1. Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces
- Author
-
Química Física i Inorgànica, Universitat Rovira i Virgili, Salom-Català A; Strugovshchikov E; Kaźmierczak K; Curulla-Ferré D; Ricart JM; Carbó JJ, Química Física i Inorgànica, Universitat Rovira i Virgili, and Salom-Català A; Strugovshchikov E; Kaźmierczak K; Curulla-Ferré D; Ricart JM; Carbó JJ
- Abstract
Propane dehydrogenation (PDH) is an on-purpose catalytic technology to produce propylene from propane that operates at high temperatures, 773-973 K. Several key industry players have been active in developing new catalysts and processes with improved carbon footprint and economics, where Pt-based catalysts have played a central role. The optimization of these catalytic systems through computational and atomistic simulations requires large-scale models that account for their reactivity and dynamic properties. To address this challenge, we developed a new reactive ReaxFF force field (2023-Pt/C/H) that enables large-scale simulations of PDH reactions catalyzed on Pt surfaces. The optimization of force-field parameters relies on a large training set of density functional theory (DFT) calculations of Pt-catalyzed PDH mechanism, including geometries, adsorption and relative energies of reaction intermediates, and key C-H and C-C bond-breaking/forming reaction steps on the Pt(111) surface. The internal validation supports the accuracy of the developed 2023-Pt/C/H force-field parameters, resulting in mean absolute errors (MAE) against DFT data of 14 and 12 kJ mol-1 for relative energies of intermediates and energy barriers, respectively. We demonstrated the applicability of the 2023-Pt/C/H force field with reactive molecular dynamics simulations of propane on different Pt surface topologies and temperatures. The simulations successfully model the formation of propene in the gas phase as well as competitive, unproductive reactions such as deep dehydrogenation and C-C bond cleavage that produce H, C1 and C2 adsorbed species responsible of catalytic deactivation of Pt surface. Results show the following reactivity order: Pt(111) < Pt(100) < Pt(211), and that for the stepped Pt(211
- Published
- 2024