44 results on '"Capucine Sassoye"'
Search Results
2. Molten Salts‐Driven Discovery of a Polar Mixed‐Anion 3D framework at the nanoscale: Zn 4 Si 2 O 7 Cl 2 , Charge Transport and Photoelectrocatalytic Water Splitting
- Author
-
Ram Kumar, Yang Song, Anissa Ghoridi, Philippe Boullay, Gwenaelle Rousse, Christel Gervais, Cristina Coelho Diogo, Houria Kabbour, Capucine Sassoye, Patricia Beaunier, Victor Castaing, Bruno Viana, Maria Luisa Ruiz Gonzalez, José Gonzalez Calbet, Christel Laberty‐Robert, and David Portehault
- Subjects
General Chemistry ,General Medicine ,Catalysis - Published
- 2023
- Full Text
- View/download PDF
3. CO 2 Methanation over Cobalt Nanoparticles Embedded in ZIF‐L–Derived Porous Carbon
- Author
-
Nadia Gholampour, Yingrui Zhao, François Devred, Capucine Sassoye, Sandra Casale, Damien P. Debecker, and UCL - SST/IMCN/MOST - Molecular Chemistry, Materials and Catalysis
- Subjects
Inorganic Chemistry ,Organic Chemistry ,Physical and Theoretical Chemistry ,Catalysis - Abstract
Catalytic hydrogenation of CO2 into CH4 is an effective method to convert waste CO2 and green hydrogen into clean fuel on a large scale. However, the viability of such process largely relies on the development of highly active heterogeneous catalysts. Here, a tailored methanation catalyst, Co nanoparticles immobilized into a highly porous N-doped carbon matrix, is prepared by the carbonization of a cobalt-based layered zeolitic imidazolate framework (ZIF-L) material under an argon atmosphere. This catalyst displays a specific activity of 22.3 molCH4/gcat.min at 350°C, significantly outperforming a similar catalyst derived from the more conventional ZIF-67 (11.7 molCH4/gcat.min). This is explained by the stabilization of small Co nanoparticles (~20 nm) and by the presence of abundant medium-strength basic sites related to the nitrogen doping in the catalyst prepared from ZIF-L. Notably, the new catalyst shows high stability; no deactivation is observed up to 60 hours on stream.
- Published
- 2023
- Full Text
- View/download PDF
4. Pyrophosphate-stabilised amorphous calcium carbonate for bone substitution: toward a doping-dependent cluster-based model
- Author
-
Marion Merle, Jérémy Soulié, Capucine Sassoye, Pierre Roblin, Christian Rey, Christian Bonhomme, and Christèle Combes
- Subjects
General Materials Science ,General Chemistry ,Condensed Matter Physics - Abstract
Multiscale and multitool advanced characterisation of pyrophosphate-stabilised amorphous calcium carbonates allowed building a cluster-based model paving the way for tunable biomaterials.
- Published
- 2022
- Full Text
- View/download PDF
5. Heterogenized Molecular Rhodium Phosphine Catalyst within Metal-Organic Framework for Ethylene Hydroformylation
- Author
-
Partha Samanta, Albert Solé-Daura, Remy Rajapaksha, Florian M. Wisser, Frederic Meunier, Yves Schuurman, Capucine Sassoye, Caroline Mellot-Draznieks, and Jerome Canivet
- Abstract
Molecularly-defined organometallic rhodium phosphine complexes were efficiently heterogenized within a MOF structure without affecting neither their molecular nature nor their catalytic behavior. Phosphine-functionalized MOF-808 served as solid ligand in a series of eight rhodium phosphine catalysts. These MOF-heterogenized molecular catalysts showed activity up to 2100 h-1 for ethylene hydroformylation towards pro-pionaldehyde as sole carbon-containing product. Combined experimental and computational methods applied to this unique MOF-based molecular system allowed unravelling structure and evolution of the Rh active species within the MOF under catalytic conditions, in line with molecular mechanisms at play during the hydroformylation reaction. The MOF-808 designed as a porous crystalline macroligand for well-defined molecular catalysts allows benefiting from molecular-scale understanding of interactions and mechanisms as well as from stabilization through site-isolation and recycling ability.
- Published
- 2022
- Full Text
- View/download PDF
6. A Single Molecular Stoichiometric P‐Source for Phase‐Selective Synthesis of Crystalline and Amorphous Iron Phosphide Nanocatalysts
- Author
-
Rémi F. André, Grégoire Le Corre, Clément Sanchez, Marc Fontecave, David W. Wakerley, Mohamed Selmane, Hansjörg Grützmacher, Capucine Sassoye, Sophie Carenco, Victor Mougel, Sarah Lamaison, Florian D'Accriscio, Erik Schrader, Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Institut des matériaux de Paris-Centre (IMPC), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie des processus biologiques, Laboratoire de Chimie des Processus Biologiques (LCPB), and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Energy Engineering and Power Technology ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Nanomaterial-based catalyst ,0104 chemical sciences ,Amorphous solid ,Biomaterials ,chemistry.chemical_compound ,Iron phosphide ,Chemical engineering ,chemistry ,Phase (matter) ,Materials Chemistry ,[CHIM]Chemical Sciences ,Hydrogen evolution ,0210 nano-technology ,Stoichiometry ,Colloidal synthesis - Abstract
International audience; The formation of iron phosphide nanoparticles (FexP) is a well‐studied process. It usually uses air‐sensitive phosphorus precursors such as n‐trioctylphosphine or white phosphorus. In this study, we report the synthesis and characterization of a remarkably stable tetrakis(acyl)cyclotetraphosphane, P4(MesCO)4. We demonstrate that this compound can be used as a stoichiometric source of P(0) species in order to synthesize FeP and Fe2P nanoparticles at only 250 °C. This tunable process provides a route to monodisperse nanoparticles with different compositions and crystallinities. We combine X‐Ray photoelectron spectroscopy and atomic pair distribution function (PDF) to study the local order and bonding in the amorphous and crystalline materials. We show that crystalline FeP forms via an intermediate amorphous phase (obtained at a lower temperature) that presents local order similar to that of the crystalline sample. We explore their electrocatalytic properties for the hydrogen evolution reaction (HER) in acidic and neutral electrolytes. In both electrolytes, amorphous FeP is a more efficient catalyst than crystalline FeP, itself more efficient than crystalline Fe2P. Our study paves the way for a more systematic investigation of amorphous metal phosphide phases in electrocatalysis. It also shows the beneficial use of PDF on the highly challenging characterization of amorphous nanomaterials.
- Published
- 2020
- Full Text
- View/download PDF
7. Rhodium-based metal–organic polyhedra assemblies for selective CO2 photoreduction
- Author
-
Ashta C. Ghosh, Alexandre Legrand, Rémy Rajapaksha, Gavin A. Craig, Capucine Sassoye, Gábor Balázs, David Farrusseng, Shuhei Furukawa, Jérôme Canivet, and Florian M. Wisser
- Subjects
Colloid and Surface Chemistry ,QD ,General Chemistry ,Biochemistry ,Catalysis - Abstract
Heterogenization of molecular catalysts via their immobilization within extended structures often results in a lowering of their catalytic properties due to a change in their coordination sphere. Metal–organic polyhedra (MOP) are an emerging class of well-defined hybrid compounds with a high number of accessible metal sites organized around an inner cavity, making them appealing candidates for catalytic applications. Here, we demonstrate a design strategy that enhances the catalytic properties of dirhodium paddlewheels heterogenized within MOP (Rh-MOP) and their three-dimensional assembled supramolecular structures, which proved to be very efficient catalysts for the selective photochemical reduction of carbon dioxide to formic acid. Surprisingly, the catalytic activity per Rh atom is higher in the supramolecular structures than in its molecular sub-unit Rh-MOP or in the Rh-metal–organic framework (Rh-MOF) and yields turnover frequencies of up to 60 h–1 and production rates of approx. 76 mmole formic acid per gram of the catalyst per hour, unprecedented in heterogeneous photocatalysis. The enhanced catalytic activity is investigated by X-ray photoelectron spectroscopy and electrochemical characterization, showing that self-assembly into supramolecular polymers increases the electron density on the active site, making the overall reaction thermodynamically more favorable. The catalyst can be recycled without loss of activity and with no change of its molecular structure as shown by pair distribution function analysis. These results demonstrate the high potential of MOP as catalysts for the photoreduction of CO2 and open a new perspective for the electronic design of discrete molecular architectures with accessible metal sites for the production of solar fuels.
- Published
- 2022
8. Rhodium-Based Metal-Organic Polyhedra Assemblies for Selective CO
- Author
-
Ashta C, Ghosh, Alexandre, Legrand, Rémy, Rajapaksha, Gavin A, Craig, Capucine, Sassoye, Gábor, Balázs, David, Farrusseng, Shuhei, Furukawa, Jérôme, Canivet, and Florian M, Wisser
- Abstract
Heterogenization of molecular catalysts via their immobilization within extended structures often results in a lowering of their catalytic properties due to a change in their coordination sphere. Metal-organic polyhedra (MOP) are an emerging class of well-defined hybrid compounds with a high number of accessible metal sites organized around an inner cavity, making them appealing candidates for catalytic applications. Here, we demonstrate a design strategy that enhances the catalytic properties of dirhodium paddlewheels heterogenized within MOP (Rh-MOP) and their three-dimensional assembled supramolecular structures, which proved to be very efficient catalysts for the selective photochemical reduction of carbon dioxide to formic acid. Surprisingly, the catalytic activity per Rh atom is higher in the supramolecular structures than in its molecular sub-unit Rh-MOP or in the Rh-metal-organic framework (Rh-MOF) and yields turnover frequencies of up to 60 h
- Published
- 2022
9. Collagen suprafibrillar confinement drives the activity of acidic calcium-binding polymers on apatite mineralization
- Author
-
Fabrice Soncin, Thierry Azaïs, Jean-Yves Sire, Camila B. Tovani, Jérémie Silvent, Marc Robin, Sidney Delgado, Marie-Madeleine Giraud-Guille, Yan Wang, Nadine Nassif, Capucine Sassoye, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Systématique, Evolution, Biodiversité (ISYEB ), Muséum national d'Histoire naturelle (MNHN)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Mécanismes de tumorigenèse et thérapies ciblées, Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille, Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), NASSIF, Nadine, Matériaux Hybrides et Procédés (LCMCP-MHP ), Matériaux Hybrides et Nanomatériaux (LCMCP-MHN), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (LCMCP-SMiLES), Muséum national d'Histoire naturelle (MNHN)-École Pratique des Hautes Études (EPHE), and Novel Advanced Nano-Objects (LCMCP-NANO)
- Subjects
concentration ,mineral ,Polymers and Plastics ,Polymers ,[SDV]Life Sciences [q-bio] ,chemistry.chemical_element ,Bioengineering ,02 engineering and technology ,Calcium ,Matrix (biology) ,010402 general chemistry ,01 natural sciences ,Apatite ,Biomaterials ,Extracellular matrix ,biopolymer ,Apatites ,Materials Chemistry ,Dentin ,medicine ,[CHIM]Chemical Sciences ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Extracellular Matrix Proteins ,Chemistry ,Mineralization (soil science) ,self-assembly ,021001 nanoscience & nanotechnology ,DMP1 ,0104 chemical sciences ,medicine.anatomical_structure ,visual_art ,confinement ,visual_art.visual_art_medium ,Biophysics ,Collagen ,0210 nano-technology ,Biomineralization - Abstract
International audience; Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities. Here, we show that collagen suprafibrillar confinement in bone comprising intra- and interfibrillar spaces drives the activity of biomimetic acidic calcium-binding polymers on apatite mineralization. The difference in mineralization between an entrapping dentin matrix protein-1 (DMP1) recombinant peptide (rpDMP1) and the synthetic polyaspartate validates the specificity of the 57-KD fragment of DMP1 in the regulation of mineralization, but strikingly without phosphorylation. We show that all the identified functions of rpDMP1 are dedicated to preclude pathological mineralization. Interestingly, transient apatite phases are only found using a high nonphysiological concentration of additives. The possibility to combine biomimetic concentration of both collagen and additives ensures specific chemical interactions and offers perspectives for understanding the role of bone components in mineralization.
- Published
- 2021
- Full Text
- View/download PDF
10. One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming
- Author
-
Patricia Beaunier, Pascale Massiani, Maya Boutros, Anne Bleuzen, Nissrine El Hassan, Capucine Sassoye, Cyril Thomas, Walid Baaziz, Franck Launay, Antoine Miche, Mohamed Selmane, Ovidiu Ersen, Giulia Fornasieri, Oscar Daoura, Laboratoire de Réactivité de Surface (LRS), and Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Carbon dioxide reforming ,Process Chemistry and Technology ,Nanoparticle ,02 engineering and technology ,Mesoporous silica ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Dark field microscopy ,Catalysis ,0104 chemical sciences ,X-ray photoelectron spectroscopy ,Chemical engineering ,Transmission electron microscopy ,Scanning transmission electron microscopy ,[CHIM]Chemical Sciences ,0210 nano-technology ,Mesoporous material ,General Environmental Science - Abstract
International audience; Ni@SBA-15 monoliths with up to 5 wt.% of Ni were successfully synthetized by means of an original and easy one-pot sol-gel method. Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Temperature-Programmed Reduction (TPR), Pair Distribution Function (PDF) and X-Ray Diffraction (XRD) were used for the structural characterization of the samples. After H2-reduction, those solids exhibited small Ni 0 particles (between 1-3 nm) highly dispersed (one of the highest dispersion reported in the literature to date for 5 wt.% 2 Ni/Silica materials) in strong interaction with the silica support. Scanning Transmission Electron Microscopy in the High Angle Annular Dark Field (STEM/HAADF) mode, chemical mapping by Energy Dispersive X-Ray (EDX) spectroscopy and electron tomography in STEM-HAADF mode highlighted the presence of Ni particles homogeneously distributed, especially in the mesopores. Such confined Ni nanoparticles were shown to be very selective and stable in the dry reforming of methane.
- Published
- 2021
- Full Text
- View/download PDF
11. Structure-directing role of immobilized polyoxometalates in the synthesis of porphyrinic Zr-based metal–organic frameworks
- Author
-
Anne Dolbecq, Caroline Mellot-Draznieks, Marc Fontecave, Catherine Roch-Marchal, Mathis Duguet, Mohamed Haouas, Alex Lemarchand, Capucine Sassoye, Youven Benseghir, Pierre Mialane, Maria Gómez-Mingot, Chaire Chimie des processus biologiques, Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Lavoisier de Versailles (ILV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), and Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,010405 organic chemistry ,Metals and Alloys ,Structural integrity ,General Chemistry ,010402 general chemistry ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Chemical engineering ,Polyoxometalate ,Materials Chemistry ,Ceramics and Composites ,[CHIM]Chemical Sciences ,Metal-organic framework ,Topology (chemistry) - Abstract
International audience; We evidence the structure-directing role of the PW12O403-polyoxometalate in the synthesis of porphyrinicMOFswhereby it promotes the formation of the kinetic topology. Its immobilization into the MOF is successfully achieved at high temperature yielding the kinetic MOF-525/PCN-224 phases, while prohibiting the formation of the thermodynamic MOF-545 product. A combined experimental and theoretical approach uses differential PDF and DFT calculations along with solid-state NMRto show the structural integrity of the hosted POM andits location in the vicinity of the Zr-based nodes.
- Published
- 2020
- Full Text
- View/download PDF
12. Co-immobilization of a Rh Catalyst and a Keggin Polyoxometalate in the UiO-67 Zr-Based Metal–Organic Framework: In Depth Structural Characterization and Photocatalytic Properties for CO2 Reduction
- Author
-
Pierre Mialane, Alex Lemarchand, Anne Dolbecq, Capucine Sassoye, Catherine Roch-Marchal, Caroline Mellot-Draznieks, Minh-Huong Ha-Thi, Thomas Pino, Mathis Duguet, Mohamed Haouas, Marc Fontecave, Youven Benseghir, Maria Gómez-Mingot, Chaire Chimie des processus biologiques, Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), IRCER - Axe 3 : organisation structurale multiéchelle des matériaux (IRCER-AXE3), Institut de Recherche sur les CERamiques (IRCER), Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Lavoisier de Versailles (ILV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), and Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Catalytic complex ,Chemistry ,Inorganic chemistry ,Co immobilization ,General Chemistry ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Catalysis ,0104 chemical sciences ,Metal ,Colloid and Surface Chemistry ,visual_art ,Polyoxometalate ,visual_art.visual_art_medium ,Photocatalysis ,[CHIM]Chemical Sciences ,Metal-organic framework - Abstract
International audience; The Keggin-type polyoxometalate (POM) PW12O403– and the catalytic complex Cp*Rh(bpydc)Cl2 (bpydc = 2,2′-bipyridine-5,5′-dicarboxylic acid) were coimmobilized in the Zr(IV) based metal organic framework UiO-67. The POM is encapsulated within the cavities of the MOF by in situ synthesis, and then, the Rh catalytic complex is introduced by postsynthetic linker exchange. Infrared and Raman spectroscopies, 31P and 13C MAS NMR, N2 adsorption isotherms, and X-ray diffraction indicate the structural integrity of all components (POM, Rh-complex and MOF) within the composite of interest (PW12,Cp*Rh)@UiO-67. DFT calculations identified two possible locations of the POM in the octahedral cavities of the MOF: one at the center of a UiO-67 pore with the Cp*Rh complex pointing toward an empty pore and one off-centered with the Cp*Rh pointing toward the POM. 31P–1H heteronuclear (HETCOR) experiments ascertained the two environments of the POM, equally distributed, with the POM in interaction either with the Cp* fragment or with the organic linker. In addition, Pair Distribution Function (PDF) data were collected on the POM@MOF composite and provided key evidence of the structural integrity of the POM once immobilized into the MOF. The photocatalytic activity of the (PW12,Cp*Rh)@UiO-67 composite for CO2 reduction into formate and hydrogen were evaluated. The formate production was doubled when compared with that observed with the POM-free Cp*Rh@UiO-67 catalyst and reached TONs as high as 175 when prepared as thin films, showing the beneficial influence of the POM. Finally, the stability of the composite was assessed by means of recyclability tests. The combination of XRD, IR, ICP, and PDF experiments was essential in confirming the integrity of the POM, the catalyst, and the MOF after catalysis.
- Published
- 2020
- Full Text
- View/download PDF
13. Photocatalytic Activity of Nanocoatings Based on Mixed Oxide V-TiO2 Nanoparticles with Controlled Composition and Size
- Author
-
Mamadou Kaba Traoré, Andrei Kanaev, Miguel Sanchez Mendez, Mohamed Selmane, Mounir Ben Amar, Christian Perruchot, Capucine Sassoye, Mehrdad Nikravech, and Alex Lemarchand
- Subjects
Thermogravimetric analysis ,Anatase ,Materials science ,Vanadium ,chemistry.chemical_element ,TP1-1185 ,Thermal treatment ,size-selected V-TiO2 nanoparticles ,nanocoatings ,heat treatment ,heterogeneous photocatalysis ,UV/visible light activation ,Catalysis ,law.invention ,Colloid ,law ,Physical and Theoretical Chemistry ,Crystallization ,QD1-999 ,Chemical technology ,Chemistry ,chemistry ,Photocatalysis ,Mixed oxide ,Nuclear chemistry - Abstract
V-TiO2 photocatalyst with 0 ≤ V ≤ 20 mol% was prepared via the sol–gel method based on mixed oxide titanium–vanadium nanoparticles with size and composition control. The mixed oxide vanadium–titanium oxo-alkoxy nanonoparticles were generated in a chemical micromixing reactor, coated on glass beads via liquid colloid deposition method and underwent to an appropriate thermal treatment forming crystallized nanocoatings. X-ray diffraction, Raman, thermogravimetric and differential thermal analyses confirmed anatase crystalline structure at vanadium content ≤ 10 mol%, with the cell parameters identical to those of pure TiO2. At a higher vanadium content of ~20 mol%, the material segregation began and orthorhombic phase of V2O5 appeared. The crystallization onset temperature of V-TiO2 smoothly changed with an increase in vanadium content. The best photocatalytic performance towards methylene blue decomposition in aqueous solutions under UVA and visible light illuminations was observed in V-TiO2 nanocoatings with, respectively, 2 mol% and 10 mol% vanadium.
- Published
- 2021
- Full Text
- View/download PDF
14. In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures
- Author
-
Ch. Hirlimann, Damien P. Debecker, Kassiogé Dembélé, Ovidiu Ersen, Capucine Sassoye, Simona Moldovan, Clément Sanchez, Mounib Bahri, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), IFP Energies nouvelles (IFPEN), Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Institute for Advanced Study (USIAS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), ANR-15-CE09-0009,3DCLEAN,Tri-Dimensionnel Nano-laboratoire catalytique environnemental(2015), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut d’Etudes Avancées de l’Université de Strasbourg - Institute for Advanced Study (USIAS), and Université de Strasbourg (UNISTRA)
- Subjects
Nanotube ,Materials science ,Hydrogen ,chemistry.chemical_element ,Nanoparticle ,[CHIM.CATA]Chemical Sciences/Catalysis ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Ruthenium ,chemistry ,Chemical engineering ,Particle ,General Materials Science ,Particle size ,0210 nano-technology ,Carbon ,Syngas - Abstract
International audience; We report on the in situ analysis of the growth process of carbon nanostructures catalyzed by Ru nanoparticles using syngas, a mixture of hydrogen and CO, as the carbon source at a medium temperature (500 °C). The structural modifications of the dual nanotube/nanoparticle system and the general dynamics of the involved processes have been directly followed during the growth, in real time and at the atomic scale, by transmission electron microscopy in an environmental gas cell at atmospheric pressure. After a reduction step under hydrogen and syngas, the particles became very active for the carbon growth. The growth rate is independent of the particle size which mainly influences the nanotube wall thickness. Other subtle information on the general behavior of the system has been obtained, as for instance the fact that the regular changes in the direction of the particle originate generally from the particle shape fluctuation. The main result is the evidence of a new growth mode in relation to the presence and the high instability of the ruthenium carbide phase which acts as a carbon reservoir. For the first time, a relaxation oscillation of the growth rate has been observed and correlated with the metal–carbide structural transition at the particle sub-surface.
- Published
- 2018
- Full Text
- View/download PDF
15. Aerosol-Assisted Sol-Gel Synthesis of Mesoporous TiO2 Materials, and Their Use as Support for Ru-Based Methanation Catalysts
- Author
-
Damien P. Debecker, Bernard Haye, Capucine Sassoye, Clément Sanchez, Ara Kim, and Cédric Boissière
- Subjects
Anatase ,Crystallinity ,Materials science ,Chemical engineering ,law ,Methanation ,Specific surface area ,Nanoparticle ,Calcination ,Crystallization ,Mesoporous material ,law.invention - Abstract
Mesoporous TiO2 materials have been prepared by an aerosol process, which leverages on the acetic acid-mediated sol-gel chemistry and on the evaporation-induced self-assembly phenomenon to obtain materials with high specific surface area and large mesoporous volume. The obtained spherical particles are calcined to release the porosity. It is shown that the mesoscopic order can be preserved when the calcination is carried out at relatively low temperature (375 °C and below). Harsher calcination conditions lead to the progressive destruction of the mesostructured, concomitant with a progressive drop of textural properties and with the crystallization of larger anatase domains. The mesoporous TiO2 material calcined at 350°C (specific surface area = 260 m².g-1; pore volume = 0.36 cm³.-1; mean pore diameter = 5.4 nm) was selected as a promising support for preformed RuO2 nanoparticles, and subsequently annealed in air. It is shown that the presence of RuO2 nanoparticles and subsequent annealing provoke further intense modification of the texture and crystallinity of the TiO2 materials. In addition to a drop in the textural parameters, a RuO2-mediated crystallization of rutile TiO2 is highlighted at temperature as low as 250°C. After an in situ reduction in H2, the catalysts containing TiO2 rutile and relatively small RuO2 crystals showed the highest activity in the methanation of CO2.
- Published
- 2019
- Full Text
- View/download PDF
16. Bandgap Engineering from Cation Balance: the Case of Lanthanide Oxysulfide Nanoparticles
- Author
-
Mohamed Selmane, Clément Sanchez, Christophe Geantet, Clément Maheu, Capucine Sassoye, Pierre Lecante, Clément Larquet, Corinne Chanéac, Sophie Carenco, Estelle Glais, Andrea Gauzzi, Luis Cardenas, Anh-Minh Nguyen, Lorenzo Paulatto, Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche de Chimie Paris (IRCP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), Institut des matériaux de Paris-Centre (IMPC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), IRCELYON-Etudes & analyse de surfaces, XPS, LEIS (XPS), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE09-0005,OxySUN,Nanomatériaux d'oxysulfures et oxynitrures pour l'électrocatalyse(2016), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ministère de la Culture (MC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
- Subjects
Lanthanide ,Materials science ,Band gap ,General Chemical Engineering ,Nanoparticle ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Chemical physics ,Materials Chemistry ,Photocatalysis ,Lamellar structure ,Density functional theory ,0210 nano-technology ,Bimetallic strip ,Visible spectrum - Abstract
International audience; Among the inorganic compounds, many oxides and sulfides are known to be semiconductors. At the crossroads of these two families, oxysulfide MxOySz compounds were much less investigated because they are scarce in nature and complex to synthesize. Amongst them, lanthanide oxysulfide Ln2O2S (Ln = lanthanide) are indirect bandgap semiconductors, with wide gaps, except Ce2O2S. (Gd,Ce)2O2S anisotropic nanoparticles with hexagonal structure were obtained over the whole composition range and exhibit colors varying from white to brown with increasing Ce concentration. Bandgap engineering is thus possible, from 4.7 eV for Gd2O2S, to 2.1 eV for Gd0.6Ce1.4O2S, while the structure is preserved with a slight lattice expansion. Surprisingly, due to the limited thickness of the lamellar nanoparticles, the bandgap of the nanoparticles is direct as validated by density functional theory on slabs. The fine control of the bandgap over a wide range, solely triggered by the cation ratio, is rarely described in the literature and highly promising for further development of this class of compounds. We propose a multi-regime mechanism to rationalize the bandgap engineering over the whole composition range. This should inspire the design of other bimetallic nanoscaled compounds, in particular in the field of visible light photocatalysis.
- Published
- 2019
- Full Text
- View/download PDF
17. Pushing the limits of sensitivity and resolution for natural abundance
- Author
-
Christian, Bonhomme, Xiaoling, Wang, Ivan, Hung, Zhehong, Gan, Christel, Gervais, Capucine, Sassoye, Jessica, Rimsza, Jincheng, Du, Mark E, Smith, John V, Hanna, Stéphanie, Sarda, Pierre, Gras, Christèle, Combes, and Danielle, Laurencin
- Abstract
Natural abundance 43Ca solid state NMR experiments are reported for the first time at ultra-high magnetic field (35.2 T) on a series of Ca-(pyro)phosphate and Ca-oxalate materials, which are of biological relevance in relation to biomineralization processes and the formation of pathological calcifications. The significant gain in both sensitivity and resolution at 35.2 T leads to unprecedented insight into the structure of both crystalline and amorphous phases.
- Published
- 2018
18. CO2 methanation on Ru/TiO2 catalysts: on the effect of mixing anatase and rutile TiO2 supports
- Author
-
Ara Kim, Clément Sanchez, François Devred, Capucine Sassoye, Vincent Dubois, Damien P. Debecker, and UCL - SST/IMCN/MOST - Molecules, Solids and Reactivity
- Subjects
Anatase ,Titania ,Materials science ,Sabatier reaction ,Annealing (metallurgy) ,Process Chemistry and Technology ,Inorganic chemistry ,CO2 hydrogenation ,Sintering ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Crystallinity ,RuO2 nanoparticles ,Rutile ,Methanation ,0210 nano-technology ,General Environmental Science ,Epitaxy - Abstract
The high CO 2 methanation activity of Ru/TiO 2 catalysts prepared by mixing both anatase and rutile TiO 2 as a support is described, focusing on mild reaction temperature (50–200 °C). The specific catalyst design elucidated the impact of the support mixing. Pre-synthesized, monodispersed 2 nm-RuO 2 nanoparticles were used to serve as precursors for active metallic Ru responsible for the CO 2 hydrogenation reaction. Pure TiO 2 supports with different crystallinity (anatase and rutile) were either prepared in the laboratory or obtained from commercial providers, mixed, and used as supports in different ratios. The mixing was also done at different stages of the catalyst preparation, i.e. before RuO 2 deposition, before annealing or after annealing. Our study uncovers that the interaction between the RuO 2 nanoparticles and the anatase and rutile TiO 2 phase during the annealing step dictates the performance of the Ru/TiO 2 methanation catalysts. In particular, when beneficial effects of support mixing are obtained, they can be correlated with RuO 2 migration and stabilization over rutile TiO 2 through epitaxial lattice matching. Also, support mixing can help prevent the sintering of the support and the trapping of the active phase in the bulk of the sintered support. On thermally stable TiO 2 supports, however, it appears clearly that the sole presence of rutile TiO 2 support is sufficient to stabilize Ru in its most active form and to prepare a catalyst with high specific activity.
- Published
- 2018
19. Fast and continuous processing of a new sub-micronic lanthanide-based metal–organic framework
- Author
-
Samuel Marre, Cyril Aymonier, Clément Sanchez, Jérôme Marrot, Capucine Sassoye, Laurence Rozes, Loïc D'Arras, Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Lavoisier de Versailles (ILV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB)
- Subjects
Lanthanide ,Nanostructure ,Chemistry ,chemistry.chemical_element ,Nanotechnology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Catalysis ,Cerium ,Phase (matter) ,Materials Chemistry ,Metal-organic framework ,Particle size ,Hybrid material - Abstract
International audience; Processing strategies for the synthesis of hybrid materials stand as relevant ways to modulate the particle size and morphology. We present herein the use of a continuous high temperature-high pressure (HT-HP) process for the synthesis of a new cerium based metal-organic framework (MOF). The HT-HP harsh thermodynamic synthesis conditions lead to MOF nanostructures exhibiting the same phase as for microparticles obtained under conventional batch solvothermal conditions but in exceptional much shorter residence times, opening avenues towards production scaling-up. The HT-HP process also tailors down the size of the particles, which still presents a major issue for most MOF applications.
- Published
- 2014
- Full Text
- View/download PDF
20. Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization
- Author
-
Aron Walsh, Davide Tiana, Christopher H. Hendon, Laurence Rozes, Marc Fontecave, Loïc D'Arras, Clément Sanchez, Caroline Mellot-Draznieks, Capucine Sassoye, Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Chaire Chimie des processus biologiques, Laboratoire de Chimie des Processus Biologiques (LCPB), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Royal Society University Research Fellowship, ERC Starting Grant, EPSRC [EP/F067496], Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Collège de France - Chaire Chimie des processus biologiques
- Subjects
Models, Molecular ,Optical Phenomena ,Chemistry, Multidisciplinary ,Molecular Conformation ,Band-gaps ,02 engineering and technology ,Ligands ,01 natural sciences ,Biochemistry ,Engineering ,Colloid and Surface Chemistry ,General chemistry ,Titanium ,Chemistry ,Photocatalyst ,SUBSTITUTION ,Optical Processes ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,CO2 capture ,Physical Sciences ,SEPARATION ,Metal-organic framework ,03 Chemical Sciences ,0210 nano-technology ,Amino ,BAND-GAPS ,Stereochemistry ,Band gap ,PHOTOCATALYST ,Phthalic Acids ,Electronic structure ,010402 general chemistry ,MOFS ,Catalysis ,Separation ,AMINO ,Organometallic Compounds ,CO2 CAPTURE ,Reduction ,Group 2 organometallic chemistry ,TUNABILITY ,Science & Technology ,Ligand ,Tunability ,General Chemistry ,Combinatorial chemistry ,0104 chemical sciences ,REDUCTION ,Surface modification ,Substitution ,Linker - Abstract
International audience; Herein we discuss band gap modification of MIL-125, a TiO2/1,4-benzenedicarboxylate (bdc) metal-organic framework (MOF). Through a combination of synthesis and computation, we elucidated the electronic structure of MIL-125 with aminated linkers. The band gap decrease observed when the monoaminated bdc-NH2 linker was used arises from donation of the N 2p electrons to the aromatic linking unit, resulting in a red-shifted band above the valence-band edge of MIL-125. We further explored in silico MIL-125 with the diaminated linker bdc(NH2)(2) and other functional groups (-OH, -CH3, -Cl) as alternative substitutions to control the optical response. The bdc-(NH2)2 linking unit was predicted to lower the band gap of MIL-125 to 1.28 eV, and this was confirmed through the targeted synthesis of the bdc-(NH2)(2)-based MIL,-125. This study illustrates the possibility of tuning the optical response of MOFs through rational functionalization of the linking unit, and the strength of combined synthetic/computational approaches for targeting functionalized hybrid materials.
- Published
- 2013
- Full Text
- View/download PDF
21. [Ti8O10(OOCR)12] [R= CH(CH3)2and CCl3] Carboxylate Titanium Oxo-Clusters: Potential SBUs for the Synthesis of Metal-Organic Frameworks
- Author
-
Clément Sanchez, Laurence Rozes, Capucine Sassoye, Théo Frot, and Jérôme Marrot
- Subjects
chemistry.chemical_classification ,Carboxylic acid ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,3. Good health ,0104 chemical sciences ,Inorganic Chemistry ,Crystallography ,chemistry.chemical_compound ,Liquid state ,Octahedron ,chemistry ,Alkoxide ,Metal-organic framework ,Carboxylate ,SBus ,0210 nano-technology ,Titanium - Abstract
The synthesis and the characterization of a new octanuclear carboxylated titanium oxo-cluster [Ti8O10(OOCR)(12)] [R = CH(CH3)(2) and CCl3] is reported. The structure was characterized by single-crystal X-ray diffraction. It consists in four vertices-linked pairs of edge-sharing TiO6 octahedra, presenting 2 and 3 oxygen atoms. O-17 and C-13 liquid state NMR was performed with results in full accordance with the structure determined by X-ray diffraction. During synthesis, solvothermal conditions and a large excess of carboxylic acid allow to remove all alkoxo ligands of the titanium alkoxide precursor and lead to stable purely carboxylate clusters. This family of clusters can therefore be considered as interesting SBUs to elaborate new metal-organic frameworks.
- Published
- 2013
- Full Text
- View/download PDF
22. The Active State of Supported Ruthenium Oxide Nanoparticles during Carbon Dioxide Methanation
- Author
-
Damien P. Debecker, Hendrik Bluhm, Miquel Salmeron, Capucine Sassoye, Marco Faustini, Sophie Carenco, Pierre Eloy, Matériaux Hybrides et Nanomatériaux (MHN), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Technology ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Physical Chemistry ,Ruthenium oxide ,Catalysis ,chemistry.chemical_compound ,Engineering ,X-ray photoelectron spectroscopy ,Methanation ,Physical and Theoretical Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS]Physics [physics] ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ruthenium ,Chemical state ,General Energy ,chemistry ,Chemical Sciences ,Steady state (chemistry) ,0210 nano-technology ,Carbon monoxide - Abstract
© 2016 American Chemical Society. Ruthenium catalysts supported on TiO2 have been shown to have competitive activity and selectivity for the methanation of CO2. In particular, a catalyst using preformed RuO2 nanoparticles deposited on a TiO2 support showed competitive performances in a previous study. In this work, ambient-pressure X-ray photoelectron spectroscopy was employed to determine the chemical state of this catalyst under reaction conditions. The active state of ruthenium was found to be the metallic one. Surface adsorbates were monitored in the steady state, and CHx species were found to be favored over adsorbed carbon monoxide at increasing temperatures.
- Published
- 2016
- Full Text
- View/download PDF
23. Selective CO 2 methanation on Ru/TiO 2 catalysts: unravelling the decisive role of the TiO 2 support crystal structure
- Author
-
G. Patriarche, Clément Sanchez, Damien P. Debecker, Andreas Wisnet, Capucine Sassoye, Ovidiu Ersen, Simona Moldovan, Ara Kim, Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), Matériaux Hybrides et Nanomatériaux (MHN), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie des matériaux hybrides, Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Ludwig-Maximilians-Universität München (LMU), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Anatase ,Materials science ,Annealing (metallurgy) ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,[CHIM.CATA]Chemical Sciences/Catalysis ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,Catalysis ,0104 chemical sciences ,X-ray photoelectron spectroscopy ,Methanation ,Rutile ,[CHIM.CRIS]Chemical Sciences/Cristallography ,0210 nano-technology - Abstract
International audience; The catalytic hydrogenation of CO2 is a relevant strategy for mitigating CO2 emissions and its applicability relies on our ability to prepare catalysts that are highly active under mild conditions. Understanding and improving these tailored catalysts requires innovative materials synthesis routes and advanced methods of characterization. In this study, mono-dispersed 2 nm RuO2 nanoparticles were prepared as a stable colloidal suspension and deposited onto different titania supports by impregnation. Supported RuO2 nanoparticles are homogeneously dispersed at the surface of the titania supports. Then, upon annealing and reduction, metallic Ru nanoparticles are obtained, which are active in the hydrogenation of CO2 to CH4. However, depending on the crystal structure of the different TiO2 supports (anatase, rutile, and a mixture of both), the catalysts exhibited drastically diverse catalytic performances. An array of characterization tools (N2-physisorption, H2-chemisorption, HR-TEM, STEM-HAADF, 3D tomographic analysis, XRD, and XPS) was used to unravel the origin of this support effect. It appeared that catalytic behaviour was related to profound morphological changes occurring during the annealing step. In particular, advanced electron microscopy techniques allow visualisation of the consequences of RuO2 nanoparticle mobility onto titania. It is shown that RuO2 sinters heavily on anatase TiO2, but spreads and forms epitaxial layers onto rutile TiO2. On anatase, large Ru chunks are finally obtained. On rutile, the formation of a particular “rutile-TiO2/RuO2/rutile-TiO2 sandwich structure” is demonstrated. These phenomena – along with the relative thermal instability of the supports – explain why the catalysts based on the commercial P25 titania support outperform those based on pure crystalline titania. The study opens new perspectives for the design of highly active CO2 methanation catalysts.
- Published
- 2016
- Full Text
- View/download PDF
24. Crystal Structure and Thermal Behaviour of K2[CrF5·H2O]
- Author
-
Capucine Sassoye and Ariel de Kozak
- Subjects
Inorganic Chemistry ,Crystallography ,Octahedron ,chemistry ,Powder Diffractometer ,Potassium ,Anhydrous ,chemistry.chemical_element ,Orthorhombic crystal system ,Crystal structure ,Isostructural ,Monoclinic crystal system - Abstract
K2[CrF5·H2O] is monoclinic: a = 9.6835(3) A, b = 7.7359(2) A, c = 7.9564(3) A, β = 95.94(1)°, Z = 4, space group C2/c (no 15). Its crystal structure was solved from its X-ray powder pattern recorded on a powder diffractometer, using for the refinement the Rietveld method. It is built up from isolated octahedral [CrF5·OH2]2− anions separated by potassium cations. The dehydration of K2[CrF5·H2O] leads to anhydrous orthorhombic K2CrF5: a = 7.334(2) A, b = 12.804(4) A, c = 20.151(5) A, Z = 16, space group Pbcn (no 60), isostructural with K2FeF5.
- Published
- 2006
- Full Text
- View/download PDF
25. [Mo5VMo7VIO30(BPO4)2(O3P-Ph)6]5-: A Phenyl-Substituted Molybdenum(V/VI) Boro-Phosphate Polyoxometalate
- Author
-
Capucine Sassoye, Kieran J. Norton, and Slavi C. Sevov
- Subjects
Inorganic Chemistry ,chemistry.chemical_classification ,chemistry.chemical_compound ,chemistry ,Molybdenum ,Polyoxometalate ,Inorganic chemistry ,Salt (chemistry) ,chemistry.chemical_element ,Physical and Theoretical Chemistry ,Phosphate ,BORO ,Nuclear chemistry - Abstract
The title polyanion is the first hybrid borophosphate-phenylphosphonate polyoxometalate. It was structurally characterized as its imidazolium salt, (C(3)N(2)H(5))(5)[Mo(12)O(30)(BPO(4))(2)(O(3)P-Ph)(6)].H(2)O (monoclinic, P2(1)/c, a = 22.120(3) A, b = 13.042(2) A, and c = 32.632(4) A, beta = 101.293(3) degrees ), which was synthesized hydrothermally from imidazole, molybdenum oxide and metal, and boric, phosphoric, and phenylphosphonic acids. The anion is the second example of a new class of polyoxometalates that resemble Dawson anions but where the two pole caps of three edge-sharing MoO(6) octahedra in the latter are replaced by other units, in this case tetrahedral borate sharing corners with three phenylphosphonic groups, [(OB)(O(3)P-Ph)(3)]. The 12 molybdenum atoms forming the two equatorial belts of the cluster are of mixed-valence, five are Mo(V) and seven are Mo(VI), and the resulting five electrons are delocalized. Four of these electrons are paired according to the temperature dependence of the magnetic susceptibility. The new compound is soluble in a mixture of water and pyridine (in equal volumes) as well as in nitromethane, and the anions are intact in these solutions.
- Published
- 2003
- Full Text
- View/download PDF
26. Synthesis and Characterization of [Mo7O16(O3PCH2PO3)3]:8- A Mixed-Valent Polyoxomolybdenum Diphosphonate Anion with Octahedrally and Tetrahedrally Coordinated Molybdenum
- Author
-
Eddy Dumas, Capucine Sassoye, Kristin D. Smith, and Slavi C. Sevov
- Subjects
Inorganic Chemistry ,Piperazine ,chemistry.chemical_compound ,Crystallography ,Mixed valent ,Chemistry ,Molybdenum ,chemistry.chemical_element ,Ethylenediamine ,Physical and Theoretical Chemistry ,Ion - Abstract
Two new compounds containing the title diphosphono-polyoxometalate anion and diprotonated ethylenediamine (enH(2)) or piperazine (ppzH(2)) countercations have been hydrothermally synthesized and structurally characterized ((enH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].7H(2)O, triclinic, P(-)1, Z = 2, a = 10.3455(7) A, b = 13.136(1) A, and c = 20.216(3) A, alpha = 93.247(6) degrees, beta = 96.434(6) degrees, and gamma = 111.900(6) degrees; (ppzH(2))(4)[Mo(7)O(16)(O(3)PCH(2)PO(3))(3)].8H(2)O, triclinic, P(-)1, Z = 2, a = 13.255(2) A, b = 13.638(2) A, and c = 16.874(4) A, alpha = 93.20(2) degrees, beta = 101.27(2) degrees, and gamma = 105.87(1) degrees). The anion is a ring of three pairs of edge-sharing octahedra of Mo(V)O(6) (with Mo(V)-Mo(V) bonds) that share corners with each other. The diphosphonate groups connect the pairs at the periphery. The ring is "capped" by a tetrahedron of Mo(VI)O(4). According to magnetic measurements, the compounds are diamagnetic.
- Published
- 2002
- Full Text
- View/download PDF
27. Utilization of Cyclopentylamine as Structure-Directing Agent for the Formation of Fluorinated Gallium Phosphates Exhibiting Extra-Large-Pore Open Frameworks with 16-ring (ULM-16) and 18-ring Channels (MIL-46)
- Author
-
Capucine Sassoye, Thierry Loiseau, Gérard Férey, and Jérôme Marrot
- Subjects
Stereochemistry ,General Chemical Engineering ,chemistry.chemical_element ,Protonation ,General Chemistry ,Cyclohexylamine ,Ring (chemistry) ,Gallium phosphate ,Crystallography ,chemistry.chemical_compound ,chemistry ,Tetramer ,Materials Chemistry ,Fluorine ,Isostructural ,Gallium - Abstract
Two fluorinated gallium phosphates, Ga4(PO4)4F1.33(OH)0.67·1.5NC5H12·0.5H3O·0.5H2O (ULM-16) and Ga9(PO4)8F7.3(OH)0.2·4NC5H12·0.5H3O·3.5H2O (MIL-46), have been hydrothermally synthesized by varying the fluorine amount in the presence of cyclopentylamine as structure-directing agent (at 180 °C for 3 days). Their structures were determined by means of single-crystal X-ray diffraction. The first compound (obtained with low fluorine concentration) is isostructural to the gallium phosphate ULM-16 previously prepared with cyclohexylamine. Its three-dimensional framework is built up from the connection by corner sharing of the hexameric units Ga3(PO4)3F2 together with the tetramer Ga2(PO4)2 and consists of channels bound by 16 polyhedra inserting the protonated cyclopentylamine. The second phase (prepared with high fluorine concentration) exhibits a new three-dimensional topology based on the condensation by corner sharing of the identical hexameric building block Ga3(PO4)3F2 with a pentameric species Ga3(PO4)2F4...
- Published
- 2002
- Full Text
- View/download PDF
28. Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions
- Author
-
Clément Sanchez, Camila Fernández, Damien P. Debecker, Capucine Sassoye, Patricio Ruiz, Laboratoire d'Océanographie Microbienne (LOMIC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire océanologique de Banyuls (OOB), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Catalyse et Chimie des matériaux divisés (CATA), UCL, Belgium National Fund for Scientific Research (FSR-FNRS), Observatoire océanologique de Banyuls (OOB), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Hydrogen ,Chemistry ,Process Chemistry and Technology ,Inorganic chemistry ,chemistry.chemical_element ,Nanoparticle ,02 engineering and technology ,Size distribution ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Ruthenium ,Ammonia production ,Colloid ,Adsorption ,Low-temperature ammonia synthesis ,Ru supported catalyst ,Catalytic cooperation ,Microemulsion ,0210 nano-technology - Abstract
International audience; Ru/gamma-Al2O3 catalysts were prepared using three different methods: wet impregnation, colloidal method and microemulsion. Ru-supported nanoparticles with different average sizes and distribution of sizes were obtained. The catalysts were tested in ammonia synthesis under mild reaction conditions, namely low temperature (100 degrees C) and low pressure (4 bar), and characterized by N-2 adsorption, XRD, XPS, TEM and TPR techniques. The results indicate that a good catalytic performance can be achieved by Ru supported nanoparticles fulfilling two requirements: (i) a relatively high average size (despite the usual assertion that only small particles are required) and (ii) a broad distribution of sizes that ensures the presence of both small particles, containing highly active sites, and large nanoparticles, which are shown to promote the reaction on small particles. This promotion results from a cooperative effect between small and large nanoparticles in good contact, which also allows keeping a highly reduced surface of ruthenium. It is proposed that, under mild reaction conditions, large Ru nanoparticles promote the ammonia synthesis reaction by allowing a more effective activation and transfer of hydrogen atoms, able to hydrogenate strongly adsorbed nitrogen atoms, and thus to release active sites for the activation of N2. (c) 2013 Elsevier B.V. All rights reserved.
- Published
- 2014
- Full Text
- View/download PDF
29. Hydrothermal synthesis and crystal structure of a novel layered fluorinated gallium phosphate intercalating 1,12-diaminododecane Ga4(PO4)4F4·N4C24H60 (MIL-35)
- Author
-
Thierry Loiseau, Capucine Sassoye, and Gérard Férey
- Subjects
Chemistry ,Organic Chemistry ,Intercalation (chemistry) ,Crystal structure ,Triclinic crystal system ,Biochemistry ,Gallium phosphate ,Inorganic Chemistry ,chemistry.chemical_compound ,Crystallography ,Octahedron ,Diamine ,Environmental Chemistry ,Hydrothermal synthesis ,Molecule ,Physical and Theoretical Chemistry - Abstract
Ga4(PO4)4F4·N4C24H60 or MIL-35 is a new layered fluorinated gallium phosphate obtained by mild hydrothermal synthesis using 1,12-diaminododecane as structure-directing agent. It crystallizes in the triclinic space group P1, a=539.3(2) pm, b=981.3(7) pm, c=1928.5(7) pm, α=80.67(6)°, β=88.78(5)°, γ=89.86(7)°, V=1006.9(9)×106 pm3, Z=1 and the refinements from single-crystal X-ray diffraction analysis converge to R1(F)=0.0622 and wR2(F2)=0.1346 for 5044 reflections with I>2σ(I). The inorganic sheets, stacked along [0 0 1] consist of GaO4F2 octahedra connected with PO4 tetrahedra interleaved by 1,12-diaminododecane molecules. The angle formed by the inorganic layer and the diamine molecule is around 52°.
- Published
- 2001
- Full Text
- View/download PDF
30. Molecular Engineering of Functional Inorganic and Hybrid Materials
- Author
-
Christel Laberty-Robert, Capucine Sassoye, David Portehault, Cédric Boissière, Corinne Chanéac, Marco Faustini, David Grosso, Lionel Nicole, Clément Sanchez, Sophie Cassaignon, Olivier Durupthy, Laurence Rozes, François Ribot, Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), inconnu, Inconnu, UPMC, CNRS, College de France, Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Solid-state chemistry ,Materials science ,General Chemical Engineering ,Complex system ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Field (computer science) ,Molecular engineering ,bottom-up ,integrative chemistry ,Materials Chemistry ,sol-gel ,templated growth ,nanomaterials ,Structure (mathematical logic) ,Nanocomposite ,hybrid ,General Chemistry ,Top-down and bottom-up design ,self-assembly ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Characterization (materials science) ,processing ,0210 nano-technology - Abstract
International audience; For 25 years, Chemistry of Materials has been clearly providing a key forum to chemists, physicists, and engineers interested in materials preparation and characterization, in the search of unique physical properties and processing of innovative materials and devices. This short review presents a discussion on some recent advances in this field, illustrated with a few selected examples related to three of our main research areas: the synthesis of single nano-objects and the processing of porous and hierarchically structured materials and hybrid nanocomposite materials. A strong emphasis is also given to the need to realize a successful marriage between materials chemistry and smart processing. These cross-cutting approaches in the vein of bioinspired synthesis strategies are allowing the development of complex systems of various shapes with perfect mastery at different length scales of composition, structure, porosity, functionality, and morphology. These ``integrative strategies'', where all aspects of materials science are coupled, open a land of opportunities to tailor-made advanced inorganic and hybrid materials. Some of them are already impacting numerous societal concerns and industrial applications.
- Published
- 2014
- Full Text
- View/download PDF
31. Ti8O8(OOCR)16 A New Family of Titanium–Oxo Clusters: Complementarity of Solid State NMR and XRD
- Author
-
Guillaume P. Laurent, Théo Frot, Sébastien Cochet, Capucine Sassoye, Popall, M., Clément Sanchez, Laurence Rozes, Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (SMiLES), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux Hybrides et Nanomatériaux (MHN), Fraunhofer Institute for Silicate Research (Fraunhofer ISC), Fraunhofer (Fraunhofer-Gesellschaft), Chaire Chimie des matériaux hybrides, and Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
XRD ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,solid-state NMR ,Titanium–Oxo Clusters - Abstract
International audience; The reactions of titanium alkoxides with a large excess of different carboxylic acids under nonhydrolytic conditions leads to the reproducible formation of well-defined nano-building units (NBUs) with the formula [Ti8O8(OOCR)16] [R = C6H5, C(CH3)3, CH3]. The structures of these titanium–oxo–carboxylate clusters have been determined by crossing different characterization techniques and methodologies (single-crystal X-ray diffraction, and 13C and 1H solid state NMR spectroscopy).The solubility and transferability of these clusters in common solvents can be tuned by selecting the nature of the organic ligand. Indeed, a robust post-modification of the carboxylate ligands can be done by trans- esterification reactions on the titanium–oxo clusters. These reactions keep the integrity of the octameric titanium–oxo core intact, while completely exchanging the organic shell of the cluster.In this study, one- and two-dimensional solid state NMR and relaxation measurements have been highly complementary to the thermal agitation obtained by crystallography. It has also been evidenced that entrapping of small molecules can be easily done. This is an interesting feature for storage and catalysis.
- Published
- 2011
32. New hybrid core–shell star‐like architectures made of poly(n‐butyl acrylate) grown from well‐defined titanium oxo‐clusters
- Author
-
Fabien Perineau, Clément Sanchez, Laurence Rozes, Luk Van Lokeren, Laurent Bouteiller, Capucine Sassoye, Rudolph Willem, Sandrine Pensec, François Ribot, Chaire Chimie des matériaux hybrides, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Vrije Universiteit Brussel (VUB)
- Subjects
chemistry.chemical_classification ,Acrylate ,Materials science ,Atom-transfer radical-polymerization ,Size-exclusion chromatography ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Alkoxide ,Polymer chemistry ,Materials Chemistry ,[CHIM]Chemical Sciences ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Macromolecule ,Titanium - Abstract
New hybrid star-like macromolecular objects have been designed from an inorganic multifunctional platform following two routes. The first one consists of the direct introduction of polymer arms at the surface of the titanium oxo-cluster [Ti16O16(OEt)32] by alkoxide exchange. The second approach corresponds to the growth by Atom Transfer Radical Polymerization (ATRP) of n-butyl acrylate from the macroinitiator [Ti16O16(OEt)26(OCH2CCl3)6]. By crossing different characterization techniques and methodologies (single crystal X-ray diffraction, 13C and 17O NMR and 1H DOSY NMR spectroscopy, Size Exclusion Chromatography), evidence of the formation of such macromolecular compounds is reported.
- Published
- 2011
- Full Text
- View/download PDF
33. ChemInform Abstract: A New Open-Framework Fluorinated Gallium Phosphate with Large 18-Ring Channels (MIL-31)
- Author
-
Francis Taulelle, Gerard Ferey, Thierry Loiseau, and Capucine Sassoye
- Subjects
chemistry.chemical_classification ,chemistry.chemical_compound ,Crystallography ,Chain (algebraic topology) ,Chemistry ,Hexagonal crystal system ,General Medicine ,Crystal structure ,Ring (chemistry) ,Open framework ,Gallium phosphate ,Alkyl ,Ion - Abstract
A new open-framework fluorinated gallium phosphate (MIL-31) containing the Ga9(PO4)9(H2O)(OH)(OH,F)4 5− anion was hydrothermally synthesized by using long alkyl chain diamines (C9 and C10) as structure-directing agents; its crystal structure is built up from hexameric units and exhibits large one-dimensional hexagonal channels delimited by 18-rings.
- Published
- 2010
- Full Text
- View/download PDF
34. ChemInform Abstract: New Insights into the Role of the Hydrothermal Conditions for the Synthesis of Open-Framework Fluorinated Gallium Phosphates
- Author
-
Gérard Férey, Thierry Loiseau, Dermot O'Hare, Richard I. Walton, Franck Millange, and Capucine Sassoye
- Subjects
Chemistry ,chemistry.chemical_element ,Organic chemistry ,General Medicine ,Gallium ,Open framework ,Hydrothermal circulation - Published
- 2010
- Full Text
- View/download PDF
35. Ti8O8(OOCR)16, a New Family of Titanium-Oxo Clusters: Potential NBUs for Reticular Chemistry
- Author
-
Guillaume Laurent, Clément Sanchez, Michael Popall, Sebastien Cochet, Théo Frot, Laurence Rozes, Capucine Sassoye, Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Fraunhofer Institute for Silicate Research (Fraunhofer ISC), Fraunhofer (Fraunhofer-Gesellschaft), ANR-06-NANO-0017,MECHYBRIDES,Déformation et fracture de matériaux hybrides nanostructurés(2006), and Publica
- Subjects
Metal–organic frameworks ,010405 organic chemistry ,Chemistry ,Ligand ,Inorganic chemistry ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,01 natural sciences ,Werkstoff ,0104 chemical sciences ,Nanostructures ,Inorganic Chemistry ,chemistry.chemical_compound ,Hydrolysis ,Crystallography ,Cluster ,Cluster (physics) ,Metal-organic framework ,Carboxylate ,Fourier transform infrared spectroscopy ,Solubility ,Titanates ,Cluster compounds ,Titanium - Abstract
International audience; The reactions of titanium alkoxides with a large excess of different carboxylic acids under nonhydrolytic conditions leads to the reproducible formation of well‐defined nano‐building units (NBUs) with the formula [Ti8O8(OOCR)16] [R = C6H5, C(CH3)3, CH3]. The structures of these titanium–oxo–carboxylate clusters have been determined by crossingdifferent characterization techniques and methodologies (single‐crystal X‐ray diffraction, 13C and 1H NMR spectroscopy, and FTIR spectroscopy). These NBUs are obtained in high yields and, since all the alkoxo ligands have been removed by using solvothermal‐synthesis conditions, they present better stability upon hydrolysis than the often reported alkoxo–carboxylate–titanium–oxo clusters [TinO2n–x/2–y/2(OR′)x(OOCR)y] (n ≥ 2; x ≥ 1; y ≥ 1). In addition, the solubility and transferability of these clusters in common solvents can be tuned by selecting the nature of the organic ligand. Moreover, we also report for the first time, a robust post‐modification of the carboxylate ligands by transesterification reactions on the titanium–oxo clusters. These reactions keep the integrity of the octameric titanium–oxo core intact, while completely exchanging the organic shell of the cluster. This family of [Ti8O8(OOCR)16] clusters, which present 16 points of extension, a symmetric shape, and the ability to be post‐modified with conservation of the core structure, can therefore be considered as interesting NBUs to form new metal–organic frameworks.
- Published
- 2010
- Full Text
- View/download PDF
36. Block-Copolymer-Templated Synthesis of Electroactive RuO2-Based Mesoporous THin Films
- Author
-
Hung Le Khanh, Christel Laberty, Sophie Cassaignon, Markus Antonietti, Clément Sanchez, Cédric Boissière, Capucine Sassoye, Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute of Colloids and Interfaces, and Max-Planck-Gesellschaft
- Subjects
Materials science ,Oxide ,Nanotechnology ,02 engineering and technology ,Thermal treatment ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Tin oxide ,01 natural sciences ,Ruthenium oxide ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Biomaterials ,chemistry.chemical_compound ,Mesoporous organosilica ,Chemical engineering ,chemistry ,Electrochemistry ,Thin film ,Cyclic voltammetry ,0210 nano-technology ,Mesoporous material ,ComputingMilieux_MISCELLANEOUS - Abstract
RuO 2 -based mesoporous thin films of optical quality are synthesized from ruthenium-peroxo-based sols using micelle templates made of amphiphilic polystyrene-polyethylene oxide block copolymers. The mesoporous structure and physical properties of the RuO 2 films (mesoporous volume: 30%; pore diameter: ∼30 nm) can be controlled by the careful tuning of both the precursor solution and thermal treatment (150―350 °C). The optimal temperature that allows control of both mesoporosity and nanocristallinity is strongly dependent on the substrate (silicon or fluorine-doped tin oxide). The structure of the resulting mesoporous films are investigated using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. Mesoporous layers are additionally characterized by transmission and scanning electron microscopy and ellipsometry while their electrochemical properties are analyzed via cyclic voltammetry. Thick mesoporous films of ruthenium oxide hydrates, RuO 2 · xH 2 O, obtained using a thermal treatment at 280 °C, exhibit capacitances as high as 1000 ± 100 F g ―1 at a scan rate of 10 mV s ―1 , indicating their potential application as electrode materials.
- Published
- 2009
- Full Text
- View/download PDF
37. Titanium Oxo-Clusters: Vesatile Nano-Objects for the Design of Hybrid Compounds
- Author
-
Laurence Rozes, Capucine Sassoye, Clément Sanchez, Michael Popall, Sebastien Cochet, Theo J. Frot, and Giulia Fornasieri
- Subjects
chemistry.chemical_classification ,Nanocomposite ,Materials science ,chemistry.chemical_element ,Nanotechnology ,Polymer ,Metal ,chemistry.chemical_compound ,chemistry ,visual_art ,Nano ,visual_art.visual_art_medium ,Carboxylate ,Hybrid material ,Refractive index ,Titanium - Abstract
The description of three titanium oxo-clusters and their use as inorganic components of hybrid organic-inorganic materials are reported. The first approach consists to add titanium oxo-clusters, [Ti6O4(C6H5COO)8(OPrn)8], in an ORMOCER⊗ based hybrid medium. Nano-sized titanium oxo-clusters combined with the chemical nature of the components, allow the tuning of the optical properties, especially the refractive index. The second approach consists to associate functionalized titanium oxo-clusters to elaborate hybrid materials with perfectly defined inorganic domains. The more relevant example of titanium oxo-cluster to build hybrid networks from nano-building blocks is the oxo-cluster [Ti16O16(OEt)32]. Indeed, the nature and the number of functional groups at the surface of these metallic oxo-clusters can be tuned in order to generate cross-linking agents of organic polymers. The studies of the structure-property relationships of the resulting nanocomposites have been investigated. Finally the structure of a purely carboxylate oxo-clusters is briefly described. This new family of stable oxo-clusters opens the way for the production of original hybrid compounds.
- Published
- 2007
- Full Text
- View/download PDF
38. Chemistry-structure-simulation or chemistry-simulation-structure sequences? The case of MIL-34, a new porous aluminophosphate
- Author
-
Francis Taulelle, Clarisse Huguenard, Thierry Loiseau, Stéphanie Girard, Gérard Férey, Caroline Mellot-Draznieks, Capucine Sassoye, and Nathalie Guillou
- Subjects
Diffraction ,Lattice energy ,Chemistry ,General Chemistry ,Crystal structure ,Microporous material ,Biochemistry ,Catalysis ,law.invention ,Trigonal bipyramidal molecular geometry ,Crystallography ,Colloid and Surface Chemistry ,law ,Tetrahedron ,Molecule ,Calcination - Abstract
A new aluminophosphate, MIL-34, is investigated from its as-synthesized structure to its calcined microporous form. Single-crystal X-ray diffraction measurements on the as-synthesized MIL-34 (Al(4)(PO(4))(4)OH x C(4)H(10)N, space group P-1, a = 8.701(3) A, b = 9.210(3) A, c = 12.385(3) A, alpha = 111.11(2) degrees, beta = 101.42(2) degrees, gamma = 102.08(2) degrees, V = 863.8(4) A(3), Z = 2, R = 3.8%) reveal a 3-D open framework where Al atoms are in both tetrahedral and trigonal bipyramidal coordinations. It contains a 2-D pore system defined by eight rings where channels along [100] cross channels running along [010] and [110]. CBuA molecules are trapped at their intersection. (27)Al, (31)P, and (1)H MAS NMR spectroscopies corroborate these structural features. Calcination treatments of a powder sample of the as-synthesized MIL-34 indicate its transformation into the related template-free structure that is stable up to 1000 degrees C. Lattice energy minimizations are then used in order to anticipate the crystal structure of the calcined MIL-34, starting with the knowledge of the as-synthesized structure exclusively. Energy minimizations predict a new regular zeotype structure (AlPO(4), space group P-1, a = 8.706 A, b = 8.749 A, c = 12.768 A, alpha = 111.17 degrees, beta = 97.70 degrees, gamma = 105.14 degrees, V = 846.75 A(3), Z = 2) together with a thermodynamic stability similar to that of existing zeotype AlPOs. Excellent agreement is observed between the diffraction pattern calculated from the predicted calcined MIL-34 and the experimental X-ray powder diffraction pattern of the calcined sample. Finally, the atomic coordinates and cell parameters of the calcined MIL-34 predicted from the simulations are used to perform the Rietveld refinement of the calcined sample powder pattern, further corroborated by (27)Al and (31)P NMR measurements. This unique combination of experiment and simulation approaches is an interesting and innovative strategy in materials sciences, where simulations articulate the prediction of a possible template-free framework from its as-synthesized templated form. This is especially valuable when straightforward characterizations of the solid of interest with conventional techniques are not easy to carry out.
- Published
- 2001
39. 05-P-19 - Synthesis and structural characterization of a novel microporous zeolitic type aluminium phosphate
- Author
-
C. Hugeunard, Stéphanie Girard, Capucine Sassoye, T Loiseau, Caroline Mellot-Draznieks, Francis Taulelle, and Gérard Férey
- Subjects
chemistry.chemical_compound ,Materials science ,chemistry ,Chemical engineering ,Hydrothermal synthesis ,Mineralogy ,Aluminium phosphate ,Molecule ,Microporous material ,ALUMINUM PHOSPHATE ,Open framework ,Characterization (materials science) - Abstract
Publisher Summary This chapter discusses the hydrothermal synthesis and the structure characterization of a novel microporous aluminum phosphate Al 4 (PO 4 ) 4 (OH), NC 4 H 10 , labeled MIL-34. The open framework is built up from interconnected tunnels bounded by 8-membered rings. The cyclobutylamine molecules that are used as structure-directing agent are found at the intersection of the 8-ring channels.
- Published
- 2001
- Full Text
- View/download PDF
40. A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia
- Author
-
Patricio Ruiz, Sophie Cassaignon, Damien P. Debecker, Alejandro Karelovic, Christian Pizarro, Clément Sanchez, Guillaume Muller, Capucine Sassoye, Université de Paris 06 - Chimie de la Matière Condensée de Paris, and UCL - SST/IMCN/MOST - Molecules, Solids and Reactivity
- Subjects
Materials science ,Aqueous solution ,Nucleation ,Nanoparticle ,Nanotechnology ,Pollution ,Catalysis ,chemistry.chemical_compound ,Colloid ,chemistry ,Chemical engineering ,X-ray photoelectron spectroscopy ,Nano ,Environmental Chemistry ,Hydrogen peroxide - Abstract
Highly stable suspensions of monodispersed ruthenia nanoparticles have been prepared via a sustainable aqueous oxidative pathway. The nanoparticles (2 nm) have been thoroughly characterized by TEM, XRD, XPS, MS-TGA and thermodiffraction. The addition of hydrogen peroxide in the RuCl3 solution provokes a fast oxidation of Ru(III) ions into Ru(IV). This increases the rate of the hydrolysis/condensation reactions and further promotes the nucleation over the growth of the particles. The very high stability conditions of the colloidal suspension have been studied. This aqueous one-step process, which uses no organic solvent or toxic pollutant additive, is quick and produces calibrated ruthenia nanoparticles in high yields. It presents a green alternative to the preparation and use of ruthenia. As examples, two applications are presented. In the first, RuO2 coatings have been tested for their electrical capacitance. In the second, RuO2/TiO2 catalysts, prepared from the controlled deposition of ruthenia nanoparticles on TiO2 particles, have been proven to be highly effective for the production of methane from CO2.
- Published
- 2011
- Full Text
- View/download PDF
41. Chemistry-Structure-Simulation or Chemistry-Simulation-Structure Sequences? The Case of MIL-34, a New Porous Aluminophosphate [J. Am. Chem. Soc. 2001, 123, 9642−9651]
- Author
-
Capucine Sassoye, Clarisse Huguenard, Thierry Loiseau, Francis Taulelle, Nathalie Guillou, Gérard Férey, Stéphanie Girard, and Caroline Mellot-Draznieks
- Subjects
Colloid and Surface Chemistry ,Chemical engineering ,Chemistry ,Structure (category theory) ,General Chemistry ,Porosity ,Biochemistry ,Catalysis - Published
- 2001
- Full Text
- View/download PDF
42. 'Chimie douce': A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials
- Author
-
François Ribot, Laurence Rozes, Lionel Nicole, David Grosso, Cédric Boissière, Clément Sanchez, Christel Laberty-Robert, Capucine Sassoye, Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux Hybrides et Nanomatériaux (LCMCP-MHN), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Novel Advanced Nano-Objects (LCMCP-NANO), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Hierarchical structures ,Solid-state chemistry ,Materials science ,Chemistry(all) ,General Chemical Engineering ,Nanotechnology ,02 engineering and technology ,Mesoporous ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Soft chemistry ,Nanomaterials ,Molecular engineering ,Nano ,Photocatalysis ,Fuel cells ,ComputingMilieux_MISCELLANEOUS ,Sol-gel ,Sensors ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Hybrid ,0104 chemical sciences ,Chemical Engineering(all) ,0210 nano-technology ,Mesoporous material ,Hybrid material - Abstract
“Chimie douce” based strategies allow, through the deep knowledge of materials chemistry and processing, the birth of the molecular engineering of nanomaterials. This feature article will highlight some of the main research accomplishments we have performed during the last years. We describe successively the design and properties of: sol–gel derived hybrids, Nano Building Blocks (NBBs) based hybrid materials, nanostructured porous materials proceeds as thin films and ultra-thin films, aerosol processed mesoporous powders and finally hierarchically structured materials. The importance of the control of the hybrid interfaces via the use of modern tools as DOSY NMR, SAXS, WAXS, Ellipsometry that are very useful to evaluate in situ the hybrid interfaces and the self-assembly processes is emphasized. Some examples of the optical, photocatalytic, electrochemical and mechanical properties of the resulting inorganic or hybrid nanomaterials are also presented.
- Full Text
- View/download PDF
43. A new open-framework fluorinated gallium phosphate with large 18-ring channels (MIL-31)
- Author
-
Gerard Ferey, Capucine Sassoye, Thierry Loiseau, and Francis Taulelle
- Subjects
chemistry.chemical_classification ,Hexagonal crystal system ,Inorganic chemistry ,Metals and Alloys ,General Chemistry ,Crystal structure ,Ring (chemistry) ,Open framework ,Catalysis ,Gallium phosphate ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ion ,chemistry.chemical_compound ,Crystallography ,chemistry ,Chain (algebraic topology) ,Materials Chemistry ,Ceramics and Composites ,Alkyl - Abstract
A new open-framework fluorinated gallium phosphate (MIL-31) containing the Ga9(PO4)9(H2O)(OH)(OH,F)4 5− anion was hydrothermally synthesized by using long alkyl chain diamines (C9 and C10) as structure-directing agents; its crystal structure is built up from hexameric units and exhibits large one-dimensional hexagonal channels delimited by 18-rings.
44. Synthesis of Novel Nanophotocatalyst in Micro/Millifludic Supercritical Reactor
- Author
-
Ravi Anusuyadevi, Prasaanth, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Samuel Marre, Cyril Aymonier, Aline Rougier [Président], Ali Abou-Hassan [Rapporteur], Stéphane Parola [Rapporteur], Capucine Sassoye, and STAR, ABES
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,Nanophotocatalyst ,Supercritique ,Supercritical ,Nitrures ,[CHIM.CATA] Chemical Sciences/Catalysis ,Procédé continu ,[CHIM.CATA]Chemical Sciences/Catalysis ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Nanophotocatalyseur ,Continuous process ,Nitrides - Abstract
This PhD thesis is part of a larger European ITN project (Photo4Future) dealing with improvement of the use of sun light for making valuable products through new heterogeneous catalytic photochemical processes. In this context, the synthesis of nanophotocatalysts is essential since their characteristics must be controlled to optimize the process efficiency towards the desired products. Supercritical fluids synthesis approaches (high pressure / high temperature) have proven to be promising for such developments. Combined to microreactors, it is then possible to reach a precise control of material properties, including surfaces. The objectives of this project are (i) to develop synthetic methods for designing new nanophotocatalysts based on titania and nitrides quantum dots, in particular GaN/TiO2 and GaxIn1-xN/TiO2, (ii) to test their photocatalytics efficiency on several model photochemical reactions (oxidation of thiols, trifluoromethylation and amine to imine conversion), both in batch mode and using continuous flow photochemical reactors and (iii) to investigate the scale-up options for increasing the production rates of such nanophotocatalysts., Ce sujet de thèse fait partie d’un projet européen visant à développer l’utilisation de la lumière solaire pour créer des produits à haute valeur ajoutée en utilisant la photochimie catalytique. Dans ce contexte, la synthèse de nanophotocatalyseurs est essentielle car les caractéristiques des nanomatériaux doit être maîtrisées pour optimiser l'efficacité de la réaction. Les méthodes de synthèses utilisant les fluides supercritiques (haute pression / haute température) se sont révélés être des procédés de choix pour de tels développements. Combinés à l’utilisation de microréacteurs, il est alors possible d’accéder à un contrôle fin des propriétés du matériau, notamment celles de surface. Les objectifs de ce projet sont de (i) développer des procédés de synthèse permettant de concevoir de nouveaux nanophotocatalyseurs basés sur l’oxyde de titane et des nanoparticules de semi-conducteurs de nitrures, en particulier GaN/TiO2 et GaxIn1-xN/TiO2, (ii) de tester l’efficacité photocatalytique de ces matériaux sur plusieurs réactions photochimiques modèles (oxydation des thiols, trifluorométhylation, conversion des amines en imines), à la fois en réacteur fermé et en réacteurs photochimiques sous flux et (iii) d’étudier les options de changement d’échelle pour améliorer les taux de production de ces nanophotocatalyseurs.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.