Nigussie, Wondifraw, Al-Najjar, Husam, Zhang, Wanchang, Yirsaw, Eshetu, Nega, Worku, Zhang, Zhijie, and Kalantar, Bahareh
The Gedeo zone agroforestry systems are the main source of Ethiopia's coffee beans. However, land-use and suitability analyses are not well documented due to complex topography, heterogeneous agroforestry, and lack of information. This research aimed to map the coffee coverage and identify land suitability for coffee plantations using remote sensing, Geographic Information Systems (GIS), and the Analytical Hierarchy Process (AHP) in the Gedeo zone, Southern Ethiopia. Remote sensing classifiers often confuse agroforestry and plantations like coffee cover with forest cover because of their similar spectral signatures. Mapping shaded coffee in Gedeo agroforestry using optical or multispectral remote sensing is challenging. To address this, the study identified and mapped coffee coverage from Sentinel-1 data with a decibel (dB) value matched to actual coffee coverage. The actual field data were overlaid on Sentinel-1, which was used to extract the raster value. Pre-processing, classification, standardization, and reclassification of thematic layers were performed to find potential areas for coffee plantation. Hierarchy levels of the main criteria were formed based on climatological, edaphological, physiographic, and socioeconomic factors. These criteria were divided into 14 sub-criteria, reclassified based on their impact on coffee growing, with their relative weights derived using AHP. From the total study area of 1356.2 km2, the mapped coffee coverage is 583 km2. The outcome of the final computed factor weight indicated that average annual temperature and mean annual rainfall are the primary factors, followed by annual mean maximum temperature, elevation, annual mean minimum temperature, soil pH, Land Use/Land Cover (LULC), soil texture, Cation Exchange Capacity (CEC), slope, Soil Organic Matter (SOM), aspect, distance to roads, and distance to water, respectively. The identified coffee plantation potential land suitability reveals unsuitable (413 km2), sub-suitable (596.1 km2), and suitable (347.1 km2) areas. This study provides comprehensive spatial details for Ethiopian cultivators, government officials, and agricultural extension specialists to select optimal coffee farming locations, enhancing food security and economic prosperity. [ABSTRACT FROM AUTHOR]