83 results on '"Campbell BI"'
Search Results
2. Quantification of training load and training response for improving athletic performance
- Author
-
Campbell, BI, Bove, D, Ward, P, Vargas, A, Dolan, J, Campbell, BI, Bove, D, Ward, P, Vargas, A, and Dolan, J
- Abstract
ONE IMPORTANT RESPONSIBILITY OF A STRENGTH AND CONDITIONING COACH IS THE DEVELOPMENT OF A TRAINING PROGRAM THAT ENHANCES PHYSIOLOGICAL QUALITIES, WITH THE GOAL OF IMPROVING ATHLETIC PERFORMANCE. TO ACHIEVE THIS GOAL, COACHES DESIGN TRAINING PROGRAMS THAT SUCCESSFULLY APPROPRIATE AND MANAGE TRAINING VOLUME AND INTENSITY DURING THE ATHLETE'S OFFSEASON, PRESEASON, AND IN-SEASON PERIODS. BY QUANTIFYING TRAINING LOADS AND RESPONSES, COACHES CAN BETTER PRESCRIBE TRAINING STIMULI WHILE ALSO MANAGING STRESS LEVELS. ATHLETEMONITORING STRATEGIES PROVIDE A WAY FOR STRENGTH COACHES TO GATHER USEFUL INFORMATION REGARDING TRAINING DEMANDS AND ATHLETE FATIGUE.
- Published
- 2017
3. Circulating plasma microRNAs in colorectal neoplasia: A pilot study in assessing response to therapy
- Author
-
Stephen J O'Brien, Uri Netz, Jacob Hallion, Campbell Bishop, Vincent Stephen, James Burton, Mason Paas, Kayla Feagins, Jianmin Pan, Shesh N. Rai, and Susan Galandiuk
- Subjects
Colorectal cancer ,Colorectal advanced adenoma ,microRNA ,Surveillance ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Introduction: Current serological surveillance markers to monitor colorectal cancer (CRC) or colorectal advanced adenomas (CAA) are hampered by poor sensitivity and specificity. The aim of this study is to identify and validate a panel of plasma microRNAs which change in expression after resection of such lesions. Methods: A prospectively maintained colorectal surgery database was queried for patients in whom both pre- and post-procedural serum samples had been obtained. An initial screening analysis of CRC and CAA patients (5 each) was conducted using screening cards for 380 miRNAs. Four identified miRNAs were combined with a previously described panel of 7 miRNAs that were diagnostically predictive of CRC and CAA. Differential miRNA expression was assessed using quantitative real-time polymerase chain reaction(qRT-PCR). Results: Fifty patients were included (n = 27 CRC, n = 23 CAA). There was no difference in age, gender, or race profile of CRC patients compared to CAA patients. Six miRNA were significantly increased after CRC resection (miR-324, let7b, miR-454, miR-374a, miR-122, miR-19b, all p
- Published
- 2021
- Full Text
- View/download PDF
4. Supplements for strength-power athletes.
- Author
-
Campbell BI, Wilborn CD, and La Bounty PM
- Abstract
Strength-power athletes improve exercise performance primarily by improving their sport-specific skills. In addition, exercise performance can be enhanced by improving strength, lean muscle mass, and anaerobic exercise performance. Several sports supplements have been documented to enhance these attributes, including creatine monohydrate, beta-alanine, ß-hydroxy ß-methyl-butyrate, and protein. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
5. Early-phase adaptations to a split-body, linear periodization resistance training program in college-aged and middle-aged men.
- Author
-
Kerksick CM, Wilborn CD, Campbell BI, Roberts MD, Rasmussen CJ, Greenwood M, and Kreider RB
- Abstract
An 8-week, split-body, linear periodized resistance training program was completed by college-aged (CA: 18-22 years; n = 24) and middle-aged (MA: 35-50 years; n = 25) men to determine early-phase adaptations in body composition and upper- and lower-body strength. Participants completed 2 upper-body and 2 lower-body resistance training workouts each week. During weeks 1-4, subjects completed 3-6 sets at a 10-repetition maximum (RM) intensity and increased to 8RM for weeks 5-8. The 1RM strength levels were determined on the bench press and leg press, and 30-second Wingate tests were assessed at baseline and after 8 weeks of resistance training. Body composition was assessed using dual-energy X-ray absorptiometry (DXA). For selected data, delta values (post - pre values) were calculated and reported as mean +/- SEM. No changes (p > 0.05) were reported for peak and average Wingate power. Bench press (CA, 3.2 +/- 1.9 kg; MA, 6.2 +/- 3.3 kg; p < 0.001) and leg press (CA, 25.0 +/- 4.4 kg; MA, 18.2 +/- 13.3 kg; p < 0.001) 1RM significantly increased in both groups over time. Lean mass significantly increased over time in both groups (CA, 0.9 +/- 2.4 kg; MA, 1.1 +/- 1.9 kg; p < 0.001). Significant group x time effects were seen for fat mass changes (CA, 0.5 +/- 1.3 kg; MA, -0.5 +/- 1.1 kg; p = 0.01) and % body fat changes (CA, 0.4 +/- 1.4%; MA, -0.7 +/- 1.1%; p = 0.01). These results indicate that performing a split-body, linearly periodized resistance training program for 8 weeks significantly increases bench press 1RM, leg press 1RM, and DXA lean mass in CA and MA men. Furthermore, MA men lost significantly more fat mass and significantly decreased % body fat compared with CA men. A split-body, linearly periodized resistance training program may be used as an effective program to increase strength and lean mass in both young and MA populations. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
6. IκK-16 decreases miRNA-155 expression and attenuates the human monocyte inflammatory response.
- Author
-
Norman James Galbraith, James Burton, Mathew Brady Ekman, Joseph Kenney, Samuel Patterson Walker, Stephen Manek, Campbell Bishop, Jane Victoria Carter, Sarah Appel Gardner, and Hiram C Polk
- Subjects
Medicine ,Science - Abstract
Excessive inflammatory responses in the surgical patient may result in cellular hypo-responsiveness, which is associated with an increased risk of secondary infection and death. microRNAs (miRNAs), such as miR-155, are powerful regulators of inflammatory signalling pathways including nuclear factor κB (NFκB). Our objective was to determine the effect of IκK-16, a selective blocker of inhibitor of kappa-B kinase (IκK), on miRNA expression and the monocyte inflammatory response. In a model of endotoxin tolerance using primary human monocytes, impaired monocytes had decreased p65 expression with suppressed TNF-α and IL-10 production (P < 0.05). miR-155 and miR-138 levels were significantly upregulated at 17 h in the impaired monocyte (P < 0.05). Notably, IκK-16 decreased miR-155 expression with a corresponding dose-dependent decrease in TNF-α and IL-10 production (P < 0.05), and impaired monocyte function was associated with increased miR-155 and miR-138 expression. In the context of IκK-16 inhibition, miR-155 mimics increased TNF-α production, while miR-155 antagomirs decreased both TNF-α and IL-10 production. These data demonstrate that IκK-16 treatment attenuates the monocyte inflammatory response, which may occur through a miR-155-mediated mechanism, and that IκK-16 is a promising approach to limit the magnitude of an excessive innate inflammatory response to LPS.
- Published
- 2017
- Full Text
- View/download PDF
7. Biochemical Effects of Carbohydrate Supplementation in a Simulated Competition of Short Terrestrial Duathlon
- Author
-
Campbell Bill, Kreider Richard, dos Santos Maria, and Mamus Renata
- Subjects
sports nutrition, carbohydrates ,blood glucose ,lactate ,insulin ,cortisol ,Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract The purpose of the present study was to investigate the biochemical effects of carbohydrate supplementation in a simulated competition of short terrestrial duathlon. Ten duathletes participated in a simulated competition of short terrestrial duathlon 30 minutes after the ingestion of a 6% (30 g/500 ml) maltodextrin solution (MALT) or a placebo (PLA). This solution was also ingested every 15 minutes during the competition (12 g/200 ml); and immediately after the competition (18 g/300 ml). Samples of blood were collected at 3 time points: 1) at rest 1 hour before the beginning of the competition; 2) during the competition (approximately 1 hour and 45 minutes after the 1st collection); 3) immediately after the competition. Blood was analyzed for blood glucose, lactate, insulin and cortisol. Significant differences were observed in relation to blood glucose levels between MALT and PLA in the post-competition phase. There was also a significant difference in the lactate levels observed between MALT and PLA during the competition phase. Similarly, a significant difference in the cortisol concentrations during and after the competition phases (MALT and PLA) were observed. We conclude that maltodextrin supplementation appears to be beneficial during short terrestrial duathlon competition as evidenced by biochemical markers.
- Published
- 2006
- Full Text
- View/download PDF
8. Effects of Methoxyisoflavone, Ecdysterone, and Sulfo-Polysaccharide Supplementation on Training Adaptations in Resistance-Trained Males
- Author
-
Greenwood Michael, Rasmussen Chris J, Kerksick Chad, Campbell Bill I, Taylor Lemuel W, Wilborn Colin D, and Kreider Richard B
- Subjects
resistance training ,sports nutrition ,supplementation ,exercise ,anabolic ,Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Purpose Methoxyisoflavone (M), 20-hydroxyecdysone (E), and sulfo-polysaccharide (CSP3) have been marketed to athletes as dietary supplements that can increase strength and muscle mass during resistance-training. However, little is known about their potential ergogenic value. The purpose of this study was to determine whether these supplements affect training adaptations and/or markers of muscle anabolism/catabolism in resistance-trained athletes. Methods Forty-five resistance-trained males (20.5 ± 3 yrs; 179 ± 7 cm, 84 ± 16 kg, 17.3 ± 9% body fat) were matched according to FFM and randomly assigned to ingest in a double blind manner supplements containing either a placebo (P); 800 mg/day of M; 200 mg of E; or, 1,000 mg/day of CSP3 for 8-weeks during training. At 0, 4, and 8-weeks, subjects donated fasting blood samples and completed comprehensive muscular strength, muscular endurance, anaerobic capacity, and body composition analysis. Data were analyzed by repeated measures ANOVA. Results No significant differences (p > 0.05) were observed in training adaptations among groups in the variables FFM, percent body fat, bench press 1 RM, leg press 1 RM or sprint peak power. Anabolic/catabolic analysis revealed no significant differences among groups in active testosterone (AT), free testosterone (FT), cortisol, the AT to cortisol ratio, urea nitrogen, creatinine, the blood urea nitrogen to creatinine ratio. In addition, no significant differences were seen from pre to post supplementation and/or training in AT, FT, or cortisol. Conclusion Results indicate that M, E, and CSP3 supplementation do not affect body composition or training adaptations nor do they influence the anabolic/catabolic hormone status or general markers of catabolism in resistance-trained males.
- Published
- 2006
- Full Text
- View/download PDF
9. Obesity: Prevalence, Theories, Medical Consequences, Management, and Research Directions
- Author
-
Nassar Erika, La Bounty Paul, Galbreath Melyn, Harvey Travis, Campbell Bill, Beckham Jacqueline, Wilborn Colin, Wismann Jennifer, and Kreider Richard
- Subjects
weight loss ,diet ,exercise ,physical activity ,leptin ,cortisol ,metabolic syndrome ,Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Obesity and its associated disorders are a growing epidemic across the world. Many genetic, physiological, and behavioral factors play a role in the etiology of obesity. Diet and exercise are known to play a valuable role in the treatment and prevention of obesity and associated disorders such as hypertension, heart disease, and diabetes. Therefore, the purpose of this review is to examine the prevalence, etiology, consequences, and treatment of obesity.
- Published
- 2005
- Full Text
- View/download PDF
10. Effects of Zinc Magnesium Aspartate (ZMA) Supplementation on Training Adaptations and Markers of Anabolism and Catabolism
- Author
-
Almada Anthony, Greenwood Mike C, Rasmussen Christopher J, Marcello Brandon M, Taylor Lem W, Campbell Bill I, Kerksick Chad M, Wilborn Colin D, and Kreider Richard B
- Subjects
sports nutrition ,resistance training ,zinc ,magnesium ,ergogenic aids ,Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA) during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat) were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P) or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12). However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.
- Published
- 2004
- Full Text
- View/download PDF
11. The Ergogenic Potential of Arginine
- Author
-
La Bounty Paul M, Campbell Bill I, and Roberts Mike
- Subjects
sports supplements ,sports nutrition ,amino acids ,nitric oxide ,Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Arginine is a conditionally essential amino acid that is involved in protein synthesis, the detoxification of ammonia, and its conversion to glucose as well as being catabolized to produce energy. In addition to these physiological functions, arginine has been purported to have ergogenic potential. Athletes have taken arginine for three main reasons: 1) its role in the secretion of endogenous growth hormone; 2) its involvement in the synthesis of creatine; 3) its role in augmenting nitric oxide. These aspects of arginine supplementation will be discussed as well as a review of clinical investigations involving exercise performance and arginine ingestion.
- Published
- 2004
- Full Text
- View/download PDF
12. Sports Nutrition: What the Future may Bring
- Author
-
Campbell Bill and Kalman Douglas S
- Subjects
sport nutrition ,ergogenic aids ,Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract The field of sports nutrition is a dynamic one. Core competencies in exercise physiology, psychology, integrated metabolism and biochemistry are the initial parameters for a successful career in sports nutrition. In addition to the academic fundamentals, it is imperative that the sports nutritionist understand the sport in which our client participates. This sport specific understanding should manifest itself in fuel utilization, mechanics of movement, as well as psychological processes that motivate the participant to perform optimally. Sports nutrition as a field has grown substantially over the past 50 years, from glycogen loading to today's scientifically validated ergogenic aids. The last ten years has seen the largest advancement of sports nutrition, with the following areas driving much of the research: the effects of exercise on protein utilization, meal timing to maximize the anabolic response, the potential for ribose to benefit those engaged in high-energy repetitive sports, and creatine and its uses within athletics and medicine. The future of sports nutrition will dictate that we 1) collectively strive for a higher standard of care and education for counseling athletes and 2) integrate different disciplines. We are in an era of unprecedented growth and the new knowledge is constantly evolving. The International Society of Sports Nutrition (ISSN) will contribute to this exciting field in many ways, and we ask for your contribution by sharing your passion, stories, research, and life experiences with us.
- Published
- 2004
- Full Text
- View/download PDF
13. Effects of ingesting Dyma-Burn Xtreme, a thermogenic dietary supplement on metabolic rate and subjective measures of mood state
- Author
-
Urbina Stacie, Jones Craig, Hayward Sara, Foster Cliffa, Wells Shawn, Wildman Rob, Campbell Bill, Taylor Lem, and Wilborn Colin
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2012
- Full Text
- View/download PDF
14. The effects of ß-alanine on body composition and performance measures in collegiate females
- Author
-
Buckley Amanda, Smith Abbie, Scoggins Chelsey, Jones Craig, Holt Josh, Sillasen Elizabeth, Cox Brooke, Urbina Stacie, Campbell Bill, Foster Cliffa, Taylor Lem W, and Wilborn Colin D
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2012
- Full Text
- View/download PDF
15. Self-reported energy intake of male & female bodybuilders in the scientific literature
- Author
-
Lankford Brad and Campbell Bill I
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2012
- Full Text
- View/download PDF
16. Evaluation of ingesting Dyma-Burn Xtreme, a thermogenic dietary supplement, on hemodynamic and ECG responses in healthy, young males and females
- Author
-
Jones Craig, Hayward Sara, Urbina Stacie, Foster Cliffa, Wells Shawn, Wildman Rob, Campbell Bill, Taylor Lem, and Wilborn Colin
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2012
- Full Text
- View/download PDF
17. A commercially available energy drink does not improve peak power production on multiple 20-second Wingate tests
- Author
-
Campbell Bill I, Kilpatrick Marcus, Wilborn Colin, La Bounty Paul, Parker Brittany, Gomez Brittany, Elkins Ava, Williams Sean, and dos Santos Maria
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2010
- Full Text
- View/download PDF
18. The effects of a starch based carbohydrate alone or in combination with whey protein on a subsequent bout of exercise performance – preliminary findings
- Author
-
Lutz Rafer, Greenwood Mike, Mistry Haleigh, Vanta Josh, Campbell Bill, Cooke Matt, La Bounty Paul, and Willoughby Darryn
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2009
- Full Text
- View/download PDF
19. The effects of Amped Up on hemodynamic function and energy expenditure at rest
- Author
-
Foster Cliffa, Taylor Lem, Poole Chris, Wilborn Colin, Bushey Brandon, and Campbell Bill
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2008
- Full Text
- View/download PDF
20. Effects of Torabolic supplementation on strength and body composition during an 8-week resistance training program
- Author
-
Willoughby Darryn, Campbell Bill, Foster Cliffa, Taylor L Lem, Poole Chris, Bushey Brandon, Wilborn Colin, and Kreider Richard
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2008
- Full Text
- View/download PDF
21. The effects of BCAA and leucine supplementation and lower-body resistance exercise on the ERK 1/2 MAPK pathway signal transduction
- Author
-
Oetken Austin, La Bounty Paul, Campbell Bill, and Willoughby Darryn
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2008
- Full Text
- View/download PDF
22. The effect of BCAA supplementation on serum insulin secretion before, during, and following a lower-body resistance exercise bout
- Author
-
La Bounty Paul, Campbell Bill, Oetken Austin, and Willoughby Darryn
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2008
- Full Text
- View/download PDF
23. International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)
- Author
-
Wilson Jacob M, Fitschen Peter J, Campbell Bill, Wilson Gabriel J, Zanchi Nelo, Taylor Lem, Wilborn Colin, Kalman Douglas S, Stout Jeffrey R, Hoffman Jay R, Ziegenfuss Tim N, Lopez Hector L, Kreider Richard B, Smith-Ryan Abbie E, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close proximity to their workout. 3. HMB appears to be most effective when consumed for 2 weeks prior to an exercise bout. 4. Thirty-eight mg·kg·BM-1 daily of HMB has been demonstrated to enhance skeletal muscle hypertrophy, strength, and power in untrained and trained populations when the appropriate exercise prescription is utilized. 5. Currently, two forms of HMB have been used: Calcium HMB (HMB-Ca) and a free acid form of HMB (HMB-FA). HMB-FA may increase plasma absorption and retention of HMB to a greater extent than HMB-CA. However, research with HMB-FA is in its infancy, and there is not enough research to support whether one form is superior. 6. HMB has been demonstrated to increase LBM and functionality in elderly, sedentary populations. 7. HMB ingestion in conjunction with a structured exercise program may result in greater declines in fat mass (FM). 8. HMB’s mechanisms of action include an inhibition and increase of proteolysis and protein synthesis, respectively. 9. Chronic consumption of HMB is safe in both young and old populations.
- Published
- 2013
- Full Text
- View/download PDF
24. International Society of Sports Nutrition position stand: energy drinks
- Author
-
Campbell Bill, Wilborn Colin, La Bounty Paul, Taylor Lem, Nelson Mike T, Greenwood Mike, Ziegenfuss Tim N, Lopez Hector L, Hoffman Jay R, Stout Jeffrey R, Schmitz Stephen, Collins Rick, Kalman Doug S, Antonio Jose, and Kreider Richard B
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the safety and efficacy of the use of energy drinks (ED) or energy shots (ES). The ISSN has concluded the following. 1. Although ED and ES contain a number of nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES appear to be carbohydrate and/or caffeine. 2. The ergogenic value of caffeine on mental and physical performance has been well-established but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. 3. Consuming ED 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance. 4. Many ED and ES contain numerous ingredients; these products in particular merit further study to demonstrate their safety and potential effects on physical and mental performance. 5. There is some limited evidence that consumption of low-calorie ED during training and/or weight loss trials may provide ergogenic benefit and/or promote a small amount of additional fat loss. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. 6. Athletes should consider the impact of ingesting high glycemic load carbohydrates on metabolic health, blood glucose and insulin levels, as well as the effects of caffeine and other stimulants on motor skill performance. 7. Children and adolescents should only consider use of ED or ES with parental approval after consideration of the amount of carbohydrate, caffeine, and other nutrients contained in the ED or ES and a thorough understanding of the potential side effects. 8. Indiscriminant use of ED or ES, especially if more than one serving per day is consumed, may lead to adverse events and harmful side effects. 9. Diabetics and individuals with pre-existing cardiovascular, metabolic, hepatorenal, and neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should avoid use of ED and/or ES unless approved by their physician.
- Published
- 2013
- Full Text
- View/download PDF
25. Effects of diet type and supplementation of glucosamine, chondroitin, and MSM on body composition, functional status, and markers of health in women with knee osteoarthritis initiating a resistance-based exercise and weight loss program
- Author
-
Dugan Kristin, Cooke Matt, Li Rui, Iosia Mike, Nassar Erica, Kerksick Chad M, Campbell Bill, Greenwood Lori, Ferreira Maria, Rasmussen Christopher, Wilborn Colin, Magrans-Courtney Teresa, Willoughby Darryn, Soliah LuAnn, and Kreider Richard B
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Background The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation. Methods Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2) with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC) or higher protein (HP) diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL), 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium), and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures. Results Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%), fat mass (-6.0 ± 6%), and body fat (-3.5 ± 4%) with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39%) and knee stiffness (-42 ± 37%) was decreased while maximal strength (12%), muscular endurance (20%), balance indices (7% to 20%), lipid levels (-8% to -12%), homeostasis model assessment for estimating insulin resistance (-17%), leptin (-30%), and measures of physical functioning (59%), vitality (120%), and social function (66%) were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected perceptions of knee pain (p < 0.08). Conclusions Circuit style resistance-training and weight loss improved functional capacity in women with knee OA. The type of diet and dietary supplementation of GCM provided marginal additive benefits. Trial Registration ClinicalTrials.gov: NCT01271218
- Published
- 2011
- Full Text
- View/download PDF
26. International Society of Sports Nutrition position stand: meal frequency
- Author
-
Stout Jeffrey R, Kreider Richard B, Kleiner Susan M, Berardi John, Galvan Elfego, Wilson Jacob, Campbell Bill I, La Bounty Paul M, Ziegenfuss Tim, Spano Marie, Smith Abbie, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Position Statement: Admittedly, research to date examining the physiological effects of meal frequency in humans is somewhat limited. More specifically, data that has specifically examined the impact of meal frequency on body composition, training adaptations, and performance in physically active individuals and athletes is scant. Until more research is available in the physically active and athletic populations, definitive conclusions cannot be made. However, within the confines of the current scientific literature, we assert that: 1. Increasing meal frequency does not appear to favorably change body composition in sedentary populations. 2. If protein levels are adequate, increasing meal frequency during periods of hypoenergetic dieting may preserve lean body mass in athletic populations. 3. Increased meal frequency appears to have a positive effect on various blood markers of health, particularly LDL cholesterol, total cholesterol, and insulin. 4. Increased meal frequency does not appear to significantly enhance diet induced thermogenesis, total energy expenditure or resting metabolic rate. 5. Increasing meal frequency appears to help decrease hunger and improve appetite control. The following literature review has been prepared by the authors in support of the aforementioned position statement.
- Published
- 2011
- Full Text
- View/download PDF
27. Changes in weight loss, body composition and cardiovascular disease risk after altering macronutrient distributions during a regular exercise program in obese women
- Author
-
Roberts Mike D, Harvey Travis, Wilborn Colin D, Campbell Bill I, Taylor Lem, Thomas Ashli R, Fogt Donovan, Wismann-Bunn Jennifer, Kerksick Chad M, La Bounty Paul, Galbreath Melyn, Marcello Brandon, Rasmussen Christopher J, and Kreider Richard B
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Nutritional diseases. Deficiency diseases ,RC620-627 - Abstract
Abstract Background This study's purpose investigated the impact of different macronutrient distributions and varying caloric intakes along with regular exercise for metabolic and physiological changes related to weight loss. Methods One hundred forty-one sedentary, obese women (38.7 ± 8.0 yrs, 163.3 ± 6.9 cm, 93.2 ± 16.5 kg, 35.0 ± 6.2 kg•m-2, 44.8 ± 4.2% fat) were randomized to either no diet + no exercise control group (CON) a no diet + exercise control (ND), or one of four diet + exercise groups (high-energy diet [HED], very low carbohydrate, high protein diet [VLCHP], low carbohydrate, moderate protein diet [LCMP] and high carbohydrate, low protein [HCLP]) in addition to beginning a 3x•week-1 supervised resistance training program. After 0, 1, 10 and 14 weeks, all participants completed testing sessions which included anthropometric, body composition, energy expenditure, fasting blood samples, aerobic and muscular fitness assessments. Data were analyzed using repeated measures ANOVA with an alpha of 0.05 with LSD post-hoc analysis when appropriate. Results All dieting groups exhibited adequate compliance to their prescribed diet regimen as energy and macronutrient amounts and distributions were close to prescribed amounts. Those groups that followed a diet and exercise program reported significantly greater anthropometric (waist circumference and body mass) and body composition via DXA (fat mass and % fat) changes. Caloric restriction initially reduced energy expenditure, but successfully returned to baseline values after 10 weeks of dieting and exercising. Significant fitness improvements (aerobic capacity and maximal strength) occurred in all exercising groups. No significant changes occurred in lipid panel constituents, but serum insulin and HOMA-IR values decreased in the VLCHP group. Significant reductions in serum leptin occurred in all caloric restriction + exercise groups after 14 weeks, which were unchanged in other non-diet/non-exercise groups. Conclusions Overall and over the entire test period, all diet groups which restricted their caloric intake and exercised experienced similar responses to each other. Regular exercise and modest caloric restriction successfully promoted anthropometric and body composition improvements along with various markers of muscular fitness. Significant increases in relative energy expenditure and reductions in circulating leptin were found in response to all exercise and diet groups. Macronutrient distribution may impact circulating levels of insulin and overall ability to improve strength levels in obese women who follow regular exercise.
- Published
- 2010
- Full Text
- View/download PDF
28. The effects of a commercially available botanical supplement on strength, body composition, power output, and hormonal profiles in resistance-trained males
- Author
-
Kreider Richard, Willoughby Darryn, Campbell Bill, Foster Cliffa, Bushey Brandon, Poole Chris, Taylor Lem, and Wilborn Colin
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Background Fenugreek (Trigonella foenum-graecum) is a leguminous, annual plant originating in India and North Africa. In recent years Fenugreek has been touted as an ergogenic aid. The purpose of this study was to evaluate the effects of Fenugreek supplementation on strength and body composition. Methods 49 Resistance trained men were matched according to body weight and randomly assigned to ingest in a double blind manner capsules containing 500 mg of a placebo (N = 23, 20 ± 1.9 years, 178 ± 6.3 cm, 85 ± 12.7 kg, 17 ± 5.6 %BF) or Fenugreek (N = 26, 21 ± 2.8 years, 178 ± 6 cm, 90 ± 18.2 kg, 19.3 ± 8.4 %BF). Subjects participated in a supervised 4-day per week periodized resistance-training program split into two upper and two lower extremity workouts per week for a total of 8-weeks. At 0, 4, and 8-weeks, subjects underwent hydrodensiometery body composition, 1-RM strength, muscle endurance, and anaerobic capacity testing. Data were analyzed using repeated measures ANOVA and are presented as mean ± SD changes from baseline after 60-days. Results No significant differences (p > 0.05) between groups were noted for training volume. Significant group × time interaction effects were observed among groups in changes in body fat (FEN: -2.3 ± 1.4%BF; PL: -0.39 ± 1.6 %BF, p < 0.001), leg press 1-RM (FEN: 84.6 ± 36.2 kg; PL: 48 ± 29.5 kg, p < 0.001), and bench press 1-RM (FEN: 9.1 ± 6.9 kg; PL: 4.3 ± 5.6 kg, p = 0.01). No significant interactions was observed among groups for Wingate power analysis (p = 0.95) or muscular endurance on bench press (p = 0.87) or leg press (p = 0.61). In addition, there were no changes among groups in any clinical safety data including lipid panel, liver function, kidney function, and/or CBC panel (p > 0.05). Conclusion It is concluded that 500 mg of this proprietary Fenugreek extraction had a significant impact on both upper- and lower-body strength and body composition in comparison to placebo in a double blind controlled trial. These changes were obtained with no clinical side effects.
- Published
- 2010
- Full Text
- View/download PDF
29. ISSN exercise & sport nutrition review: research & recommendations
- Author
-
Mendel Ron, Lowery Lonnie M, Lopez Hector, Leutholtz Brian, Kleiner Susan M, Kerksick Chad M, Kalman Douglas S, Greenwood Mike, Earnest Conrad P, Cooke Mathew, Collins Rick, Almada Anthony L, Campbell Bill, Taylor Lem, Wilborn Colin D, Kreider Richard B, Smith Abbie, Spano Marie, Wildman Robert, Willoughby Darryn S, Ziegenfuss Tim N, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients.
- Published
- 2010
- Full Text
- View/download PDF
30. International society of sports nutrition position stand: caffeine and performance
- Author
-
Wildman Robert, Graves B Sue, Stout Jeff, Willoughby Darryn, Taylor Lem, Wilborn Colin, Campbell Bill, Kreider Richard, Kalman Doug, Ziegenfuss Tim, Goldstein Erica R, Ivy John L, Spano Marie, Smith Abbie E, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.
- Published
- 2010
- Full Text
- View/download PDF
31. Effects of a popular exercise and weight loss program on weight loss, body composition, energy expenditure and health in obese women
- Author
-
Magrans-Courtney Teresa, Opusunju Jasmine, Grimstvedt Megan, Pfau Emily, Roberts Mike, Marcello Brandon, Wilborn Colin, Taylor Lem, Campbell Bill, Thomas Ashli, Kerksick Chad, Rasmussen Christopher, Wilson Ron, and Kreider Richard B
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Nutritional diseases. Deficiency diseases ,RC620-627 - Abstract
Abstract Objective To determine the safety and efficacy of altering the ratio of carbohydrate and protein in low-energy diets in conjunction with a popular exercise program in obese women. Design Matched, prospective clinical intervention study to assess efficacy of varying ratios of carbohydrate and protein intake in conjunction with a regular exercise program. Participants One-hundred sixty one sedentary, obese, pre-menopausal women (38.5 ± 8.5 yrs, 164.2 ± 6.7 cm, 94.2 ± 18.8 kg, 34.9 ± 6.4 kg·m-2, 43.8 ± 4.2%) participated in this study. Participants were weight stable and not participating in additional weight loss programs. Methods Participants were assigned to either a no exercise + no diet control (CON), a no diet + exercise group (ND), or one of four diet + exercise groups (presented as kcals; % carbohydrate: protein: fat): 1) a high energy, high carbohydrate, low protein diet (HED) [2,600; 55:15:30%], 2) a very low carbohydrate, high protein diet (VLCHP) [1,200 kcals; 63:7:30%], 3) a low carbohydrate, moderate protein diet (LCMP) [1,200 kcals; 50:20:30%] and 4) a high carbohydrate, low protein diet (HCLP) [1,200 kcals; 55:15:30%]. Participants in exercise groups (all but CON) performed a pneumatic resistance-based, circuit training program under supervision three times per week. Measurements Anthropometric, body composition, resting energy expenditure (REE), fasting blood samples and muscular fitness assessments were examined at baseline and weeks 2, 10 and 14. Results All groups except CON experienced significant reductions (P < 0.05 – 0.001) in waist circumference over 14 weeks. VLCHP, LCHP and LPHC participants experienced similar but significant (P < 0.05 – 0.001) reductions in body mass when compared to other groups. Delta responses indicated that fat loss after 14 weeks was significantly greatest in VLCHP (95% CI: -5.2, -3.2 kg), LCMP (-4.0, -1.9 kg) and HCLP (-3.8, -2.1 kg) when compared to other groups. Subsequent reductions in % body fat were significantly greater in VLCHP, LCMP and HCLP participants. Initial dieting decreased (P < 0.05) relative REE similarly in all groups. All exercise groups significantly (P < 0.05) improved in muscular fitness, but these improvements were not different among groups. Favorable but non-significant mean changes occurred in lipid panels, glucose and HOMA-IR. Leptin levels decreased (P < 0.05) in all groups, except for CON, after two weeks of dieting and remained lower throughout the 14 week program. Exercise participation resulted in significant improvements in quality of life and body image. Conclusion Exercise alone (ND) appears to have minimal impact on measured outcomes with positive outcomes apparent when exercise is combined with a hypoenergetic diet. Greater improvements in waist circumference and body composition occurred when carbohydrate is replaced in the diet with protein. Weight loss in all diet groups (VLCHP, LCMP and HCLP) was primarily fat and stimulated improvements in markers of cardiovascular disease risk, body composition, energy expenditure and psychosocial parameters.
- Published
- 2009
- Full Text
- View/download PDF
32. Correction: International Society of Sports Nutrition position stand: Nutrient timing
- Author
-
Ziegenfuss Tim, Kalman Doug, Kreider Richard, Wilborn Colin, Campbell Bill, Stout Jeff, Harvey Travis, Kerksick Chad, Lopez Hector, Landis Jamie, Ivy John L, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2008
- Full Text
- View/download PDF
33. International Society of Sports Nutrition position stand: Nutrient timing
- Author
-
Ziegenfuss Tim, Kalman Doug, Kreider Richard, Wilborn Colin, Campbell Bill, Stout Jeff, Harvey Travis, Kerksick Chad, Lopez Hector, Landis Jamie, Ivy John L, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Position Statement: The position of the Society regarding nutrient timing and the intake of carbohydrates, proteins, and fats in reference to healthy, exercising individuals is summarized by the following eight points: 1.) Maximal endogenous glycogen stores are best promoted by following a high-glycemic, high-carbohydrate (CHO) diet (600 – 1000 grams CHO or ~8 – 10 g CHO/kg/d), and ingestion of free amino acids and protein (PRO) alone or in combination with CHO before resistance exercise can maximally stimulate protein synthesis. 2.) During exercise, CHO should be consumed at a rate of 30 – 60 grams of CHO/hour in a 6 – 8% CHO solution (8 – 16 fluid ounces) every 10 – 15 minutes. Adding PRO to create a CHO:PRO ratio of 3 – 4:1 may increase endurance performance and maximally promotes glycogen re-synthesis during acute and subsequent bouts of endurance exercise. 3.) Ingesting CHO alone or in combination with PRO during resistance exercise increases muscle glycogen, offsets muscle damage, and facilitates greater training adaptations after either acute or prolonged periods of supplementation with resistance training. 4.) Post-exercise (within 30 minutes) consumption of CHO at high dosages (8 – 10 g CHO/kg/day) have been shown to stimulate muscle glycogen re-synthesis, while adding PRO (0.2 g – 0.5 g PRO/kg/day) to CHO at a ratio of 3 – 4:1 (CHO: PRO) may further enhance glycogen re-synthesis. 5.) Post-exercise ingestion (immediately to 3 h post) of amino acids, primarily essential amino acids, has been shown to stimulate robust increases in muscle protein synthesis, while the addition of CHO may stimulate even greater levels of protein synthesis. Additionally, pre-exercise consumption of a CHO + PRO supplement may result in peak levels of protein synthesis. 6.) During consistent, prolonged resistance training, post-exercise consumption of varying doses of CHO + PRO supplements in varying dosages have been shown to stimulate improvements in strength and body composition when compared to control or placebo conditions. 7.) The addition of creatine (Cr) (0.1 g Cr/kg/day) to a CHO + PRO supplement may facilitate even greater adaptations to resistance training. 8.) Nutrient timing incorporates the use of methodical planning and eating of whole foods, nutrients extracted from food, and other sources. The timing of the energy intake and the ratio of certain ingested macronutrients are likely the attributes which allow for enhanced recovery and tissue repair following high-volume exercise, augmented muscle protein synthesis, and improved mood states when compared with unplanned or traditional strategies of nutrient intake.
- Published
- 2008
- Full Text
- View/download PDF
34. Effects of arachidonic acid supplementation on training adaptations in resistance-trained males
- Author
-
Greenwood Mike, Rasmussen Chris, Cooke Matthew, Harvey Travis, Wilborn Colin D, Campbell Bill, Taylor Lem W, Kerksick Chad M, Iosia Mike, Roberts Michael D, Wilson Ronald, Jitomir Jean, Willoughby Darryn, and Kreider Richard B
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Background To determine the impact of AA supplementation during resistance training on body composition, training adaptations, and markers of muscle hypertrophy in resistance-trained males. Methods In a randomized and double blind manner, 31 resistance-trained male subjects (22.1 ± 5.0 years, 180 ± 0.1 cm, 86.1 ± 13.0 kg, 18.1 ± 6.4% body fat) ingested either a placebo (PLA: 1 g·day-1 corn oil, n = 16) or AA (AA: 1 g·day-1 AA, n = 15) while participating in a standardized 4 day·week-1 resistance training regimen. Fasting blood samples, body composition, bench press one-repetition maximum (1RM), leg press 1RM and Wingate anaerobic capacity sprint tests were completed after 0, 25, and 50 days of supplementation. Percutaneous muscle biopsies were taken from the vastus lateralis on days 0 and 50. Results Wingate relative peak power was significantly greater after 50 days of supplementation while the inflammatory cytokine IL-6 was significantly lower after 25 days of supplementation in the AA group. PGE2 levels tended to be greater in the AA group. However, no statistically significant differences were observed between groups in body composition, strength, anabolic and catabolic hormones, or markers of muscle hypertrophy (i.e. total protein content or MHC type I, IIa, and IIx protein content) and other intramuscular markers (i.e. FP and EP3 receptor density or MHC type I, IIa, and IIx mRNA expression). Conclusion AA supplementation during resistance-training may enhance anaerobic capacity and lessen the inflammatory response to training. However, AA supplementation did not promote statistically greater gains in strength, muscle mass, or influence markers of muscle hypertrophy.
- Published
- 2007
- Full Text
- View/download PDF
35. International Society of Sports Nutrition position stand: protein and exercise
- Author
-
Landis Jamie, Burke Darren, Roberts Mike, La Bounty Paul, Ziegenfuss Tim, Kreider Richard B, Campbell Bill, Lopez Hector, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Abstract Position Statement The following seven points related to the intake of protein for healthy, exercising individuals constitute the position stand of the Society. They have been approved by the Research Committee of the Society. 1) Vast research supports the contention that individuals engaged in regular exercise training require more dietary protein than sedentary individuals. 2) Protein intakes of 1.4 – 2.0 g/kg/day for physically active individuals is not only safe, but may improve the training adaptations to exercise training. 3) When part of a balanced, nutrient-dense diet, protein intakes at this level are not detrimental to kidney function or bone metabolism in healthy, active persons. 4) While it is possible for physically active individuals to obtain their daily protein requirements through a varied, regular diet, supplemental protein in various forms are a practical way of ensuring adequate and quality protein intake for athletes. 5) Different types and quality of protein can affect amino acid bioavailability following protein supplementation. The superiority of one protein type over another in terms of optimizing recovery and/or training adaptations remains to be convincingly demonstrated. 6) Appropriately timed protein intake is an important component of an overall exercise training program, essential for proper recovery, immune function, and the growth and maintenance of lean body mass. 7) Under certain circumstances, specific amino acid supplements, such as branched-chain amino acids (BCAA's), may improve exercise performance and recovery from exercise.
- Published
- 2007
- Full Text
- View/download PDF
36. International Society of Sports Nutrition position stand: creatine supplementation and exercise
- Author
-
Ziegenfuss Tim, Spano Marie, Campbell Bill, Greenwood Mike, Stout Jeffrey R, Kreider Richard B, Buford Thomas W, Lopez Hector, Landis Jamie, and Antonio Jose
- Subjects
Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Published
- 2007
- Full Text
- View/download PDF
37. International society of sports nutrition position stand: ketogenic diets.
- Author
-
Leaf A, Rothschild JA, Sharpe TM, Sims ST, Macias CJ, Futch GG, Roberts MD, Stout JR, Ormsbee MJ, Aragon AA, Campbell BI, Arent SM, D'Agostino DP, Barrack MT, Kerksick CM, Kreider RB, Kalman DS, and Antonio J
- Subjects
- Humans, Body Composition, Ketosis, Sports Nutritional Sciences, Dietary Carbohydrates administration & dosage, Exercise physiology, Physical Endurance physiology, Diet, Ketogenic, Athletic Performance physiology, Sports Nutritional Physiological Phenomena
- Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the use of a ketogenic diet in healthy exercising adults, with a focus on exercise performance and body composition. However, this review does not address the use of exogenous ketone supplements. The following points summarize the position of the ISSN., 1. A ketogenic diet induces a state of nutritional ketosis, which is generally defined as serum ketone levels above 0.5 mM. While many factors can impact what amount of daily carbohydrate intake will result in these levels, a broad guideline is a daily dietary carbohydrate intake of less than 50 grams per day., 2. Nutritional ketosis achieved through carbohydrate restriction and a high dietary fat intake is not intrinsically harmful and should not be confused with ketoacidosis, a life-threatening condition most commonly seen in clinical populations and metabolic dysregulation., 3. A ketogenic diet has largely neutral or detrimental effects on athletic performance compared to a diet higher in carbohydrates and lower in fat, despite achieving significantly elevated levels of fat oxidation during exercise (~1.5 g/min)., 4. The endurance effects of a ketogenic diet may be influenced by both training status and duration of the dietary intervention, but further research is necessary to elucidate these possibilities. All studies involving elite athletes showed a performance decrement from a ketogenic diet, all lasting six weeks or less. Of the two studies lasting more than six weeks, only one reported a statistically significant benefit of a ketogenic diet., 5. A ketogenic diet tends to have similar effects on maximal strength or strength gains from a resistance training program compared to a diet higher in carbohydrates. However, a minority of studies show superior effects of non-ketogenic comparators., 6. When compared to a diet higher in carbohydrates and lower in fat, a ketogenic diet may cause greater losses in body weight, fat mass, and fat-free mass, but may also heighten losses of lean tissue. However, this is likely due to differences in calorie and protein intake, as well as shifts in fluid balance., 7. There is insufficient evidence to determine if a ketogenic diet affects males and females differently. However, there is a strong mechanistic basis for sex differences to exist in response to a ketogenic diet.
- Published
- 2024
- Full Text
- View/download PDF
38. Tirzepatide and exercise training in obesity.
- Author
-
Bagherzadeh-Rahmani B, Marzetti E, Karami E, Campbell BI, Fakourian A, Haghighi AH, Mousavi SH, Heinrich KM, Brazzi L, Jung F, Baker JS, and Patel DI
- Subjects
- Humans, Male, Adult, Insulin Resistance, Resistance Training methods, Exercise physiology, Body Mass Index, Obesity therapy, Obesity blood, Obesity physiopathology
- Abstract
Objectives: The purpose of this study was to investigate the effects of 6 weeks of resistance training (RT) combined with aerobic training (AT) and Tirzepatide supplementation on lipid profiles, insulin resistance, anthropometric characteristics and physical fitness in prediabetic obese soldiers., Methods: 61 obese men were randomly divided into six groups: Placebo; Tirzepatide 5 mg (T5); Tirzepatide 2.5 mg (T2.5); Hypertrophy, Strength, Power-Circuit Training+Placebo (Ex+P); Hypertrophy, Strength, Power-Circuit Training+Tirzepatide 5 mg (Ex+T5); Hypertrophy, Strength, Power-Circuit Training+Tirzepatide 2.5 mg (Ex+T2.5). All training groups performed aerobic training (AT) after resistance training. Subjects trained for six weeks, three sessions per week. Before and after the intervention period, the participants were evaluated for anthropometric measures, body composition [body weight, body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and fat mass (FM)], cardiorespiratory fitness (VO2max), and muscle strength (chest press 1RM and leg press 1RM). Blood biochemistry evaluations included triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), insulin level and insulin resistance (HOMA-IR). To evaluate the differences between the groups, ANCOVA statistical method was used along with Bonferroni's post hoc test, and the significance level was P < 0.05., Results: Body weight, BMI, WC, FM, FBG, LDL-C, TC, TG and HOMA-IR were significantly decreased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo, T5 and T2.5 groups. WHR significantly decreased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo group. HDL-C, chest press and leg press significantly increased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo, T5 and T2.5 groups. VO2max significantly increased and insulin significantly decreased in Ex+P group compared to Placebo, T5 and T2.5 groups. FM, FBG and TG were significantly decreased in both the T2.5 and T5 groups compared to Placebo group. HOMA-IR, LDL-C and TC significantly decreased in the T5 group compared to Placebo group. Also, leg press significantly increased in Ex+P group compared to all other groups., Conclusions: Performing six weeks of combined resistance and aerobic training in the form of RT+AT alone is more effective than the simultaneous use of Tirzepatide on cardiorespiratory fitness, strength, and modulating insulin levels. Taking Tirzepatide in doses of 5 mg and 2.5 mg in combination with exercise training did not have a significant advantage over exercise training alone. Finally, taking Tirzepatide in doses of 5 mg or 2.5 mg in combination with exercise training is not significantly superior to each other.
- Published
- 2024
- Full Text
- View/download PDF
39. International society of sports nutrition position stand: energy drinks and energy shots.
- Author
-
Jagim AR, Harty PS, Tinsley GM, Kerksick CM, Gonzalez AM, Kreider RB, Arent SM, Jager R, Smith-Ryan AE, Stout JR, Campbell BI, VanDusseldorp T, and Antonio J
- Subjects
- Adolescent, Child, Female, Pregnancy, Humans, Caffeine, Vitamins, Nutrients, Ascorbic Acid, Energy Drinks
- Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of energy drink (ED) or energy shot (ES) consumption on acute exercise performance, metabolism, and cognition, along with synergistic exercise-related performance outcomes and training adaptations. The following 13 points constitute the consensus of the Society and have been approved by the Research Committee of the Society: Energy drinks (ED) commonly contain caffeine, taurine, ginseng, guarana, carnitine, choline, B vitamins (vitamins B1, B2, B3, B5, B6, B9, and B12), vitamin C, vitamin A (beta carotene), vitamin D, electrolytes (sodium, potassium, magnesium, and calcium), sugars (nutritive and non-nutritive sweeteners), tyrosine, and L-theanine, with prevalence for each ingredient ranging from 1.3 to 100%. Energy drinks can enhance acute aerobic exercise performance, largely influenced by the amount of caffeine (> 200 mg or >3 mg∙kg bodyweight [BW
-1 ]) in the beverage. Although ED and ES contain several nutrients that are purported to affect mental and/or physical performance, the primary ergogenic nutrients in most ED and ES based on scientific evidence appear to be caffeine and/or the carbohydrate provision. The ergogenic value of caffeine on mental and physical performance has been well-established, but the potential additive benefits of other nutrients contained in ED and ES remains to be determined. Consuming ED and ES 10-60 minutes before exercise can improve mental focus, alertness, anaerobic performance, and/or endurance performance with doses >3 mg∙kg BW-1 . Consuming ED and ES containing at least 3 mg∙kg BW-1 caffeine is most likely to benefit maximal lower-body power production. Consuming ED and ES can improve endurance, repeat sprint performance, and sport-specific tasks in the context of team sports. Many ED and ES contain numerous ingredients that either have not been studied or evaluated in combination with other nutrients contained in the ED or ES. For this reason, these products need to be studied to demonstrate efficacy of single- and multi-nutrient formulations for physical and cognitive performance as well as for safety. Limited evidence is available to suggest that consumption of low-calorie ED and ES during training and/or weight loss trials may provide ergogenic benefit and/or promote additional weight control, potentially through enhanced training capacity. However, ingestion of higher calorie ED may promote weight gain if the energy intake from consumption of ED is not carefully considered as part of the total daily energy intake. Individuals should consider the impact of regular coingestion of high glycemic index carbohydrates from ED and ES on metabolic health, blood glucose, and insulin levels. Adolescents (aged 12 through 18) should exercise caution and seek parental guidance when considering the consumption of ED and ES, particularly in excessive amounts (e.g. > 400 mg), as limited evidence is available regarding the safety of these products among this population. Additionally, ED and ES are not recommended for children (aged 2-12), those who are pregnant, trying to become pregnant, or breastfeeding and those who are sensitive to caffeine. Diabetics and individuals with preexisting cardiovascular, metabolic, hepatorenal, and/or neurologic disease who are taking medications that may be affected by high glycemic load foods, caffeine, and/or other stimulants should exercise caution and consult with their physician prior to consuming ED. The decision to consume ED or ES should be based upon the beverage's content of carbohydrate, caffeine, and other nutrients and a thorough understanding of the potential side effects. Indiscriminate use of ED or ES, especially if multiple servings per day are consumed or when consumed with other caffeinated beverages and/or foods, may lead to adverse effects. The purpose of this review is to provide an update to the position stand of the International Society of Sports Nutrition (ISSN) integrating current literature on ED and ES in exercise, sport, and medicine. The effects of consuming these beverages on acute exercise performance, metabolism, markers of clinical health, and cognition are addressed, as well as more chronic effects when evaluating ED/ES use with exercise-related training adaptions.- Published
- 2023
- Full Text
- View/download PDF
40. International society of sports nutrition position stand: nutritional concerns of the female athlete.
- Author
-
Sims ST, Kerksick CM, Smith-Ryan AE, Janse de Jonge XAK, Hirsch KR, Arent SM, Hewlings SJ, Kleiner SM, Bustillo E, Tartar JL, Starratt VG, Kreider RB, Greenwalt C, Rentería LI, Ormsbee MJ, VanDusseldorp TA, Campbell BI, Kalman DS, and Antonio J
- Subjects
- Female, Humans, Male, Progesterone, Athletes, Amino Acids, Creatine, Sports
- Abstract
Based on a comprehensive review and critical analysis of the literature regarding the nutritional concerns of female athletes, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Female athletes have unique and unpredictable hormone profiles, which influence their physiology and nutritional needs across their lifespan. To understand how perturbations in these hormones affect the individual, we recommend that female athletes of reproductive age should track their hormonal status (natural, hormone driven) against training and recovery to determine their individual patterns and needs and peri and post-menopausal athletes should track against training and recovery metrics to determine the individuals' unique patterns. 2. The primary nutritional consideration for all athletes, and in particular, female athletes, should be achieving adequate energy intake to meet their energy requirements and to achieve an optimal energy availability (EA); with a focus on the timing of meals in relation to exercise to improve training adaptations, performance, and athlete health. 3. Significant sex differences and sex hormone influences on carbohydrate and lipid metabolism are apparent, therefore we recommend first ensuring athletes meet their carbohydrate needs across all phases of the menstrual cycle. Secondly, tailoring carbohydrate intake to hormonal status with an emphasis on greater carbohydrate intake and availability during the active pill weeks of oral contraceptive users and during the luteal phase of the menstrual cycle where there is a greater effect of sex hormone suppression on gluconogenesis output during exercise. 4. Based upon the limited research available, we recommend that pre-menopausal, eumenorrheic, and oral contraceptives using female athletes should aim to consume a source of high-quality protein as close to beginning and/or after completion of exercise as possible to reduce exercise-induced amino acid oxidative losses and initiate muscle protein remodeling and repair at a dose of 0.32-0.38 g·kg
-1 . For eumenorrheic women, ingestion during the luteal phase should aim for the upper end of the range due to the catabolic actions of progesterone and greater need for amino acids. 5. Close to the beginning and/or after completion of exercise, peri- and post-menopausal athletes should aim for a bolus of high EAA-containing (~10 g) intact protein sources or supplements to overcome anabolic resistance. 6. Daily protein intake should fall within the mid- to upper ranges of current sport nutrition guidelines (1.4-2.2 g·kg-1 ·day-1 ) for women at all stages of menstrual function (pre-, peri-, post-menopausal, and contraceptive users) with protein doses evenly distributed, every 3-4 h, across the day. Eumenorrheic athletes in the luteal phase and peri/post-menopausal athletes, regardless of sport, should aim for the upper end of the range. 7. Female sex hormones affect fluid dynamics and electrolyte handling. A greater predisposition to hyponatremia occurs in times of elevated progesterone, and in menopausal women, who are slower to excrete water. Additionally, females have less absolute and relative fluid available to lose via sweating than males, making the physiological consequences of fluid loss more severe, particularly in the luteal phase. 8. Evidence for sex-specific supplementation is lacking due to the paucity of female-specific research and any differential effects in females. Caffeine, iron, and creatine have the most evidence for use in females. Both iron and creatine are highly efficacious for female athletes. Creatine supplementation of 3 to 5 g per day is recommended for the mechanistic support of creatine supplementation with regard to muscle protein kinetics, growth factors, satellite cells, myogenic transcription factors, glycogen and calcium regulation, oxidative stress, and inflammation. Post-menopausal females benefit from bone health, mental health, and skeletal muscle size and function when consuming higher doses of creatine (0.3 g·kg-1 ·d-1 ). 9. To foster and promote high-quality research investigations involving female athletes, researchers are first encouraged to stop excluding females unless the primary endpoints are directly influenced by sex-specific mechanisms. In all investigative scenarios, researchers across the globe are encouraged to inquire and report upon more detailed information surrounding the athlete's hormonal status, including menstrual status (days since menses, length of period, duration of cycle, etc.) and/or hormonal contraceptive details and/or menopausal status.- Published
- 2023
- Full Text
- View/download PDF
41. International Society of Sports Nutrition Position Stand: Effects of essential amino acid supplementation on exercise and performance.
- Author
-
Ferrando AA, Wolfe RR, Hirsch KR, Church DD, Kviatkovsky SA, Roberts MD, Stout JR, Gonzalez DE, Sowinski RJ, Kreider RB, Kerksick CM, Burd NA, Pasiakos SM, Ormsbee MJ, Arent SM, Arciero PJ, Campbell BI, VanDusseldorp TA, Jager R, Willoughby DS, Kalman DS, and Antonio J
- Subjects
- Humans, Leucine, Muscle Proteins metabolism, Dietary Supplements, Amino Acids pharmacology, Muscle, Skeletal
- Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs' effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation - with and without the benefits of exercise - on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5-3.0 g) and seems to plateau at around 15-18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as "anabolic resistance." 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it's essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle.
- Published
- 2023
- Full Text
- View/download PDF
42. International society of sports nutrition position stand: coffee and sports performance.
- Author
-
Lowery LM, Anderson DE, Scanlon KF, Stack A, Escalante G, Campbell SC, Kerksick CM, Nelson MT, Ziegenfuss TN, VanDusseldorp TA, Kalman DS, Campbell BI, Kreider RB, and Antonio J
- Subjects
- Male, Female, Humans, Caffeine pharmacology, Chlorogenic Acid analysis, Exercise, Coffee, Athletic Performance physiology
- Abstract
Based on review and critical analysis of the literature regarding the contents and physiological effects of coffee related to physical and cognitive performance conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society:(1) Coffee is a complex matrix of hundreds of compounds. These are consumed with broad variability based upon serving size, bean type (e.g. common Arabica vs. Robusta), and brew method (water temperature, roasting method, grind size, time, and equipment).(2) Coffee's constituents, including but not limited to caffeine, have neuromuscular, antioxidant, endocrine, cognitive, and metabolic (e.g. glucose disposal and vasodilation) effects that impact exercise performance and recovery.(3) Coffee's physiologic effects are influenced by dose, timing, habituation to a small degree (to coffee or caffeine), nutrigenetics, and potentially by gut microbiota differences, sex, and training status.(4) Coffee and/or its components improve performance across a temporal range of activities from reaction time, through brief power exercises, and into the aerobic time frame in most but not all studies. These broad and varied effects have been demonstrated in men (mostly) and in women, with effects that can differ from caffeine ingestion, per se. More research is needed.(5) Optimal dosing and timing are approximately two to four cups (approximately 473-946 ml or 16-32 oz.) of typical hot-brewed or reconstituted instant coffee (depending on individual sensitivity and body size), providing a caffeine equivalent of 3-6 mg/kg (among other components such as chlorogenic acids at approximately 100-400 mg per cup) 60 min prior to exercise.(6) Coffee has a history of controversy regarding side effects but is generally considered safe and beneficial for healthy, exercising individuals in the dose range above.(7) Coffee can serve as a vehicle for other dietary supplements, and it can interact with nutrients in other foods.(8) A dearth of literature exists examining coffee-specific ergogenic and recovery effects, as well as variability in the operational definition of "coffee," making conclusions more challenging than when examining caffeine in its many other forms of delivery (capsules, energy drinks, "pre-workout" powders, gum, etc.).
- Published
- 2023
- Full Text
- View/download PDF
43. Resistance Exercise and Creatine Supplementation on Fat Mass in Adults < 50 Years of Age: A Systematic Review and Meta-Analysis.
- Author
-
Candow DG, Prokopidis K, Forbes SC, Rusterholz F, Campbell BI, and Ostojic SM
- Subjects
- Humans, Adult, Exercise, Dietary Supplements, Body Composition, Muscle, Skeletal, Muscle Strength, Creatine, Resistance Training
- Abstract
The combination of resistance exercise and creatine supplementation has been shown to decrease body fat percentage in adults ≥ 50 years of age. However, the effect on adults < 50 years of age is currently unknown. To address this limitation, we systematically reviewed the literature and performed several meta-analyses comparing studies that included resistance exercise and creatine supplementation to resistance exercise and placebo on fat mass and body fat percentage Twelve studies were included, involving 266 participants. Adults (<50 years of age) who supplemented with creatine and performed resistance exercise experienced a very small, yet significant reduction in body fat percentage (-1.19%, p = 0.006); however, no difference was found in absolute fat mass (-0.18 kg, p = 0.76). Collectively, in adults < 50 years of age, the combination of resistance exercise and creatine supplementation produces a very small reduction in body fat percentage without a corresponding decrease in absolute fat mass.
- Published
- 2023
- Full Text
- View/download PDF
44. Bodybuilding Coaching Strategies Meet Evidence-Based Recommendations: A Qualitative Approach.
- Author
-
Rukstela A, Lafontant K, Helms E, Escalante G, Phillips K, and Campbell BI
- Abstract
Bodybuilding is a sport where coaches commonly recommend a variety of nutrition and exercise protocols, supplements, and, sometimes, performance-enhancing drugs (PEDs). The present study sought to gain an understanding of the common decisions and rationales employed by bodybuilding coaches. Focusing on coaches of the more muscular divisions in the National Physique Committee/IFBB Professional League federations (men's classic physique, men's bodybuilding, women's physique, women's bodybuilding) for both natural and enhanced athletes, coaches were recruited via word of mouth and social media, and 33 responded to an anonymous online survey. Survey responses indicated that participant coaches recommend three-to-seven meals per day and no less than 2 g/kg/day of protein regardless of sex, division, or PED usage. During contest preparation, participant coaches alter a natural competitor's protein intake by -25% to +10% and an enhanced competitor's protein intake by 0% to +25%. Regarding cardiovascular exercise protocols, approximately two-thirds of participant coaches recommend fasted cardiovascular exercise, with the common rationale of combining the exercise with thermogenic supplements while considering the athlete's preference. Low- and moderate-intensity steady state were the most commonly recommended types of cardiovascular exercise among participant coaches; high-intensity interval training was the least popular. Creatine was ranked in the top two supplements for all surveyed categories. Regarding PEDs, testosterone, growth hormone, and methenolone were consistently ranked in the top five recommended PEDs by participant coaches. The results of this study provide insight into common themes in the decisions made by bodybuilding coaches, and highlight areas in which more research is needed to empirically support those decisions.
- Published
- 2023
- Full Text
- View/download PDF
45. The Effects of Intermittent Diet Breaks during 25% Energy Restriction on Body Composition and Resting Metabolic Rate in Resistance-Trained Females: A Randomized Controlled Trial.
- Author
-
Siedler MR, Lewis MH, Trexler ET, Lamadrid P, Waddell BJ, Bishop SF, SanFilippo G, Callahan K, Mathas D, Mastrofini GF, Henselmans M, Vårvik FT, and Campbell BI
- Abstract
The purpose of this study was to examine the effects of intermittent versus continuous energy restriction on body composition, resting metabolic rate, and eating behaviors in resistance-trained females. Thirty-eight resistance-trained females (mean ± standard deviation age: 22.3 ± 4.2 years) were randomized to receive either six weeks of a continuous 25% reduction in energy intake (n = 18), or one week of energy balance after every two weeks of 25% energy restriction (eight weeks total; n = 20). Participants were instructed to ingest 1.8 g protein/kilogram bodyweight per day and completed three weekly supervised resistance training sessions throughout the intervention. There were no differences between groups for changes over time in body composition, resting metabolic rate, or seven of the eight measured eating behavior variables (p > 0.05). However, a significant group-by-time interaction for disinhibition (p < 0.01) from the Three-Factor Eating Questionnaire was observed, with values (± standard error) in the continuous group increasing from 4.91 ± 0.73 to 6.17 ± 0.71, while values in the intermittent group decreased from 6.80 ± 0.68 to 6.05 ± 0.68. Thus, diet breaks do not appear to induce improvements in body composition or metabolic rate in comparison with continuous energy restriction over six weeks of dieting, but may be employed for those who desire a short-term break from an energy-restricted diet without fear of fat regain. While diet breaks may reduce the impact of prolonged energy restriction on measures of disinhibition, they also require a longer time period that may be less appealing for some individuals., Competing Interests: The authors declare no relevant financial conflicts of interest. B.I.C. was a member of the scientific advisory board for Dymatize Athletic Nutrition Institute at the time of the study's design and execution, but not at the time of submission of the manuscript for publication. E.T.T. earns income as a writer, practitioner, and consultant within the fitness industry., (Copyright: © Academy of Physical Education in Katowice.)
- Published
- 2023
- Full Text
- View/download PDF
46. International society of sports nutrition position stand: tactical athlete nutrition.
- Author
-
Gonzalez DE, McAllister MJ, Waldman HS, Ferrando AA, Joyce J, Barringer ND, Dawes JJ, Kieffer AJ, Harvey T, Kerksick CM, Stout JR, Ziegenfuss TN, Zapp A, Tartar JL, Heileson JL, VanDusseldorp TA, Kalman DS, Campbell BI, Antonio J, and Kreider RB
- Subjects
- Athletes, Diet, Energy Intake, Exercise physiology, Humans, Nutritional Requirements, Sports Nutritional Sciences
- Abstract
This position stand aims to provide an evidence-based summary of the energy and nutritional demands of tactical athletes to promote optimal health and performance while keeping in mind the unique challenges faced due to work schedules, job demands, and austere environments. After a critical analysis of the literature, the following nutritional guidelines represent the position of the International Society of Sports Nutrition (ISSN)., General Recommendations: Nutritional considerations should include the provision and timing of adequate calories, macronutrients, and fluid to meet daily needs as well as strategic nutritional supplementation to improve physical, cognitive, and occupational performance outcomes; reduce risk of injury, obesity, and cardiometabolic disease; reduce the potential for a fatal mistake; and promote occupational readiness., Military Recommendations: Energy demands should be met by utilizing the Military Dietary Reference Intakes (MDRIs) established and codified in Army Regulation 40-25. Although research is somewhat limited, military personnel may also benefit from caffeine, creatine monohydrate, essential amino acids, protein, omega-3-fatty acids, beta-alanine, and L-tyrosine supplementation, especially during high-stress conditions., First Responder Recommendations: Specific energy needs are unknown and may vary depending on occupation-specific tasks. It is likely the general caloric intake and macronutrient guidelines for recreational athletes or the Acceptable Macronutrient Distribution Ranges for the general healthy adult population may benefit first responders. Strategies such as implementing wellness policies, setting up supportive food environments, encouraging healthier food systems, and using community resources to offer evidence-based nutrition classes are inexpensive and potentially meaningful ways to improve physical activity and diet habits. The following provides a more detailed overview of the literature and recommendations for these populations., Competing Interests: No potential conflict of interest was reported by the author(s)., (© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.)
- Published
- 2022
- Full Text
- View/download PDF
47. Sex Differences May Exist for Performance Fatigue but Not Recovery After Single-Joint Upper-Body and Lower-Body Resistance Exercise.
- Author
-
Lewis MH, Siedler MR, Lamadrid P, Ford S, Smith T, SanFilippo G, Waddell B, Trexler ET, Buckner S, and Campbell BI
- Subjects
- Exercise, Fatigue, Female, Humans, Male, Muscle, Skeletal, Sex Characteristics, Resistance Training methods
- Abstract
Abstract: Lewis, MH, Siedler, MR, Lamadrid, P, Ford, S, Smith, T, SanFilippo, G, Waddell, B, Trexler, ET, Buckner, S, and Campbell, BI. Sex differences may exist for performance fatigue but not recovery after single-joint upper-body and lower-body resistance exercise. J Strength Cond Res 36(6): 1498-1505, 2022-This study evaluated sex differences in performance recovery and fatigue during dynamic exercise. Twenty-eight resistance-trained males (n = 16) and females (n = 12) completed a repeated-measures, randomized, parallel-groups design. The protocol consisted of a baseline assessment, a recovery period (4, 24, or 48 hours), and a postrecovery assessment. The assessments were identical consisting of 4 sets of 10 repetition maximum (10RM) bicep curls and 4 sets of 10RM leg extensions to failure. Recovery was quantified as the number of total repetitions completed in the postrecovery bout. Fatigue was quantified as the number of repetitions completed set to set within the session. For analysis, we set the level of significance at p ≤ 0.05. No sex differences in performance recovery were observed across any of the investigated time periods for either exercise modality. Regarding fatigue, significant effects were observed for set (p < 0.001) and sex (p = 0.031) for bicep curls. Repetitions dropped in later sets, and females generally completed a greater number of repetitions than males (8.8 ± 0.5 vs. 7.2 ± 0.5). For leg extension, a significant sex × set interaction was observed (p = 0.003), but post hoc tests revealed these sex differences as marginal. Our results suggest that in dynamic bicep curls and leg extensions, other factors unrelated to sex may be more impactful on performance recovery. To optimize an athlete's desired adaptations, it may be more important to consider other variables unrelated to sex such as volume, perceived exertion, and training history when formulating training prescriptions for single-joint exercises., (Copyright © 2022 National Strength and Conditioning Association.)
- Published
- 2022
- Full Text
- View/download PDF
48. International Society of Sports Nutrition position stand: sodium bicarbonate and exercise performance.
- Author
-
Grgic J, Pedisic Z, Saunders B, Artioli GG, Schoenfeld BJ, McKenna MJ, Bishop DJ, Kreider RB, Stout JR, Kalman DS, Arent SM, VanDusseldorp TA, Lopez HL, Ziegenfuss TN, Burke LM, Antonio J, and Campbell BI
- Subjects
- Female, Humans, Male, Athletic Performance physiology, Exercise, Performance-Enhancing Substances pharmacology, Sodium Bicarbonate pharmacology, Sports Nutritional Sciences
- Abstract
Based on a comprehensive review and critical analysis of the literature regarding the effects of sodium bicarbonate supplementation on exercise performance, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Supplementation with sodium bicarbonate (doses from 0.2 to 0.5 g/kg) improves performance in muscular endurance activities, various combat sports, including boxing, judo, karate, taekwondo, and wrestling, and in high-intensity cycling, running, swimming, and rowing. The ergogenic effects of sodium bicarbonate are mostly established for exercise tasks of high-intensity that last between 30 s and 12 min. 2. Sodium bicarbonate improves performance in single- and multiple-bout exercise. 3. Sodium bicarbonate improves exercise performance in both men and women. 4. For single-dose supplementation protocols, 0.2 g/kg of sodium bicarbonate seems to be the minimum dose required to experience improvements in exercise performance. The optimal dose of sodium bicarbonate dose for ergogenic effects seems to be 0.3 g/kg. Higher doses (e.g., 0.4 or 0.5 g/kg) may not be required in single-dose supplementation protocols, because they do not provide additional benefits (compared with 0.3 g/kg) and are associated with a higher incidence and severity of adverse side-effects. 5. For single-dose supplementation protocols, the recommended timing of sodium bicarbonate ingestion is between 60 and 180 min before exercise or competition. 6. Multiple-day protocols of sodium bicarbonate supplementation can be effective in improving exercise performance. The duration of these protocols is generally between 3 and 7 days before the exercise test, and a total sodium bicarbonate dose of 0.4 or 0.5 g/kg per day produces ergogenic effects. The total daily dose is commonly divided into smaller doses, ingested at multiple points throughout the day (e.g., 0.1 to 0.2 g/kg of sodium bicarbonate consumed at breakfast, lunch, and dinner). The benefit of multiple-day protocols is that they could help reduce the risk of sodium bicarbonate-induced side-effects on the day of competition. 7. Long-term use of sodium bicarbonate (e.g., before every exercise training session) may enhance training adaptations, such as increased time to fatigue and power output. 8. The most common side-effects of sodium bicarbonate supplementation are bloating, nausea, vomiting, and abdominal pain. The incidence and severity of side-effects vary between and within individuals, but it is generally low. Nonetheless, these side-effects following sodium bicarbonate supplementation may negatively impact exercise performance. Ingesting sodium bicarbonate (i) in smaller doses (e.g., 0.2 g/kg or 0.3 g/kg), (ii) around 180 min before exercise or adjusting the timing according to individual responses to side-effects, (iii) alongside a high-carbohydrate meal, and (iv) in enteric-coated capsules are possible strategies to minimize the likelihood and severity of these side-effects. 9. Combining sodium bicarbonate with creatine or beta-alanine may produce additive effects on exercise performance. It is unclear whether combining sodium bicarbonate with caffeine or nitrates produces additive benefits. 10. Sodium bicarbonate improves exercise performance primarily due to a range of its physiological effects. Still, a portion of the ergogenic effect of sodium bicarbonate seems to be placebo-driven., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
49. Flexible vs. rigid dieting in resistance-trained individuals seeking to optimize their physiques: A randomized controlled trial.
- Author
-
Conlin LA, Aguilar DT, Rogers GE, and Campbell BI
- Subjects
- Adult, Basal Metabolism physiology, Female, Humans, Male, Young Adult, Body Composition physiology, Diet methods, Resistance Training, Weight Gain physiology, Weight Loss physiology
- Abstract
Background: The purpose of this study was to compare a flexible vs. rigid diet on weight loss and subsequent weight regain in resistance-trained (RT) participants in a randomized, parallel group design., Methods: Twenty-three males and females (25.6 ± 6.1 yrs; 170 ± 8.1 cm; 75.4 ± 10.3 kg) completed the 20-week intervention (consisting of a 10-week diet phase and a 10-week post-diet phase). Participants were randomized to a flexible diet (FLEX) comprised of non-specific foods or a rigid diet (RIGID) comprised of specific foods. Participants adhered to an ~20%kcal reduction during the first 10-weeks of the intervention and were instructed to eat ad libitum for the final 10-weeks. Body composition and resting metabolic rate were assessed 5 times: (baseline, 5, 10 [end of diet phase], 16, and 20 weeks)., Results: During the 10-week diet phase, both groups significantly reduced bodyweight (FLEX: baseline = 76.1 ± 8.4kg, post-diet = 73.5 ± 8.8 kg, ▲2.6 kg; RIGID: baseline = 74.9 ± 12.2 kg, post-diet = 71.9 ± 11.7 kg, ▲3.0 kg, p < 0.001); fat mass (FLEX: baseline = 14.8 ± 5.7 kg, post-diet = 12.5 ± 5.0 kg, ▲2.3 kg; RIGID: baseline = 18.1 ± 6.2 kg, post-diet = 14.9 ± 6.5 kg, ▲3.2 kg p < 0.001) and body fat% (FLEX: baseline = 19.4 ± 8.5%, post-diet = 17.0 ± 7.1%, ▲2.4%; RIGID: baseline = 24.0 ± 6.2%, post-diet = 20.7 ± 7.1%, ▲3.3%; p < 0.001). There were no significant differences between the two groups for any variable during the diet phase. During the post-diet phase, a significant diet x time interaction (p < 0.001) was observed for FFM with the FLEX group gaining a greater amount of FFM (+1.7 kg) in comparison with the RIGID group (-0.7 kg)., Conclusions: A flexible or rigid diet strategy is equally effective for weight loss during a caloric restriction diet in free-living, RT individuals. While post-diet FFM gains were greater in the FLEX group, there were no significant differences in the amount of time spent in resistance and aerobic exercise modes nor were there any significant differences in protein and total caloric intakes between the two diet groups. In the absence of a clear physiological rationale for increases in FFM, in addition to the lack of a standardized diet during the post-diet phase, we refrain from attributing the increases in FFM in the FLEX group to their diet assignment during the diet phase of the investigation. We recommend future research investigate additional physiological and psychological effects of flexible diets and weight regain in lean individuals.
- Published
- 2021
- Full Text
- View/download PDF
50. International society of sports nutrition position stand: caffeine and exercise performance.
- Author
-
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, and Campbell BI
- Subjects
- Anxiety chemically induced, Anxiety genetics, Athletic Performance physiology, Caffeine administration & dosage, Caffeine adverse effects, Caffeine pharmacokinetics, Capsules, Chewing Gum, Cognition drug effects, Cytochrome P-450 CYP1A2 genetics, Cytochrome P-450 CYP1A2 metabolism, Doping in Sports, Drug Dosage Calculations, Energy Drinks, Hot Temperature, Humans, Movement drug effects, Movement physiology, Muscle Strength drug effects, Muscle Strength physiology, Muscle, Skeletal drug effects, Muscle, Skeletal physiology, Performance-Enhancing Substances pharmacology, Physical Endurance drug effects, Physical Endurance physiology, Physical Functional Performance, Receptor, Adenosine A2A genetics, Receptor, Adenosine A2A metabolism, Sleep drug effects, Caffeine pharmacology, Exercise physiology, Societies, Medical, Sports Nutritional Physiological Phenomena, Sports Nutritional Sciences
- Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.