1. Graphene quantum dots modified electrodes as electrochemical sensing tool towards the detection of codeine in biological fluids and soft drinks.
- Author
-
Ferrer-Biechy L, Soriano ML, Lucena R, and Cárdenas S
- Subjects
- Humans, Limit of Detection, Graphite chemistry, Codeine analysis, Quantum Dots chemistry, Electrodes, Electrochemical Techniques methods, Electrochemical Techniques instrumentation, Carbonated Beverages analysis, Saliva chemistry
- Abstract
An electroanalytical method based on disposable screen-printed carbon electrodes modified with non-toxic carbonaceous nanodots is proposed as a reliable and effective device for codeine determination in biological fluids and soft drinks. Graphene quantum dots (GQDs), carbon quantum dots (CQDs) and carbon nanodots (CNDs) were evaluated as electrode modifiers for the determination of the drug. The electroactive areas of the modified electrodes were assessed by cyclic voltammetry using potassium ferricyanide. Results demonstrated that GQDs provided the best analytical response for codeine, displaying an intense and well-defined anodic wave approximately 0.9 V vs reference electrode. The method exhibits an acceptable linear dynamic range, low limits of detection and quantification (0.21 and 0.73 µM, respectively), and satisfactory precision (below 3.9% expressed as relative standard deviation (RSD)) in saliva. Only the analysis of biofluids requires a simple extraction protocol. The feasibility and applicability of this novel approach were assessed by determining codeine in different matrices, with recoveries ranging from 69 to 112%. This cost-effective, simple, easily miniaturised and portable method was applied not only to biofluids but also for the direct detection of codeine in soft drinks combined with a codeine-enriched syrup, a medication that is being used to adulterate beverages, particularly at specific events (drinking and nightclub parties). There is no need for any sample treatment, demonstrating its versatility in analysing beverages for potential adulteration as well., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF