1. HSTFL: A Heterogeneous Federated Learning Framework for Misaligned Spatiotemporal Forecasting
- Author
-
Cai, Shuowei and Liu, Hao
- Subjects
Computer Science - Machine Learning - Abstract
Spatiotemporal forecasting has emerged as an indispensable building block of diverse smart city applications, such as intelligent transportation and smart energy management. Recent advancements have uncovered that the performance of spatiotemporal forecasting can be significantly improved by integrating knowledge in geo-distributed time series data from different domains, \eg enhancing real-estate appraisal with human mobility data; joint taxi and bike demand predictions. While effective, existing approaches assume a centralized data collection and exploitation environment, overlooking the privacy and commercial interest concerns associated with data owned by different parties. In this paper, we investigate multi-party collaborative spatiotemporal forecasting without direct access to multi-source private data. However, this task is challenging due to 1) cross-domain feature heterogeneity and 2) cross-client geographical heterogeneity, where standard horizontal or vertical federated learning is inapplicable. To this end, we propose a Heterogeneous SpatioTemporal Federated Learning (HSTFL) framework to enable multiple clients to collaboratively harness geo-distributed time series data from different domains while preserving privacy. Specifically, we first devise vertical federated spatiotemporal representation learning to locally preserve spatiotemporal dependencies among individual participants and generate effective representations for heterogeneous data. Then we propose a cross-client virtual node alignment block to incorporate cross-client spatiotemporal dependencies via a multi-level knowledge fusion scheme. Extensive privacy analysis and experimental evaluations demonstrate that HSTFL not only effectively resists inference attacks but also provides a significant improvement against various baselines., Comment: Under review
- Published
- 2024