1. Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments
- Author
-
Stephen Rhatigan, Angeles Blanco, Ciara Byrne, Daphne Hermosilla, Lorraine Moran, Suresh C. Pillai, Priyanka Ganguly, Michael Nolan, Noemi Merayo, Steven J. Hinder, SFI 14/US/E2915, SFI Grant Number SFI/16/M-ERA/3418 (RATOCAT), COST Action CM1104, CTM2016-77948-R, Science Foundation Ireland through the US-Ireland R&D Partnership Program, the ERA.Net for Materials Research and Innovation (M-ERA.Net 2), Horizon 2020, the European Commission, and and Ministerio de Economía y Competitividad of Spain.
- Subjects
Anatase ,Materials science ,Band gap ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,DFT ,Catalysis ,Dept of Life Sciences, ITS ,chemistry.chemical_compound ,TiO2doping ,Oxygen vacancy ,Oxidation state ,Photocatalysis ,General Environmental Science ,Process Chemistry and Technology ,Doping ,Oxides ,021001 nanoscience & nanotechnology ,Copper ,0104 chemical sciences ,Doped semiconductors ,Rutile ,chemistry ,Titanium dioxide ,Density functional theory ,0210 nano-technology - Abstract
This paper shows that incorporation of Cu inhibits the anatase to rutile phase transition at temperatures above 500 °C. The control sample, with 0% Cu contained 34.3% anatase at 600 °C and transitioned to 100% rutile by 650 °C. All copper doped samples maintained 100% anatase up to 600 °C. With 2% Cu doping, anatase fully transformed to rutile at 650 °C, at higher Cu contents of 4% & 8% mixed phased samples, with 27.3% anatase and 74.3% anatase respectively, are present at 650 °C. All samples had fully transformed to rutile by 700 °C. 0%, 4% and 8% Cu were evaluated for photocatalytic degradation of 1, 4 dioxane. Without any catalyst, 15.8% of the 1,4 dioxane degraded upon irradiation with light for 4 h. Cu doped TiO2 shows poor photocatalytic degradation ability compared to the control samples. Density functional theory (DFT) studies of Cu-doped rutile and anatase show formation of charge compensating oxygen vacancies and a Cu2+ oxidation state. Reduction of Cu2+ to Cu+ and Ti4+ to Ti3+ was detected by XPS after being calcined to 650–700 °C. This reduction was also shown in DFT studies. Cu 3d states are present in the valence to conduction band energy gap upon doping. We suggest that the poor photocatalytic activity of Cu-doped TiO2, despite the high anatase content, arises from the charge recombination at defect sites that result from incorporation of copper into TiO2.
- Published
- 2019