bio] ,White Paper ,Genetics and Molecular Biology (miscellaneous) ,Plant Science ,Biochemistry ,01 natural sciences ,Dewey Decimal Classification::500 | Naturwissenschaften::580 | Pflanzen (Botanik) ,Research community ,Arabidopsis ,1110 Plant Science ,0303 health sciences ,Ecology ,biology ,1184 Genetics, developmental biology, physiology ,ddc:580 ,Multinational corporation ,MAP ,590 Animals (Zoology) ,Life Sciences & Biomedicine ,Arabidopsis research community ,Evolution ,Steering committee ,Multinational Arabidopsis Steering Committee ,Library science ,1301 Biochemistry, Genetics and Molecular Biology (miscellaneous) ,Biochemistry, Genetics and Molecular Biology (miscellaneous) ,Business and Economics ,10127 Institute of Evolutionary Biology and Environmental Studies ,03 medical and health sciences ,Behavior and Systematics ,Political science ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MASC ,roadmap ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Plant Sciences ,Botany ,15. Life on land ,11831 Plant biology ,biology.organism_classification ,White Papers ,collaboration ,1105 Ecology, Evolution, Behavior and Systematics ,QK1-989 ,Arabidopsis Thaliana ,Collaboration ,Research Network ,Roadmap ,570 Life sciences ,1182 Biochemistry, cell and molecular biology ,2303 Ecology ,010606 plant biology & botany - Abstract
The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plantArabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the "fourth decadal roadmap," which will advise and coordinate the global activities of the Arabidopsis research community., UKRI-BBSRC grant [BB/M004376/1]; HHMI Faculty Scholar Fellowship; Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [118Z137], UKRI-BBSRC grant, Grant/Award Number: BB/M004376/1; HHMI Faculty Scholar Fellowship; the Scientific and Technological Research Council of Turkey, Grant/Award Number: 118Z137
- Published
- 2020
18. A Microbial-Based Biostimulant Enhances Sweet Pepper Performance by Metabolic Reprogramming of Phytohormone Profile and Secondary Metabolism
- Author
-
Bonini, P., Rouphael, Y., Miras-Moreno, B., Lee, B., Cardarelli, M., Erice, G., Cirino, V., Lucini, L., Colla, G., Miras-Moreno B. (ORCID:0000-0002-5931-355X), Lucini L. (ORCID:0000-0002-5133-9464), Bonini, P., Rouphael, Y., Miras-Moreno, B., Lee, B., Cardarelli, M., Erice, G., Cirino, V., Lucini, L., Colla, G., Miras-Moreno B. (ORCID:0000-0002-5931-355X), and Lucini L. (ORCID:0000-0002-5133-9464)
- Abstract
Microbial-based biostimulants can improve crop productivity by modulating cell metabolic pathways including hormonal balance. However, little is known about the microbial-mediated molecular changes causing yield increase. The present study elucidates the metabolomic modulation occurring in pepper (Capsicum annuum L.) leaves at the vegetative and reproductive phenological stages, in response to microbial-based biostimulants. The arbuscular mycorrhizal fungi Rhizoglomus irregularis and Funneliformis mosseae, as well as Trichoderma koningii, were used in this work. The application of endophytic fungi significantly increased total fruit yield by 23.7% compared to that of untreated plants. Multivariate statistics indicated that the biostimulant treatment substantially altered the shape of the metabolic profile of pepper. Compared to the untreated control, the plants treated with microbial biostimulants presented with modified gibberellin, auxin, and cytokinin patterns. The biostimulant treatment also induced secondary metabolism and caused carotenoids, saponins, and phenolic compounds to accumulate in the plants. Differential metabolomic signatures indicated diverse and concerted biochemical responses in the plants following the colonization of their roots by beneficial microorganisms. The above findings demonstrated a clear link between microbial-mediated yield increase and a strong up-regulation of hormonal and secondary metabolic pathways associated with growth stimulation and crop defense to environmental stresses.
- Published
- 2020
19. Phytochemical Profile, Mineral Content, and Bioactive Compounds in Leaves of Seed-Propagated Artichoke Hybrid Cultivars
- Author
-
Rocchetti, Gabriele, Lucini, Luigi, Corrado, G., Colla, G., Cardarelli, M., Pascale, S., Rouphael, Y., Rocchetti G. (ORCID:0000-0003-3488-4513), Lucini L. (ORCID:0000-0002-5133-9464), Rocchetti, Gabriele, Lucini, Luigi, Corrado, G., Colla, G., Cardarelli, M., Pascale, S., Rouphael, Y., Rocchetti G. (ORCID:0000-0003-3488-4513), and Lucini L. (ORCID:0000-0002-5133-9464)
- Abstract
The globe artichoke (Cynara cardunculus L. subsp. Scolymus (L.) Hegi) is a multi-year species rich in various classes of phytochemicals with known nutritional and pharmacological properties, such as polyphenols, sesquiterpene lactones, and terpenoids. Over the last decade, hybrids cultivars are transforming the artichoke market for their higher uniformity and stability over the traditional landraces, further increasing the potential of the artichoke as a source of commercial extracts and bioactive molecules. Our aim was to investigate the mineral and phytochemical profiles of leaves from seven seed-propagated hybrids by using an untargeted metabolomic approach based on ultra-high-pressure liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Metabolomics identified several compounds in the tested varieties, namely 98 polyphenols, 123 sesquiterpene lactones, and 221 other metabolites. The phenolic content ranged from 3.01 mg Eq./g fw (for 'Opera') to 4.71 mg Eq./g fw (for 'Opal'). Sesquiterpene lactones were, on average, 2.11 mg Eq./g fw. Multivariate statistics (HCA, PCA and OPLS-DA) highlighted the main metabolomics differences among cultivars, which weakly correlated with their agronomic classification. The seven cultivars showed distinctive metabolomics profiles, with 'Opal' and 'Istar' being the most valuable hybrids. The 3-hydroxyphenyl-valeric acid (a medium-chain fatty acid) and the 6-Gingesulfonic acid (a methoxyphenol) were the most discriminant markers. Our findings illustrated the quantitative and qualitative variation of several classes of phytochemicals in seed-propagated artichoke cultivars and allowed identifying distinctive metabolic signatures for both phenolic compounds and sesquiterpene lactones. This work supports the exploitation of the artichoke leaves from hybrid cultivars as a rich source of bioactive phytochemicals.
- Published
- 2020
20. Lo sconto bancario
- Author
-
Antonucci, A, Appio C L, Bonfatti, S, Brozzetti, A, Camardi, C., Caputo Nassetti, F, Cardarelli, M C, Chessa, C, Corrias, P, Corvese, C G, De Angelis, L, Demuro, I, Desiderio, G, Di Brina, L, Inzitari, B, Lacaita, L, Lanotte, M, Lemma, V, Lener, R, Lucantoni, P, Manente, D, Martina, G, Moliterni, F, Motti, C, Nervi, A, Paracompo, M T, Pellegrini, M, Pistritto, M, Rispoli Farina, M, Russo, B, Sabbatelli, I, Sacco Ginevri, A, Sartori, F, Senigaglia, R, Sepe, M, Sicchiero, G, Sirena, P, Tola, M, Urbani, A, Alberto Urbani, Demuro, Ivan, Demuro, I (ORCID:0000-0002-7471-1353), Antonucci, A, Appio C L, Bonfatti, S, Brozzetti, A, Camardi, C., Caputo Nassetti, F, Cardarelli, M C, Chessa, C, Corrias, P, Corvese, C G, De Angelis, L, Demuro, I, Desiderio, G, Di Brina, L, Inzitari, B, Lacaita, L, Lanotte, M, Lemma, V, Lener, R, Lucantoni, P, Manente, D, Martina, G, Moliterni, F, Motti, C, Nervi, A, Paracompo, M T, Pellegrini, M, Pistritto, M, Rispoli Farina, M, Russo, B, Sabbatelli, I, Sacco Ginevri, A, Sartori, F, Senigaglia, R, Sepe, M, Sicchiero, G, Sirena, P, Tola, M, Urbani, A, Alberto Urbani, Demuro, Ivan, and Demuro, I (ORCID:0000-0002-7471-1353)
- Abstract
Si analizza la disciplina del contratto di sconto bancario in tutti i suoi elementi costitutivi dando atto delle applicazioni nell'attività commerciale
- Published
- 2020
21. Plant biostimulants: new tool for enhancing agronomic performance and fruit quality of cucurbits
- Author
-
Colla, G., primary, Cardarelli, M., additional, and Rouphael, Y., additional
- Published
- 2020
- Full Text
- View/download PDF
22. Seed treatment with endophytic fungi enhances yield and nutritional quality of seed-propagated artichokes
- Author
-
Cardarelli, M., primary, Rouphael, Y., additional, De Pascale, S., additional, Bonini, P., additional, and Colla, G., additional
- Published
- 2020
- Full Text
- View/download PDF
23. Effectiveness of Trichoderma application through drip-irrigation to reduce Sclerotinia disease incidence and improve the growth performance of greenhouse lettuce
- Author
-
Bonini, P., primary, Rouphael, Y., additional, Cardarelli, M., additional, Ceccarelli, A.V., additional, and Colla, G., additional
- Published
- 2020
- Full Text
- View/download PDF
24. Implications of microbial and non-microbial biostimulatory action on the quality of leafy and fruit vegetables
- Author
-
Rouphael, Y., primary, Cardarelli, M., additional, Bonini, P., additional, De Pascale, S., additional, and Colla, G., additional
- Published
- 2020
- Full Text
- View/download PDF
25. Endophytic fungi induce salt stress tolerance in greenhouse-grown basil
- Author
-
Rouphael, Y., primary, Colla, G., additional, Giordano, M., additional, Raimondi, G., additional, Pannico, A., additional, Di Stasio, E., additional, Cardarelli, M., additional, Bonini, P., additional, and De Pascale, S., additional
- Published
- 2020
- Full Text
- View/download PDF
26. Propagazione delle specie orticole
- Author
-
Mensuali-Sodi, A., Benvenuti, S., Cardarelli, M., Colla, G., D’Anna, F., Gallitelli, D., Gianquinto, G., Leonardi, C., Lucchesini, M., Moncada, A., Pardossi, A., Rouphael, Y., Santamaria, P., A. Pardossi, G. Gianquinto, P. Santamaria, L. Incrocci, and Mensuali-Sodi A., Benvenuti S., Cardarelli M., Colla G., D’Anna F., Gallitelli D., Gianquinto G., Leonardi C., Lucchesini M., Moncada A., Pardossi A., Rouphael Y., Santamaria P.
- Subjects
Propagazione gamica, propagazione agamica, innesto erbaceo, micro-propagazione, vivaismo orticolo - Abstract
Nell’ambito dell’orticoltura, così come in generale in tutte le produzioni agrarie, la propagazione riveste un ruolo prioritario. Il suo scopo, infatti, è quello di fornire materiale vegetale per l’impianto delle colture: semi; piantine da seme (semenzali); organi sotterranei (tuberi, rizomi, bulbi); piante autoradicate (moltiplicazione per talea, margotta, propaggine); piante innestate; piante micro-propagate (da colture in vitro). Nel capitolo vengono approfondite tutte queste modalità di propagazione con approfondimenti su alcuni casi studio (carciofo, fragola, patata)
- Published
- 2018
27. Antimitotic effects of usnic acid on different biological systems
- Author
-
Cardarelli, M., Serino, G., Campanella, L., Ercole, P., De Cicco Nardone, F., Alesiani, O., and Rossiello, F.
- Published
- 1997
- Full Text
- View/download PDF
28. rol genes of Agrobacterium rhizogenes cucumopine strain: sequence, effects and pattern of expression
- Author
-
Serino, G., Clerot, D., Brevet, J., Costantino, P., and Cardarelli, M.
- Published
- 1994
- Full Text
- View/download PDF
29. Bacterial plant oncogenes: Therol genes' saga
- Author
-
Costantino, P., Capone, I., Cardarelli, M., De Paolis, A., Mauro, M. L., and Trovato, M.
- Published
- 1994
- Full Text
- View/download PDF
30. A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability
- Author
-
Paul, K., Sorrentino, M., Lucini, Luigi, Rouphael, Y., Cardarelli, M., Bonini, P., Miras Moreno, Maria Begona, Reynaud, H., Canaguier, R., Trtilek, M., Panzarova, K., Colla, G., Lucini L. (ORCID:0000-0002-5133-9464), Miras Moreno M. B. (ORCID:0000-0002-5931-355X), Paul, K., Sorrentino, M., Lucini, Luigi, Rouphael, Y., Cardarelli, M., Bonini, P., Miras Moreno, Maria Begona, Reynaud, H., Canaguier, R., Trtilek, M., Panzarova, K., Colla, G., Lucini L. (ORCID:0000-0002-5133-9464), and Miras Moreno M. B. (ORCID:0000-0002-5931-355X)
- Abstract
Plant-derived protein hydrolysates (PHs) are an important category of biostimulants able to increase plant growth and crop yield especially under environmental stress conditions. PHs can be applied as foliar spray or soil drench. Foliar spray is generally applied to achieve a relatively short-term response, whereas soil drench is used when a long-term effect is desired. The aim of the study was to elucidate the biostimulant action of PH application method (foliar spray or substrate drench) on morpho-physiological traits and metabolic profile of tomato grown under limited water availability. An untreated control was also included. A high-throughput image-based phenotyping (HTP) approach was used to non-destructively monitor the crop response under limited water availability (40% of container capacity) in a controlled environment. Moreover, metabolic profile of leaves was determined at the end of the trial. Dry biomass of shoots at the end of the trial was significantly correlated with number of green pixels (R2 = 0.90) and projected shoot area, respectively. Both drench and foliar treatments had a positive impact on the digital biomass compared to control while the photosynthetic performance of the plants was slightly influenced by treatments. Overall drench application under limited water availability more positively influenced biomass accumulation and metabolic profile than foliar application. Significantly higher transpiration use efficiency was observed with PH-drench applications indicating better stomatal conductance. The mass-spectrometry based metabolomic analysis allowed the identification of distinct biochemical signatures in PH-treated plants. Metabolomic changes involved a wide and organized range of biochemical processes that included, among others, phytohormones (notably a decrease in cytokinins and an accumulation of salicylates) and lipids (including membrane lipids, sterols, and terpenes). From a general perspective, treated tomato plants exhibited a
- Published
- 2019
31. Different promoter regions control level and tissue specificity of expression of Agrobacterium rhizogenes rolB gene in plants
- Author
-
Capone, I., Cardarelli, M., Mariotti, D., Pomponi, M., De Paolis, A., and Costantino, P.
- Published
- 1991
- Full Text
- View/download PDF
32. The non-conserved region of cucumopine-type Agrobacterium rhizogenes T-DNA is responsible for hairy root induction
- Author
-
Failla, M. C., Maimone, F., De Paolis, A., Costantino, P., and Cardarelli, M.
- Published
- 1990
- Full Text
- View/download PDF
33. An auxin switch for male fertility
- Author
-
Cardarelli M. and Costantino P.
- Subjects
arabidopsis ,JASMONIC ACID BIOSYNTHESIS ,ANTHER DEHISCENCE ,rice ,auxin ,gene ,male fertility - Abstract
In autogamous plants, self-pollination is ensured by a timely opening of anthers (dehiscence) and release of mature pollen grains. Auxin plays a paramount role in controlling the correct timing of anther dehiscence. Now, a molecular switch that allows the timely change in auxin level in rice anthers has been unveiled.
- Published
- 2018
34. Artichoke transplant production: effects of nutrient solution delivery and leaf clipping
- Author
-
Colla, G., primary, Cardarelli, M., additional, Stefanoni, W., additional, Fiorillo, A., additional, Bernabei, G., additional, Kyriacou, M.C., additional, and Rouphael, Y., additional
- Published
- 2019
- Full Text
- View/download PDF
35. Biostimolanti microbici, un aiuto alla crescita delle piante
- Author
-
Cardarelli, M, Ruzzi, M, Giovannetti, M, Colla, G., ROUPHAEL, YOUSSEF, Cardarelli, M, Rouphael, Youssef, Ruzzi, M, Giovannetti, M, and Colla, G.
- Published
- 2016
36. Coveron is an advances seed coating product able to improve yield and environmental stress tolerance in wheat
- Author
-
Cardarelli, M., Y, ., Bonini, P, ., Colla, ROUPHAEL, YOUSSEF, P. Brown, S. Muhammad, Cardarelli, M., Rouphael, Youssef, Y, ., Bonini, P, ., and Colla
- Published
- 2015
37. Influence of ozone treatments on in vitro propagation ofLiliumin bioreactor
- Author
-
Cardarelli, M., primary and Cardona Suárez, C.M., additional
- Published
- 2017
- Full Text
- View/download PDF
38. In vitro culture ofAloe arborescensshoots using light-emitting diodes
- Author
-
Cardarelli, M., primary and Pizzinelli, V., additional
- Published
- 2017
- Full Text
- View/download PDF
39. Grafting an effective tool for abiotic stress alleviation in vegetables
- Author
-
Colla G., Pradeep K., Cardarelli M., ROUPHAEL, YOUSSEF, Colla, G., Pradeep, K., Cardarelli, M., and Rouphael, Youssef
- Abstract
Grafting of vegetable is a unique horticultural technology practiced for many years in East Asia to overcome issues associated with intensive cultivation using limited arable land. This technology was introduced to Europe and other countries in the late 20th century along with improved grafting methods suitable for commercial production of grafted vegetable. Later, grafting was introduced to North America from Europe and it is now attracting growing interest worldwide, both from greenhouse and open field growers. Vegetable crops are often exposed to abiotic stresses in the root zone (e.g. salinity, drought, alkalinity and heavy metals contamination) limiting crop productivity in many parts of the world. One way to avoid or reduce losses in production caused by adverse soil chemical conditions in vegetables crops in particular Solanaceous crops (tomato, eggplant, and pepper) and Cucurbits (watermelon, melon and cucumber) would be to graft them onto rootstocks capable of reducing the effect of external stresses on the shoot. This review gives an actual overview how grafting can alleviate the adverse effects of the main abiotic stresses on vegetable’s crop performance at agronomical level. The paper will also focus on the additional improvement of abiotic stresses tolerance through integration of vegetable grafting with other control strategies such as inoculation with arbuscular mycorrhizal fungi and fertilization.
- Published
- 2013
40. ABCB1 and ABCB19 have synergistic effects on auxin transport during tapetum development, endothecium lignification and pollen maturation in Arabidopsis stamens
- Author
-
Cecchetti V., Brunetti P., Napoli N., Fattorini L., Altamura M.M., Costantino P., and Cardarelli M.
- Subjects
endothecium lignification ,tapetum differentiation ,Anther development ,Arabidopsis ,auxin transport ,food and beverages - Abstract
Arabidopsis abcb1 abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcb1 and abcb19 single mutant flowers. We found that pollen maturation and anther dehiscence are precocious in the abcb1 but not in the abcb19 mutant. Accordingly, endothecium lignification is altered only in abcb1 anthers. Both abcb1 and abcb1 abcb19 stamens also show altered early development, with asynchronous anther locules and a multilayer tapetum. DAPI staining showed that the timing of meiosis is asynchronous in abcb1 abcb19 anther locules, while only a small percentage of pollen grains are nonviable according to Alexander's staining. In agreement, TAM (TARDY ASYNCHRONOUS MEIOSIS), as well as BAM2 (BARELY ANY MERISTEM)--involved in tapetal cell development--are overexpressed in abcb1 abcb19 young flower buds. Correspondingly, ABCB1 and ABCB19 mRNA localization supports the observed phenotypes of abcb1 and abcb1 abcb19 mutant anthers. In conclusion, we provide evidence that auxin transport plays a significant role both in early and late stamen development: ABCB1 plays a major role during anther development, while ABCB19 has a synergistic role.
- Published
- 2015
41. ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development
- Author
-
Cecchetti V., Brunetti P., Napoli N., Fattorini L., Altamura M.M., Costantino P., and Cardarelli M.
- Subjects
food and beverages ,Anther development ,Arabidopsis ,auxin transport ,endothecium lignification ,tapetum differentiation - Abstract
Arabidopsis abcb1 abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcb1 and abcb19 single mutant flowers. We found that pollen maturation and anther dehiscence are precocious in the abcb1 but not in the abcb19 mutant. Accordingly, endothecium lignification is altered only in abcb1 anthers. Both abcb1 and abcb1 abcb19 stamens also show altered early development, with asynchronous anther locules and a multilayer tapetum. DAPI staining showed that the timing of meiosis is asynchronous in abcb1 abcb19 anther locules, while only a small percentage of pollen grains are non-viable according to Alexander's staining. In agreement, TAM (TARDY ASYNCHRONOUS MEIOSIS), as well as BAM2 (BARELY ANY MERISTEM)-involved in tapetal cell development-are overexpressed in abcb1 abcb19 young flower buds. Correspondingly, ABCB1 and ABCB19 mRNA localization supports the observed phenotypes of abcb1 and abcb1 abcb19 mutant anthers. In conclusion, we provide evidence that auxin transport plays a significant role both in early and late stamen development: ABCB1 plays a major role during anther development, while ABCB19 has a synergistic role.
- Published
- 2015
42. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot
- Author
-
Pomponi, M, Censi, V, Girolamo, Di, V, Paolis, De, A, SANITA DI TOPPI, Aromolo, L, R, Costantino, Paolo, and Cardarelli, M.
- Subjects
Agrobacterium ,Nicotiana tabacum ,Arabidopsis ,Chromosomal translocation ,Plant Science ,Plant Roots ,tobacco ,chemistry.chemical_compound ,Bacterial Proteins ,Gene Expression Regulation, Plant ,Botany ,Phytochelatins ,Genetics ,Cloning, Molecular ,Cd accumulation ,glutathione ,Heavy metal detoxification ,Cd tolerance ,PCS1 overexpression ,biology ,Arabidopsis Proteins ,beta-Glucosidase ,fungi ,food and beverages ,Biological Transport ,Glutathione ,Aminoacyltransferases ,Plants, Genetically Modified ,biology.organism_classification ,Culture Media ,Biochemistry ,chemistry ,Shoot ,Plant Shoots ,Solanaceae ,Cadmium - Abstract
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.
- Published
- 2005
43. Production of high-quality aloe plantlets through tissue culture
- Author
-
Cardarelli M., Borgognone D., Colla G., ROUPHAEL, YOUSSEF, Cardarelli, M., Borgognone, D., Rouphael, Youssef, and Colla, G.
- Abstract
The objective of the current work was to evaluate the possibility to improve the growth and quality of micropropagated shoots of Aloe barbadensis Miller through the addition of charcoal to the rooting substrate. Single shoots were multiplied in 45 days using a substrate containing agar, MS salts, sucrose 3%, BA 1 mg L-1, and IAA 0.2 mg L-1; shoots were then transferred for 20 and 40 days in a solid substrate containing half-strength MS salts, and sucrose 3% with or without the addition of charcoal at the concentration of 1%. After this period, shoots were transferred in greenhouse for acclimatization using a substrate containing peat:perlite (1:1 v/v). Growth parameters of shoots and their content of total chlorophyll and carotenoids were analyzed at the end of 20 and 40 days of in vitro culture and after 50 days of acclimatization. The height, fresh weight and root number of shoots were highest in the substrate containing charcoal after 40 days of in vitro culture. The content of total chlorophyll and carotenoids in shoots were highest without the addition of charcoal to the substrate and after 40 days of in vitro culture. The positive effects of charcoal on growth parameters of shoots persisted into the next phase of acclimatization while the content of total chlorophyll and carotenoids in shoots decreased.
- Published
- 2012
44. Vegetable quality as affected by genetic, agronomic and environmental factors
- Author
-
Rouphael, Y., Cardarelli, M., Bassal, A., Leonardi, Cherubino, Giuffrida, Francesco, Colla, G., Rouphael, Youssef, Cardarelli, M., Bassal, A., Leonardi, C., Giuffrida, F., and Colla, G.
- Abstract
Consumer interest in the quality of vegetable products has increased in recent years especially for the beneficial effects of vegetables on human health. Vegetable quality is a broad term and includes physical properties, flavor, and health–related compounds. The purpose of this paper is to review the recent literature of the main pre-harvest factors that can improve the quality of vegetables and consequently their beneficial role in human diet. The importance of genotype and grafted plants selection, the optimization of the environmental conditions (light and temperature) and the advantages and disadvantages of greenhouse in comparison to open field cultivation concerning product quality will be outlined first; followed by the optimization of agricultural practices in particular, water quantity and quality, mineral nutrition, salinity and growing system (e.g. soilless). The review will conclude by identifying several prospects for future research such as modeling of the nutritional value of vegetable crops.
- Published
- 2012
45. L’emploi de mycorhizes en cultures maraîchères pour une meilleure résistance aux stress biotiques et abiotiques
- Author
-
Colla G., Cardarelli M., Crinò P., Rea E., Planques B., ROUPHAEL, YOUSSEF, INRA, Colla, G., Rouphael, Youssef, Cardarelli, M., Crinò, P., Rea, E., and Planques, B.
- Abstract
Les cultures maraîchères sont souvent cultivées dans des conditions défavorables à cause des stress abiotiques (e.g. salinité, sécheresse, alcalinité) et biotiques fréquemment rencontrés en culture protégée. Les plantes exposées à ces types de stress présentent divers troubles physiologiques et biochimiques conduisant à un retard de croissance et une perte sévère du rendement. Une façon d'éviter ou de réduire les pertes de production causées par les mauvaises conditions chimiques du sol ou à cause de stress biotiques dans les cultures maraîchères serait par l’association les champignons mycorhiziens à arbuscules capable de réduire les symptômes du stress en complément des mécanismes protecteurs intrinsèques de la plante. Trois expériences de culture en pot sous serre ont été conduites afin d'étudier La réponse des plantes mycorhizées (+MA) e non (-MA) sur la croissance, le rendement et la composition minerale de trois espèce de cucurbitacées: courgette (Cucurbita pepo L., expérience 1), concombre (Cucumis sativus L., expérience 2), et melon (Cucumis melo L.). La mycorhization des plantes a été réalisée en utilisant un inoculum commercial contenant Glomus intraradices et Glomus mosseae produites par Italpollina SpA. Dans l'expérience 1 ont été cultivés en pot avec deux niveaux de salinité (1 et 35 mM de chlorure de sodium), donnant des valeurs de conductivité électrique de 1,8 et 5,0 dS m-1. Dans l'expérience 2, les plantes ont également ont été cultivés en pot et fourni avec des solutions nutritives ayant deux niveaux de pH (6.0 ou 8.1). Le pH de la solution nutritive élevée a la même composition de base plus un montant additionnel de 10 mM NaHCO3 et 0,5 g L-1 de CaCO3. Dans l’expérience 3, les plantes de melon ont été cultivées aussi en pot sans et avec inoculation de Fusarium oxysporum f.sp. melonis race 1,2w. Dans les deux premières expériences, la croissance et le rendement de la courgette et le concombre a diminué à la fois chez les plantes avec et sans mycorhization, mais l'ampleur de la diminution due à la salinité et à l’alcalinité était plus élevé chez les plantes +MA que celles –MA. Les mécanismes impliqués dans la protection des plantes mycorhizées face au stress salin et alcalin seraient liés à des teneurs plus élevées en macro (K dans l'expérience 1, et P, K et Mg dans l'expérience 2) et micro éléments (Zn expérience 1, et plus Fe, Zn, Mn dans l'expérience 2) et donc une meilleure croissance que les plantes non mycorhizées. Les résultats de l’expérience 3 ont montré une augmentation de la tolérance plants mycorhizés à Fusarium oxysporum f.sp. melonis 1.2 et donc un retard dans l’apparition de symptômes.
- Published
- 2012
46. Substrate types affect growth, yield and mineral composition of cucumber and zucchini squash
- Author
-
Cardarelli M., Darwich S. Rea E., Fiorillo A., Colla G., ROUPHAEL, YOUSSEF, Cardarelli, M., Rouphael, Youssef, Darwich, S. Rea E., Fiorillo, A., and Colla, G.
- Abstract
The expansion of hydroponics in many countries of the world in the last few decades may be ascribed to the ability of soilless growing systems to avoid various problems arising from the use of the soil. Cucumber (Cucumis sativus L.) and zucchini (Cucurbita pepo L.) plants were grown in closed-soilless culture under unheated-greenhouse conditions at the experimental farm of University of Tuscia, Central Italy to evaluate the effects of four substrates (rockwool, pumice, perlite, and cocofiber) on growth, yield and plant mineral composition. For both cultures, plants grown in cocofiber, perlite and pumice yielded more than those grown in rockwool. The better temperature regime in cocofiber, perlite and pumice was due to the greater thermal inertia compared to rockwool slabs. The concentration of N in zucchini and cucumber leaves was significantly higher in cocofiber, perlite and pumice in comparison to the rockwool treatment. The concentration of K was significantly affected by the substrate only for the zucchini squash with the highest value recorded on the organic substrate (cocofiber), whereas the Ca concentration was significantly influenced by the growing media only for cucumber with the highest value observed on pumice. Finally, the lowest Mg concentration in leaf tissue was observed on plants grown with the rockwool substrate for both zucchini squash and cucumber. We can conclude that cocofiber, perlite and pumice are suitable for zucchini and cucumber production in closed soilless system, whereas the use of rockwool is more suitable for crops grown under heated greenhouse conditions.
- Published
- 2012
47. La qualità dei prodotti orticoli freschi: influenza dei fattori in pre-raccolta
- Author
-
ROUPHAEL, YOUSSEF, Cardarelli M., Giuffrida F., Rouphael, Youssef, Cardarelli, M., and Giuffrida, F.
- Abstract
Consumer interest in the quality of vegetable products has increased in recent years. Regular consumption of vegetables has been linked to a reduction of some diseases, since vegetable is a source of an array of phytochemicals, which are appreciated for their benef icial heal th ef fects. Vegetable quality is a complex issue with different means depending to the target customer group. Quality has both a product- and a consumer-dependent dimension. From the first perspective, quality attributes are inherent in a product and can be objectively quantified, whereas a consumer orientation, which defines quality in terms of user satisfaction, is much less tangible and less quantifiable concept. This review will be focused only on product-oriented quality and objective criteria for its evaluation. Standard for quality assessment of fresh vegetables are established in Europe and North and Central America. However, they take into consideration mostly external quality attributes (e.g. size, shape, color, absence of defects and decay, critical concentrations of pesticides and nitrate), whereas very important internal quality attributes such as texture, flavor and healthpromot ing compounds are not considered. Environmental conditions, crop management and physiological factors may modify the vegetable quality. The purpose of this paper is to review the recent literature dealing with the main pre-harvest factors that can modify the quality of vegetables and, in particular, the physical properties, flavor, and health–related compounds. First of all, the importance of the genotype and grafted plants selection, the optimization of the environmental conditions and the advantages and disadvantages of protected environments in comparison to open field cultivation concerning product quality will be outlined. Then, the effects of the optimization of agricultural practices, in particular water quantity and quality, mineral nutrition and growing systems (e.g. soilless culture), will be discussed. The review highlighted that vegetable quality is a product of the interaction of genetic, climatic, and cultural factors. Finding the best combinations of those factors to maximize vegetable quality according consumer demand will be a challenge. The use of novel cultural practices and development of new genetic lines to enhance the quality of vegetables are the main directions that research should take in the near future. Integrated quality production and management must be considered as a global target to reach.
- Published
- 2012
48. L'efficacité d'un engrais à base d'acides aminés végéteaux pour améliorer les performances des cultures
- Author
-
Colla G., Cardarelli M., Svecova E., Rea E., Planques B., ROUPHAEL, YOUSSEF, Matthieu VEZOLLES, Colla, G., Rouphael, Youssef, Cardarelli, M., Svecova, E., Rea, E., and Planques, B.
- Abstract
Les produits à base d'acides aminés ont été utilisés par les agriculteurs depuis plus de trois décennies en raison de leur nombreux effets bénéfiques sur la croissance et rendement des cultures agricoles. Les acides aminés peuvent être d'origine végétale ou animale. Les acides aminés d'origine végétale, grâce à leurs caractéristiques biochimiques, sont plus facilement absorbés par les plantes par rapport à ceux d'origine animale, Ils ont également une plus grande efficacité nutritionnelle. En outre, grâce à l'origine exclusivement végétale les engrais foliaires ne contiennent pas de résidus d'antibiotiques, ou tous autres contaminants. De nombreux résultats de recherche démontrent clairement les effets positifs de la fertilisation foliaire avec des acides aminés d'origine végétale sur les produits horticoles tels que: amélioration de l'absorption des éléments nutritifs et de l'efficience de l'utilisation des nutriments; meilleure résistance aux stress biotiques et abiotiques; et l'amélioration de la qualité du produit horticole. Deux expériences sous serre ont été conduites afin d'étudier l'efficacité d'un engrais à base d'acides aminés (TRAINER, Italpolina S.P.A) sur la croissance et le développent du mais (Zea mays L., expérience 1) et de la laitue (Lactuca sativa L., expérience 2). Dans l'expérience 1, les plantes ont été cultivés en pot avec quatre concertations du produit Trainer: 0 - 0,25 - 0.5 et 2.5 ml/L. Dans l'expérience 2, les plantes ont été cultivés dans des bacs et fourni avec deux solutions nutritives (Standard et Réduite à 10%) recevant deux concentrations du produit Trainer (0 et 2,5 ml/L). Dans la première expérience, les trois concentrations testées ont montré une croissance plus élevée de la partie aérienne (hauteur de la tige et la biomasse aérienne sèche) par rapport au témoin. En outre, l'augmentation de la concentration du produit a montré une augmentation de la teneur en chlorophylle (indice SPAD) et de la concentration de l'azote dans les feuilles indiquant le rôle bénéfique du produit dans la nutrition des plantes horticoles. Dans l'expérience 2, l'application foliaire du produit Trainer d'une façon hebdomadaire avec une concentration réduite de la solution nutritive a montré une augmentation de la production, de l'indice SPAD et de la concentration d'azote dans les feuilles de laitue par rapport aux plantes non traitées. Les résultats montrent un rôle positif de la nutrition foliaire avec Trainer dans des conditions de faible disponibilité des nutriments au niveau racinaire, indiquant que l'utilisation de ce produit peut être considéré comme un outil intéressant pour la production horticole durable.
- Published
- 2012
49. Protein hydrolysate-based biostimulants: origin, biological activity and application methods
- Author
-
Colla, G., Rouphael, Y., Lucini, Luigi, Canaguier, R., Stefanoni, W., Fiorillo, A., Cardarelli, M., Lucini, Luigi (ORCID:0000-0002-5133-9464), Colla, G., Rouphael, Y., Lucini, Luigi, Canaguier, R., Stefanoni, W., Fiorillo, A., Cardarelli, M., and Lucini, Luigi (ORCID:0000-0002-5133-9464)
- Abstract
Protein hydrolysates (PHs) is an important group of plant biostimulants defined as mixtures of polypeptides, oligopeptides and amino acids which are manufactured from protein sources using partial hydrolysis. PHs are generally applied as foliar sprays or near the roots. PHs are widely used in agricultural crops largely for improving plant nutrient uptake, growth, yield and fruit quality and also for their ameliorating effect on crop tolerance to abiotic stresses. In the current paper, we give an update of the chemical characteristics, the timing and frequency of PHs application, the effects of PHs on plant metabolism and physiology, the biostimulant activities on yield and product quality. We report several experimental data on the application of a commercial plant derived-protein hydrolysate ‘Trainer’ on agricultural crops grown under different environmental conditions.
- Published
- 2016
50. Agrobiologia e nuove tecnologie per i Sistemi Biorigenerativi nell’esplorazione spaziale: problematiche, prospettive e contributo della ricerca italiana
- Author
-
Colla G., Cardarelli M., Fortezza R., DE MICCO, VERONICA, ARONNE, GIOVANNA, DE PASCALE, STEFANIA, Colla, G., Cardarelli, M., DE MICCO, Veronica, Aronne, Giovanna, Fortezza, R., and DE PASCALE, Stefania
- Subjects
plant evolution ,hydroponic ,space ,altered gravity ,bioregenerative life support system - Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.