9 results on '"Carafa, Michele Matteo Cosimo"'
Search Results
2. The European Fault-Source Model 2020 (EFSM20): geologic input data for the European Seismic Hazard Model 2020.
- Author
-
Basili, Roberto, Danciu, Laurentiu, Beauval, Céline, Sesetyan, Karin, Vilanova, Susana Pires, Adamia, Shota, Arroucau, Pierre, Atanackov, Jure, Baize, Stéphane, Canora, Carolina, Caputo, Riccardo, Carafa, Michele Matteo Cosimo, Cushing, Edward Marc, Custódio, Susana, Demircioglu Tumsa, Mine Betul, Duarte, João C., Ganas, Athanassios, García-Mayordomo, Julián, Gómez de la Peña, Laura, and Gràcia, Eulàlia
- Abstract
Earthquake hazard analyses rely on seismogenic source models. These are designed in various fashions, such as point sources or area sources, but the most effective is the three-dimensional representation of geological faults. We here refer to such models as fault sources. This study presents the European Fault-Source Model 2020 (EFSM20), which was one of the primary input datasets of the recently released European Seismic Hazard Model 2020. The EFSM20 compilation was entirely based on reusable data from existing active fault regional compilations that were first blended and harmonized and then augmented by a set of derived parameters. These additional parameters were devised to enable users to formulate earthquake rate forecasts based on a seismic-moment balancing approach. EFSM20 considers two main categories of seismogenic faults: crustal faults and subduction systems, which include the subduction interface and intraslab faults. The compiled dataset covers an area from the Mid-Atlantic Ridge to the Caucasus and from northern Africa to Iceland. It includes 1248 crustal faults spanning a total length of ∼95100 km and four subduction systems, namely the Gibraltar, Calabrian, Hellenic, and Cyprus arcs, for a total length of ∼2120 km. The model focuses on an area encompassing a buffer of 300 km around all European countries (except for Overseas Countries and Territories) and a maximum of 300 km depth for the subducting slabs. All the parameters required to develop a seismic source model for earthquake hazard analysis were determined for crustal faults and subduction systems. A statistical distribution of relevant seismotectonic parameters, such as faulting mechanisms, slip rates, moment rates, and prospective maximum magnitudes, is presented and discussed to address unsettled points in view of future updates and improvements. The dataset, identified by the DOI https://doi.org/10.13127/efsm20 (Basili et al., 2022), is distributed as machine-readable files using open standards (Open Geospatial Consortium). [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. ShellSet v1.1.0 – Parallel Dynamic Neotectonic Modelling: A case study using Earth5-049
- Author
-
May, Jon Bryan, Bird, Peter, and Carafa, Michele Matteo Cosimo
- Abstract
We present a parallel combination of existing, well known, and robust software used in modelling the neotectonics of planetary lithosphere, which we call ShellSet. The added parallel framework allows multiple models to be run at the same time and with varied input parameters. Additionally, we have added a grid search option to automatically generate models within a given parameter space. ShellSet offers significant advantages over the original programs through its simplicity, efficiency, and speed. We demonstrate the speedup obtained by ShellSet's parallel framework by presenting timing information for a parallel grid search, varying the number of threads and models, on a typical computer. A possible use case for ShellSet is shown using two examples in which we improve upon an existing global model. Initially we improve the model using the same data before further improving the model through the addition of a new scoring data set.
- Published
- 2023
4. Insights on the European Fault-Source Model (EFSM20) as input to the 2020 update of the European Seismic Hazard Model (ESHM20)
- Author
-
European Commission, Basili, Roberto, Danciu, Laurentiu, Carafa, Michele Matteo Cosimo, Kastelic, Vanja, Maesano, Francesco, Tiberti, Mara Monica, Vallone, Roberto, Gràcia, Eulàlia, Sesetyan, Karin, Atanackov, Jure, Sket-Motnikar, Barbara, Zupančič, Polona, Vanneste, Kris, Vilanova, Susana P., European Commission, Basili, Roberto, Danciu, Laurentiu, Carafa, Michele Matteo Cosimo, Kastelic, Vanja, Maesano, Francesco, Tiberti, Mara Monica, Vallone, Roberto, Gràcia, Eulàlia, Sesetyan, Karin, Atanackov, Jure, Sket-Motnikar, Barbara, Zupančič, Polona, Vanneste, Kris, and Vilanova, Susana P.
- Abstract
The H2020 Project SERA (WP25-JRA3; http://www.sera-eu.org) is committed to updating and extending the 2013 European Seismic Hazard Model (ESHM13; Woessner et al., 2015, Bull. Earthquake Eng.) to form the basis of the next revision of the European seismic design code (CEN-EC8). Following the probabilistic framework established for ESHM13, the 2020 update (ESHM20) requires a continent-wide seismogenic model based on input from earthquake catalogs, tectonic information, and active faulting. The development of the European Fault-Source Model (EFSM20) fulfills the requirements related to active faulting. EFSM20 has two main categories of seismogenic faults: crustal faults and subduction systems. Crustal faults are meant to provide the hazard model with seismicity rates in a variety of tectonic contexts, including onshore and offshore active plate margins and plate interiors. Subduction systems are meant to provide the hazard model with both slab interface and intraslab seismicity rates. The model covers an area that encompasses a buffer of 300 km around all target European countries (except for Overseas Countries and Territories, OTCs), and a maximum of 300 km depth for slabs. The compilation of EFSM20 relies heavily on publicly available datasets and voluntarily contributed datasets spanning large regions, as well as solicited local contributions in specific areas of interest. The current status of the EFSM20 compilation includes 1,256 records of crustal faults for a total length of ~92,906 km and four subduction systems, namely the Gibraltar Arc, Calabrian Arc, Hellenic Arc, and Cyprus Arc. In this contribution, we present the curation of the main datasets and their associated information, the criteria for the prioritization and harmonization across the region, and the main strategy for transferring the earthquake fault-source input to the hazard modelers. The final version of EFSM20 will be made available through standard web services published in the EFEHR (http://ww
- Published
- 2020
5. Insights on the European Fault-Source Model (EFSM20) as input to the 2020 update of the European Seismic Hazard Model (ESHM20)
- Author
-
Basili, Roberto, primary, Danciu, Laurentiu, additional, Carafa, Michele Matteo Cosimo, additional, Kastelic, Vanja, additional, Maesano, Francesco Emanuele, additional, Tiberti, Mara Monica, additional, Vallone, Roberto, additional, Gracia, Eulalia, additional, Sesetyan, Karin, additional, Atanackov, Jure, additional, Sket-Motnikar, Barbara, additional, Zupančič, Polona, additional, Vanneste, Kris, additional, and Vilanova, Susana, additional
- Published
- 2020
- Full Text
- View/download PDF
6. Utilizzo della fotogrammetria SfM terrestre per il monitoraggio dei versanti: considerazioni sulle precisioni per applicazioni a lunga distanza
- Author
-
Pesci, Arianna, Kastelic, Vanja, Teza, Giordano, Carafa, Michele Matteo Cosimo, Burrato, Pierfrancesco, and Basili, Roberto
- Abstract
La fotogrammetria digitale Structure-from-Motion (SfM) oggi è molto utilizzata poiché permette di ottenere modelli digitali completi e ad alta precisione con operazioni semplici tanto nella fase di misura, attuata mediante una normale fotocamera ed eventualmente basata su una rete di appoggio topografico, quanto in quella di analisi dati. Si tratta di una tecnologia versatile che risulta utile sia in ambito topografico/geomorfologico [Westoby et al., 2012], sia in ambito architettonico [Teza et al., 2016]. In questo lavoro sono presentati i risultati di una campagna di misura esclusivamente terrestre, quindi realizzata senza l’ausilio di sistemi aerei quali droni, finalizzata al rilievo di un versante in zona aquilana. Lo scopo è quello di capire se sia possibile o meno realizzare monitoraggi del terreno realmente utili per misurare variazioni morfologiche mediante comparazione di modelli multitemporali ottenuti con procedure di acquisizione dati a basso costo. Tali procedure sono caratterizzate da una logistica di lavoro semplice e indipendente, senza l’uso di punti di controllo a terra (Ground Control Points, GCPs), tenendo ben presente il fatto che, in condizioni di emergenza, un rilievo terrestre è fortemente vincolato alla accessibilità delle aree su cui è possibile camminare ed alla visuale spesso ostruita dalla presenza di vegetazione. Si sottolinea pertanto che la valenza del lavoro si riferisce essenzialmente al monitoraggio rapido e in presenza di fattori ostativi all’uso di GCPs, anche se alcuni dei risultati ottenuti riguardo alla risoluzione e alla scelta di una particolare fotocamera rispetto ad un’altra hanno validità generale. È infatti di particolare interesse comprendere quale sia la risoluzione spaziale realmente ottenibile, la quale dipende dall’ottica della camera utilizzata per gli scatti e dalla distanza di lavoro, ma anche dalla copertura raggiungibile da osservazioni terrestri. È chiaro che, nel quadro di un monitoraggio libero e a basso costo, si tratta altresì di valutare le prestazioni, in termini di bontà dei modelli fotogrammetrici ottenuti, di fotocamere di fascia medio-alta ma non necessariamente di tipo professionale. Si parla cioè di apparecchi acquistabili con cifre contenute in alcune centinaia di euro e non migliaia. Per questo lavoro sono state utilizzate due fotocamere digitali di produzione Nikon: la D3300 e la Coolpix P520. Inoltre, per avere un riferimento stabile e preciso per scopi di confronto e validazione dei risultati, è stato utilizzato un laser scanner terrestre (TLS) long range Optech ILRIS-ER [Optech, 2017]. Il presente lavoro si aggiunge, completandole, alle esperienze precedenti condotte presso la sezione di Bologna dell’INGV e inerenti al confronto SfM e TLS [Pesci et al., 2015; Teza et al., 2016], all’ottimizzazione del numero di scatti fotografici [Pesci e Teza, 2016], alla valutazione della risoluzione del modello fotogrammetrico in funzione del pixel a terra [Pesci et al., 2016a] e alla valutazione dei risultati ottenibili con fotocamere diverse ma compatibili [Pesci et al., 2016b].
- Published
- 2018
- Full Text
- View/download PDF
7. Populating the SEISMOFAULTS.EU repository: recent developments in the making of the European Fault-Source Model 2020 (EFSM20).
- Author
-
Vallone, Roberto, Basili, Roberto, Carafa, Michele Matteo Cosimo, Kastelic, Vanja, Maesano, Francesco Emanuele, Tarabusi, Gabriele, and Tiberti, Mara Monica
- Published
- 2019
8. Fossil landscapes and youthful seismogenic sources in the central Apennines: excerpts from the 24 August 2016, Amatrice earthquake and seismic hazard implications
- Author
-
Pierfrancesco Burrato, Michele M. C. Carafa, Roberto Basili, Paola Vannoli, Mara Monica Tiberti, Lorenzo Bonini, Francesco Emanuele Maesano, Umberto Fracassi, Gianluca Valensise, Gabriele Tarabusi, Vanja Kastelic, Valensise, Gianluca, Vannoli, Paola, Basili, Roberto, Bonini, Lorenzo, Burrato, Pierfrancesco, Carafa, Michele Matteo Cosimo, Fracassi, Umberto, Kastelic, Vanja, Maesano, Francesco Emanuele, Tiberti, Mara Monica, and Tarabusi, Gabriele
- Subjects
021110 strategic, defence & security studies ,2016 Amatrice earthquake, normal faulting, blind faulting, SAR interferometry, seismic hazard ,lcsh:QC801-809 ,0211 other engineering and technologies ,02 engineering and technology ,Decoupling (cosmology) ,Active fault ,lcsh:QC851-999 ,010502 geochemistry & geophysics ,earthquake geology ,01 natural sciences ,lcsh:Geophysics. Cosmic physics ,Geophysics ,Seismic hazard ,Interferometric synthetic aperture radar ,Upper crust ,lcsh:Meteorology. Climatology ,Geophysic ,Seismology ,Geology ,0105 earth and related environmental sciences - Abstract
We show and discuss the similarities among the 2016 Amatrice (Mw 6.0), 1997 Colfiorito-Sellano (Mw 6.0-5.6) and 2009 L’Aquila (Mw 6.3) earthquakes. They all occurred along the crest of the central Apennines and were caused by shallow dipping faults between 3 and 10 km depth, as shown by their characteristic InSAR signature. We contend that these earthquakes delineate a seismogenic style that is characteristic of this portion of the central Apennines, where the upward propagation of seismogenic faults is hindered by the presence of pre-existing regional thrusts. This leads to an effective decoupling between the deeper seismogenic portion of the upper crust and its uppermost 3 km.The decoupling implies that active faults mapped at the surface do not connect with the seismogenic sources, and that their evolution may be controlled by passive readjustments to coseismic strains or even by purely gravitational motions. Seismic hazard analyses and estimates based on such faults should hence be considered with great caution as they may be all but representative of the true seismogenic potential.
- Published
- 2016
- Full Text
- View/download PDF
9. Imaging the tectonic framework of the 24 August 2016, amatrice (central Italy) earthquake sequence: New roles for old players?
- Author
-
Paola Vannoli, Michele M. C. Carafa, Gianluca Valensise, Lorenzo Bonini, Roberto Basili, Francesco Emanuele Maesano, Mara Monica Tiberti, Pierfrancesco Burrato, Umberto Fracassi, Gabriele Tarabusi, Vanja Kastelic, Bonini, Lorenzo, Maesano, Francesco Emanuele, Basili, Roberto, Burrato, Pierfrancesco, Carafa, Michele Matteo Cosimo, Fracassi, Umberto, Kastelic, Vanja, Tarabusi, Gabriele, Tiberti, Mara Monica, Vannoli, Paola, and Valensise, Gianluca
- Subjects
Extensional fault ,010504 meteorology & atmospheric sciences ,lcsh:QC801-809 ,Thrust ,lcsh:QC851-999 ,structural geology ,010502 geochemistry & geophysics ,Blind thrust earthquake ,01 natural sciences ,Amatrice earthquake ,Nappe ,Thrust tectonics ,Tectonics ,lcsh:Geophysics. Cosmic physics ,Geophysics, structural geology ,Geophysics ,Thrust fault ,lcsh:Meteorology. Climatology ,Seismology ,Geology ,Aftershock ,0105 earth and related environmental sciences - Abstract
We reconstruct the tectonic framework of the 24 August 2016, Amatrice earthquake. At least three main faults, including an older thrust fault (Sibillini Thrust), played an active role in the sequence. The mainshock nucleated and propagated along an extensional fault located in the footwall of the Sibillini Thrust, but due to the preliminary nature of the data the role of this thrust is still unclear. We illustrate two competing solutions: 1) the coseismic rupture started along an extensional fault and then partially used the thrust plane in extensional motion; 2) the thrust fault acted as an upper barrier to the propagation of the mainshock rupture, but was partially reactivated during the aftershock sequence. In both cases our tectonic reconstruction suggests an active role of the thrust fault, providing yet another example of how structures inherited from older tectonic phases may control the mainshock ruptures and the long-term evolution of younger seismogenic faults.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.