1. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.
- Author
-
Bhattacharya D, Chaudhuri S, Singh MK, and Chaudhuri S
- Subjects
- Animals, Brain blood supply, Brain metabolism, Brain Neoplasms pathology, Endothelial Cells drug effects, ErbB Receptors metabolism, Female, Glioma pathology, MAP Kinase Kinase 1 genetics, MAP Kinase Kinase 1 metabolism, MAP Kinase Kinase Kinases genetics, MAP Kinase Kinase Kinases metabolism, MAP Kinase Signaling System, Male, Mitogen-Activated Protein Kinase 1 genetics, Mitogen-Activated Protein Kinase 1 metabolism, Mitogen-Activated Protein Kinase 3 genetics, Mitogen-Activated Protein Kinase 3 metabolism, Neovascularization, Pathologic pathology, Proto-Oncogene Proteins c-raf, Rats, Sheep, Angiopoietin-1 metabolism, Brain Neoplasms metabolism, CD2 Antigens pharmacology, Endothelial Cells metabolism, Glioma metabolism, Neovascularization, Pathologic metabolism, Receptor, TIE-2 metabolism
- Abstract
Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment., (Copyright © 2015 Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF