Laura Touzot, Rémi Fay, Lise M. Aubry, Jay J. Rotella, Nigel G. Yoccoz, Christophe Bonenfant, Hal Caswell, Christie Le Cœur, Christophe Coste, Andrew M. Allen, Céline Teplitsky, Martijn van de Pol, Emmanuelle Cam, Sandra Hamel, Benjamin Larue, Stéphanie Jenouvrier, Bernt-Erik Sæther, Marlène Gamelon, Paul Acker, Kaitlin R. Macdonald, Alex Nicol‐Harper, Matthieu Authier, Fanie Pelletier, Maria Moiron, Jean-Michel Gaillard, Caitlin P. Wells, Norwegian University of Science and Technology [Trondheim] (NTNU), Norwegian University of Science and Technology (NTNU), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Department of Biology, University of Oslo, Pb 1066, Blindern, N-0316 Oslo, Norway, Département de biologie [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Theoretical and Computational Ecology (IBED, FNWI), University of Oslo (UiO), Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Observatoire pour la Conservation de la Mégafaune Marine (PELAGIS), LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Woods Hole Oceanographic Institution (WHOI), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Arctic and Marine Biology, University of Tromsø (UiT), Lafarge Centre de Recherche [Lyon] (Lafarge LCR Lyon), Lafarge France [Groupe Holcim], Observatoire PELAGIS UMS 3462 (PELAGIS), LIttoral ENvironnement et Sociétés - UMRi 7266 (LIENSs), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Lafarge, and Animal Ecology (AnE)
An increasing number of empirical studies aim to quantify individual variation in demographic parameters because these patterns are key for evolutionary and ecological processes. Advanced approaches to estimate individual heterogeneity are now using a multivariate normal distribution with correlated individual random effects to account for the latent correlations among different demographic parameters occurring within individuals. Despite the frequent use of multivariate mixed models, we lack an assessment of their reliability when applied to Bernoulli variables. Using simulations, we estimated the reliability of multivariate mixed effect models for estimating correlated fixed individual heterogeneity in demographic parameters modelled with a Bernoulli distribution. We evaluated both bias and precision of the estimates across a range of scenarios that investigate the effects of life-history strategy, levels of individual heterogeneity and presence of temporal variation and state dependence. We also compared estimates across different sampling designs to assess the importance of study duration, number of individuals monitored and detection probability. In many simulated scenarios, the estimates for the correlated random effects were biased and imprecise, which highlight the challenge in estimating correlated random effects for Bernoulli variables. The amount of fixed among-individual heterogeneity was frequently overestimated, and the absolute value of the correlation between random effects was almost always underestimated. Simulations also showed contrasting performances of mixed models depending on the scenario considered. Generally, estimation bias decreases and precision increases with slower pace of life, large fixed individual heterogeneity and large sample size. We provide guidelines for the empirical investigation of individual heterogeneity using correlated random effects according to the life-history strategy of the species, as well as, the volume and structure of the data available to the researcher. Caution is warranted when interpreting results regarding correlated individual random effects in demographic parameters modelled with a Bernoulli distribution. Because bias varies with sampling design and life history, comparisons of individual heterogeneity among species is challenging. The issue addressed here is not specific to demography, making this warning relevant for all research areas, including behavioural and evolutionary studies.